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Abstract—We consider the intractable problem of finding several edge-disjoint spanning trees of
the minimum total weight with a given diameter in complete undirected graph in current paper.
The weights of edges of a graph are random variables from several continuous distributions:
uniform, biased truncated exponential, biased truncated normal. The approximation algorithm
with time complexity O(n2), where n is number of vertices in graph, is proposed for solving
this problem. The asymptotic optimality conditions for constructed algorithm is presented for
each considered probabilistic distribution.
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1. INTRODUCTION

The Minimum Spanning Tree (MST) Problem is one of well-known problems of discrete op-
timization. Is consists of finding spanning tree (connected acyclic subgraph on all vertices) of
minimum weight in given edge-weighted graph G = (V,E). Polynomial solvability of this problem
was proved by construction of polynomial algorithms Boruvka (1926), Kruskal (1956), and Prim
(1957). These algorithms have time complexities O(u log n), O(u log u), and O(n2) respectively,
where u = |E| and n = |V |. It is interesting to note, that expected value of MST’s weight in graph
with random edge weights can be surprisingly small. For example, MST’s weight with high proba-
bility is close to constant 2.02 for complete graph with edge weights from uniform distribution on
interval (0; 1) [1]. Similar results were obtained in [2, 3].

One possible generalization of the above problem is the bounded diameter version of the MST
problem. The diameter of a tree is the number of edges in the longest simple path within the tree
connecting a pair of vertices. This problem is as follows: given edge-weighted graph and parameter
d = dn, it is necessary to find MST in this graph with diameter bounded from above or below by
the parameter d. Both problems are NP -hard in general formulation.
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The bounded from above MST problem is polynomially solvable for diameters two or three, and
NP -hard for any diameter between 4 and (n− 1), even for the edge weights equal to 1 or 2 [4,
pp. 206]. The MST problem bounded from below is NP -hard, because its particular case for
d = n− 1 is the problem “Hamiltonian Path” [4].

Recently, the authors of this article have began to study another modification of the MST
problem with a bounded diameter, when the diameter of this tree is equal to a given number.
It is noteworthy that the algorithm for solving such a problem can be transformed into an algo-
rithm for solving a problem with a diameter bounded from above or from below. Thus, the scope
of such a problem covers the scope of problems with a bounded diameter both from above and
from below.

There are several applications for MST problem with bounded diameter from above in wireless
ad-hoc networks [5], network design [6], in development of data compression algorithm [7] and
distributed mutual exclusion algorithm [8] (for a detailed description see, for example, [9]).

The problem of finding several edge-disjoint spanning trees of minimum total weight with
bounded from below diameter in complete graph arises in the theory of reliability of communi-
cation networks, when it is necessary to construct m-connected graph of minimum total weight
for a set of objects excluding such configuration of graph, for which after failure of few nodes, the
total structure of the graph becomes unreliable. Thus it is necessary to bound the diameter of con-
structed trees forming m-connected graph. It must be noted that in [10, 11] a probabilistic analysis
of an approximation algorithm for this problem was carried out and conditions for its asymptotic
optimality were obtained.

In [12, 13] the probabilistic analysis of polynomial algorithm is carried out and asymptotically
optimal conditions for this algorithm were proposed for the problem of finding one and several
MST with given in the case of complete directed graph. Unfortunately, the algorithm analy-
sis is not accepted for the case of complete undirected graph. The appearance of the difficulty
for probabilistic analysis in the case of undirected graph arises from the need to take into ac-
count the possible dependence between different objects (random variables) in the course of the
algorithm.

We consider the problem of findingm edge-disjoint spanning trees of minimum total weight with
a given diameter d = dn in complete undirected graph (this problem is denoted as m-d-UMST). The
approximation algorithm for solving this problem and its conditions of asymptotic optimality are
presented. Probabilistic analysis is accomplished for the case of complete edge-weighted undirected
graph G without loops under assumption that weights of edges of a graph positive independent iden-
tically distributed random variables. The probability distribution functions (p.d.f.) of the weights
of graph G are considered from three probabilistic distributions: uniform distribution UNI(an; bn)
on the finite segment [an; bn], as well as biased truncated distributions: exponential EXP(an, λn)
and normal NORM(an, σn) on the unbounded semiopen interval [an;∞). The probabilistic density
functions for these distributions are as follows

p(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

bn − an
if an�x� bn for UNI(an; bn);

1

λn
exp

(
−x− an

λn

)
if an�x<∞ for EXP(an, λn);

2

σn
√
2π

exp

(
−(x− an)

2

2σ2
n

)
if an�x<∞ for NORM(an, σn);

0 otherwise.

(1)
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2. THE FINDING OF SEVERAL EDGE-DISJOINT SPANNING TREES
OF MINIMUM TOTAL WEIGHT WITH GIVEN DIAMETER IN UNDIRECTED GRAPH

First of all, we formulate considered problem and then propose approximation algorithm for its
solution.

Given complete n-vertex edge-weighted undirected graph G = (V,E) and positive integer num-
bers m � 2, d � 4 such that m(d+ 1) � n. The m-d-UMST is to find m edge-disjoint spanning
trees T1, . . . , Tm such that the diameter of each of them is equal to d = dn and their total weight is
minimum. For solving this problem, the next deterministic algorithm is proposed.

Description of algorithm A
Preliminary Step 0. In graphG, choose arbitrary (n−m(d+ 1))-vertex subset V ′ and arbitrarily

split remaining m(d+ 1) vertex into m subsets V1, V2, . . . , Vm with (d+ 1) vertices in each set.

Step 1. In each subgraph G(Vs) s = 1, . . . ,m, beginning with arbitrary vertex construct (d+ 1)-
vertex Hamiltonian path Ps using greedy heuristic “go to the nearest unvisited vertex”.

Put Ts = Ps, s = 1, . . . ,m.

Step 2. Hereafter we assume without loss of generality that d is odd (see remark 1 below). For
each pair of paths Pi and Pj , 1 � i < j � m, add vertices from Pj to Ti and from Pi to Tj in such a
way that constructed subgraph consists of two edge-disjoint 2(d + 1)-vertex subtree with diameter
equals d. Each path Ps, 1 � s � m, is considered as two halves (subpaths) P 1

s and P 2
s , each of

which contains one end vertex and d−1
2 inner vertices of path Ps totally d+1

2 vertices in each half.

Construction of edge-disjoint spanning trees Ti and Tj with help of vertices from halves P 1
i , P

2
i

and halves P 1
j , P

2
j is described in following items 2.1–2.6.

2.1. Connect each inner vertex of P 1
i by the shortest edge to the inner vertex of P 1

j . So we add
this edge to Tj .

2.2. Connect each inner vertex of P 2
i by the shortest edge to the inner vertex of P 2

j . We add
this edge to Tj .

2.3. Connect each inner vertex of P 1
j by the shortest edge to the inner vertex of P 2

i . Thus, we
add this edge to Ti.

2.4. Connect each inner vertex of P 2
j by the shortest edge to the inner vertex of P 1

i . We add
this edge to Ti.

2.5. Connect each end vertex of the path Pi by the shortest edge to the inner vertex of the
path Pj . We add this edge to Tj .

2.6. Connect each end vertex of the path Pj by the shortest edge to the inner vertex of the
path Pi. So we add this edge to Ti.

Step 3. For s = 1, . . . ,m each vertex of subgraph G(V ′) is connected by the shortest edge to
the inner vertex of the path Ps. Thus, we add this edge to corresponding tree Ts.

The construction of m edge-disjoint spanning trees T1, . . . , Tm is completed (see example in
Figs. 1–3).

Remark 1. In the case of even d algorithm must be slightly modified. On the Step 1 for the first
chosen vertex it is necessary to find the closest vertex vs, s = 1, . . . ,m in d actions. The first chosen
vertex is marked and used after all steps of algorithm. Hereafter all steps of the algorithm must be
carried out for d′ = d− 1, where the first vertex of each path is vs, and after Step 3 marked vertices
are connected with vs, s = 1, . . . ,m. Thus, desired spanning trees are constructed with property
that diameter of each tree equals exactly d, and time complexity of presented algorithm remains
the same.
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V1 V2

V '
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Fig. 1. Initial vertices of the graph and Step 0 of the work of the Algorithm A in 16-vertex complete graph,
m = 2, d = 5.
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Fig. 2. Steps 1 and 2 of the work of the algorithm A in 16-vertex complete graph, m = 2, d = 5. The hatched
vertices are end vertices. The solid edges belong to T1. The dotted edges belong to T2.

T1 T2

Fig. 3. Step 3 of the work of the Algorithm A in 16-vertex complete graph, m = 2, d = 5. The hatched vertices
are end vertices. The solid edges belong to T1. The dotted edges belong to T2.

Let us introduce the notations: WA is total weight of all spanning trees T1, . . . , Tm, which are
constructed by algorithm A, W1, W2, and W3 are total weights of edges, which are added to the
trees on Steps 1, 2, and 3 respectively. Then WA = W1 +W2 +W3.

Let’s formulate two statements concerning algorithm A.

Statement 1. Algorithm A constructs feasible solution for the m-d-UMST.

Statement 2. Time complexity of algorithm A is estimated by O(n2).
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3. PROBABILISTIC ANALYSIS OF ALGORITHM A
Let FA(I) and OPT (I) be approximation (obtained using some algorithm A) and optimal value

of objective function of problem on input I, respectively.

Definition 1. Algorithm A has estimates (performance guarantees)
(
εn, δn

)
on a set I of random

inputs of a n-sized problem (where n is amount of input data required to describe the problem,
see [4]), if

P
{|FA(I)−OPT (I)| > εnOPT (I)

}
� δn, (2)

where εn = εA(n) is an estimate of relative error of a solution obtained by algorithm A, δn = δA(n)
is an estimate of the failure probability of the algorithm, which is equal to the proportion of cases
when the algorithm does not hold the relative error εn or does not produce any answer at all.

Definition 2 [14]. Approximation algorithm A is called asymptotically optimal on a class of
input data of a problem, if there exist such performance guarantees that for all input I of size n

εn → 0 and δn → 0 as n → ∞.

Hereafter random variable, which is equal to minimum over k independent identically distributed
random variables η1, . . . , ηk, is denoted as ηk.

According to the description of algorithm A for Steps 1–3 the following relations are true:

W1 =
m∑
s=1

d∑
k=1

ηk, since m paths P1, . . . , Pm with d edges in each path are constructed on Step 1.

W2 = C2
m

(
4d−1

2 η(d−1)/2 + 4η(d−1)

)
, because connection of new edges to constructed set of span-

ning trees is carried out for each pair of paths from C2
m = m(m−1)

2 such pairs on corresponding
items 2.1–2.6 of Step 2 as follows:

— firstly, each of d−1
2 inner vertices of one half of a path connected by shortest edge to each of d−1

2
inner vertices of half of another path;

— secondly, each end vertex of each path is connected by shortest edge to one of d− 1 inner vertices
of another path.

The multiplier 4 arises since inner vertices from two halves of one path are connected by shortest
edges with inner vertices from two halves of another path for each pair of paths in items 2.1–2.4.
In items 2.5–2.6, corresponding shortest edges connects 4 end vertices with inner vertices of con-
sidered paths.

W3 = m(n−m(d+ 1))η(d−1), since each vertex over n−m(d+ 1) vertices of set V ′ is connected
by shortest edge to inner vertex of the m paths Ps, 1 � s � m on Step 3 considering (d− 1) inner
vertices of each path.

Remark 2. It must be noted that for even d:

W1 = m
d′∑

k=1

ηk, W2 = C2
m

(
4
d′ − 1

2
η(d′−1)/2 + 4η(d′−1)

)
, W3 = m

(
n−m(d′ + 1)

)
η(d′−1),

where d′ = d− 1 � 3. Thus, replacing d by d′ in all cases it is possible to accomplish probability
analysis and prove all the proposed statements.

Hereafter we pass from random variables η, ηk to normalized random variables ξ = η−an
βn

, ξk =

ηk−an
βn

, respectively, where βn =

⎧⎪⎨⎪⎩
bn − an for UNI(an; bn);
λn for EXP(an, λn);
σn for NORM(an, σn).
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Let us consider random variables W1,W2,W3:

W1 = m
d∑

k=1

ηk = m
d∑

k=1

(βnξk + an) = mdan + βnm
d∑

k=1

ξk = mdan + βnW
′
1,

W2 = C2
m

(
4
d− 1

2
η(d−1)/2 + 4η(d−1)

)
= C2

m

(
4
d− 1

2

(
βnξ(d−1)/2 + an

)
+ 4

(
βnξ(d−1) + an

))
= m(m− 1)(d + 1)an + βnm(m− 1)

(
(d− 1)ξ(d−1)/2 + 2ξ(d−1)

)
=
(
m2(d+ 1)−md−m

)
an + βnW

′
2,

W3 = m(n−m(d+ 1))η(d−1) = m(n−m(d+ 1))
(
βnξ(d−1) + an

)
= m(n−m(d+ 1))an + βnm(n−m(d+ 1))ξ(d−1) =

(
mn−m2(d+ 1)

)
an + βnW

′
3,

where W ′
1, W

′
2, W

′
3 are normalized random variables for W1, W2, W3 respectively, and βn is pa-

rameter of corresponding distribution.

So the following relation is obtained for the sum of the weights of the constructed spanning
trees: WA = m(n− 1)an + βnW

′
A, where W ′

A = W ′
1 +W ′

2 +W ′
3.

Lemma 1. Algorithm A for the m-d-UMST in n-vertex complete graph with weights of edges
from probabilistic distributions (UNI(an; bn), EXP(an, λn) or NORM(an, σn)) is the algorithm with
the next estimate of relative error εn and failure probability δn:

εn =
2βn

m(n− 1)an
ÊW ′

A, δn = P
{
W̃ ′

A > ÊW ′
A
}
, (3)

where βn is parameter of corresponding distribution, ÊW ′
A is some upper bound for expected

value EW ′
A, W̃ ′

A = W ′
A − EW ′

A.

Henceforth, the following statement from theory of probability is useful for probabilistic analysis
of algorithm A.

Theorem 1 [15]. Let us consider random variables X1, . . . ,Xn. We define positive constants T
and h1, . . . , hn such that for all k = 1, . . . , n and 0 � t � T the inequality is true

EetXk � e
hkt2

2 . (4)

Let S =
n∑

k=1
Xk and H =

n∑
k=1

hk. Then

P{S > x} �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{
− x2

2H

}
, if 0 � x � HT,

exp

{
−Tx

2

}
, if x � HT.

Also the following statement will be useful for further analysis.

Statement 3. For all integers d � 3 the following inequality is correct

d∑
k=1

1

k
� ln d+

3

4
.

It is assumed that d is odd and is defined on two semiopen intervals: case 1 (lnn� d< n
lnn) and

case 2 ( n
lnn � d< n

m).

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



878 GIMADI, SHTEPA

3.1. Probability Distribution UNI(an; bn)

We pass from random variables η and ηk to normalized random variables ξ = η−an
bn−an

and ξk =
ηk−an
bn−an

for uniform distribution UNI(an; bn).

Lemma 2. For EW ′
A the following inequality holds

EW ′
A � m ln d+

2mn

d
.

Lemma 3. Let constants T = 1 and hk = 1
(k+1)2 are defined. Then for UNI(an; bn) and biased

random variables ξ̃k = ξk − Eξk the next inequalities are true Eetξ̃k � e
hkt2

2 in Petrov’s theorem
[15, pp. 54–55] for each 0 � t � T and 1 � k � d.

Lemma 4. In the case of lnn � d < n
m the following upper bound is correct

H � mn

d

for sums of constants hk = 1
(k+1)2

, which correspond to the added edges in the constructed trees.

Lemma 5. For the case of lnn � d < n
lnn the next inequality holds

EW ′
A � 3mn

d
= ÊW ′

A.

Lemma 6. For n
lnn � d < n

m the following inequality is true:

EW ′
A � 3m lnn = ÊW ′

A.

With help of previous lemmas, it is possible to prove the main result of this section.

Theorem 2. Let parameter d = dn is defined as lnn � d < n
m . Then algorithm A for

the m-d-UMST with weights of edges from UNI(an; bn) is asymptotically optimal with failure prob-
ability δn = n−m → 0 as n → ∞ and the next conditions on scatter of weights of edges of graph G

bn
an

=

⎧⎪⎪⎨⎪⎪⎩
o(d), if lnn � d <

n

lnn
,

o

(
n

lnn

)
, if

n

lnn
� d <

n

m
and m < lnn.

(5)

3.2. Probability Distribution EXP(an, λn)

We pass from random variables η, ηk to normalized random variables ξ = η−an
λn

, ξk = ηk−an
λn

respectively. In the terms of this variables, p.d.f. is Pξ(x) = 1− e−x and probability density
function is as follows (1)

p(ξ) =

{
e−ξ, if 0 � ξ < ∞,

0 otherwise

for random variable ξ. For random variable ξk, p.d.f. has the following form

Pξk(x) = 1− (1−Pξ(x))
k. (6)

Lemma 7. Mathematical expectation of random variable ξk equals Eξk = 1/k.
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Lemma 8. In the case of EXP(an, λn), the next upper bound is valid for expected value of a
solution of algorithm A:

EW ′
A � m ln d+

2mn

d− 1
= ÊW ′

A.

Lemma 9. Let T = 1
2 , hk = 3

k2 . Then for all 1� k� d and 0� t�T , the conditions of Petrov’s

theorem [15, pp. 54–55] are true Eetξ̃k � e
hkt2

2 for biased random variables ξ̃k = ξk − Eξk.

Lemma 10. Let lnn � d < n
m . Then for sufficiently large n the following upper bound is correct

for the sums of constants hk = 3
k2 , which correspond to added edges in constructed trees

H � 3mn

d− 1
.

Lemma 11. In the case of lnn � d < n
lnn the next upper bound is valid

EW ′
A � 3mn

d− 1
= ÊW ′

A.

Lemma 12. For n
lnn � d < n

m the inequality holds:

EW ′
A � 5m lnn = ÊW ′

A.

Using previous lemmas we can postulate the following theorem.

Theorem 3. Let parameter d = dn be such that lnn � d < n
m . Then algorithm A for solving the

m-d-UMST with edge weights from EXP(an, λn) is asymptotically optimal with failure probability
δn = n−m → 0 as n → ∞ under the conditions on scatter of weights of edges of graph G:

λn

an
=

⎧⎪⎪⎨⎪⎪⎩
o(d), if lnn � d <

n

lnn
,

o

(
n

lnn

)
, if

n

lnn
� d <

n

m
and m < lnn.

(7)

3.3. Probability Distribution NORM(an, σn)

For distribution NORM(an, σn), we introduce normalized random variables ξ = η−an
σn

and ξk =
ηk−an
σn

for corresponding weights of edges of graph instead of η and ηk.

For random variable ξ, the following probability density function according to (1) and p.d.f. are
true

p(ξ) =

⎧⎪⎪⎨⎪⎪⎩
√

2

π
exp

(
−ξ2

2

)
, if 0 � ξ < ∞,

0 otherwise.

F(x) =

√
2

π

x∫
0

exp

(
−u2

2

)
du.

Definition 3. We say that p.d.f. F1(x) dominates p.d.f. F2(x), if F1(x) � F2(x) for all x.

Statement 4. The p.d.f. F(x) of normal random variable with parameter σn dominates exponen-
tial p.d.f. with parameter λn = 2σn:

F(x) � P(x/2) ∀x � 0. (8)
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Lemma 13 [16]. Let χ1, . . . , χk are independent identically distributed random variables with
p.d.f. F (x), F̂ (x) is p.d.f. of random variable χ = min

i=1,...,k
χi. Also ζ1, . . . , ζk are independent iden-

tically distributed random variables with p.d.f. G(x), analogically Ĝ(x) is p.d.f. of random variable
ζ = min

i=1,...,k
ζi. Then for all x

F (x) � G(x) ⇒ F̂ (x) � Ĝ(x).

Lemma 14 [16]. Let Pϑ, Pω, Pζ , Pχ are p.d.f.’s of random variables ϑ, ω, ζ, χ respectively, where
ϑ and ζ are independent, also ω and χ are independent too. Then

(∀x Pϑ(x) � Pω(x)) ∧ (∀y Pζ(y) � Pχ(y)) ⇒ (∀z Pϑ+ζ(z) � Pω+χ(z)).

Lemma 15 [16]. Let p.d.f.’s F (x) and P (x) such that F (x) � P (x) for all x. Then performance
guarantees (εA, δA) for algorithm A on inputs with p.d.f. F (x) are the same as for inputs with
p.d.f. P (x).

Let us put F (x) = F(x) and P (x) = P(x/2). From Statement 4 and Lemmas 13–15 the following
theorem implies for biased truncated normal distribution.

Theorem 4. Let parameter d = dn be defined as lnn � d < n
m . Then algorithm A for the

m-d-UMST in n-vertex complete undirected graph with edge weights from unbounded semiopen
interval [an;∞) according to NORM(an, σn) asymptotically optimal with failure probability
δn = n−m → 0 as n → ∞ and the next asymptotically optimal conditions:

σn
an

=

⎧⎪⎪⎨⎪⎪⎩
o(d), if lnn � d <

n

lnn
,

o

(
n

lnn

)
, if

n

lnn
� d <

n

m
and m < lnn.

4. CONCLUSION

In this work, deterministic approximation algorithm, which solves the problem of finding several
edge-disjoint spanning trees with given diameter in edge-weighted complete undirected graph, has
been presented. This algorithm finds feasible solution in time O(n2), where n is number of vertices
in graph. The probabilistic analysis has been carried out for several probabilistic distributions of
weights of edges of graph: uniform UNI(an; bn), biased truncated exponential EXP(an, λn), and
biased truncated normal NORM(an, σn). Sufficient conditions of asymptotic optimality for this
algorithm have been obtained in the case of each considered distribution. It would be interesting to
investigate this problem on inputs with discrete probabilistic distributions. Also it would be useful
to consider the problem of finding several edge-disjoint spanning trees of maximum total weight
with given or bounded diameter.
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APPENDIX

Proof of Statement 1. Each edge-disjoint construction consists of n vertices and (n − 1) edges,
since, first of all, the (d+ 1)-vertex path is constructed on Step 1, and then all remaining vertices
are connected to it without increasing diameter of spanning tree on Step 2 and 3. At the end, m
such constructions are made presenting feasible solution for the m-d-UMST.
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Proof of Statement 2. Preliminary Step 0 requires O(n) elementary operations.

On Step 1, each path is constructed in O(d2) time, so this step is carried out completely with
time complexity O(md2) or O(nd) (because m(d+ 1) � n).

Each pair of paths (Pi, Pj), 1 � i < j � m is interconnected with O(d2) actions on items 2.1–2.4.

For all m(m−1)
2 pairs of paths, it is required O(m2d2) or O(n2) elementary operations.

Items 2.5–2.6 are carried out with time complexity O(md).

Step 3 requires O(mdn) or O(n2) time for connection of |G(V ′)| < n vertices by shortest edges
with inner vertices of path Ps in each spanning tree Ts, 1 � s � m.

Thus, total time complexity of algorithm A is equal to O(n2).

Proof of Lemma 1. Let us consider inequality (2) for performance guarantees of the quality of
the algorithm in relation to the considered case of the minimum problem.

P
{
WA −OPT (I) > εnOPT (I)

}
= P

{
WA > (1 + εn)OPT (I)

}
� P

{
WA > (1 + εn)m(n− 1)an

}
= P

{
m(n− 1)an + βnW

′
A > (1 + εn)m(n− 1)an

}
= P

{
W ′

A − EW ′
A >

εnm(n− 1)an
βn

− EW ′
A
}

= P

{
W̃ ′

A >
εnm(n− 1)an

βn
− EW ′

A
}

� P

{
W̃ ′

A >
εnm(n− 1)an

βn
− ÊW ′

A

}
= P

{
W̃ ′

A > ÊW ′
A
}
= δn,

the penultimate equality is true for εn =
2βnÊW ′

A
m(n−1)an

.

Proof of Statement 3. It is easy to understand that

d∑
k=1

1

k
� 1 +

1

2
+

1

3
+

d∫
3

dx

x
=

11

6
+ ln d− ln 3 � ln d+

3

4
.

Proof of Lemma 2. It is easy to establish that Eξk = 1
k+1 for inputs UNI(an; bn). Let us

estimate from above each of the mathematical expectations of random variables W ′
1, W

′
2, and W ′

3.

EW ′
1 =

m∑
s=1

d∑
k=1

Eξk = m
d∑

k=1

1

k + 1
� m ln d,

penultimate inequality is correct for d � 3 due to the Statement 3 and relation

d∑
k=1

1

k + 1
=

d∑
k=1

1

k
− 1 +

1

d+ 1
�

d∑
k=1

1

k
− 3

4
� ln d.

EW ′
2 = C2

m

(
4
d− 1

2
Eξ(d−1)/2 + 4Eξ(d−1)

)
=

m(m− 1)

2

(
4(d− 1)/2

(d− 1)/2 + 1
+

4

d

)
� 2m2;

EW ′
3 = m(n−m(d+ 1))Eξ(d−1) = m

n−m(d+ 1)

d
� mn

d
−m2.

Summing three inequalities and taking into account that m(d+ 1) � n, we obtain

EW ′
A = E

(
W ′

1 +W ′
2 +W ′

3

)
� m ln d+ 2m2 +

mn

d
−m2 � m ln d+

2mn

d
.
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Proof of Lemma 3. Let’s estimate Eetξk from above using formula

Eetξk =
∞∑
i=0

ti

(k + 1) · · · (k + i)

from monograph [17, pp. 129]. Introducing also the notations α = t
k+1 and

Qk,t =
(k + 1)

(k + 2)(1 − t
k+3)

� Qk,T =
(k + 1)(k + 3)

(k + 2)2
< 1

for all t � T and for all natural k, we obtain

Eetξk =
∞∑
i=0

ti

(k + 1) · · · (k + i)
� 1 + α+ α2Qk,t � 1 + α+ α2 � eα+

α2

2 = etEξke
hkt2

2 ,

since Eξk = 1
k+1 for inputs UNI(an; bn).

Consequently,

Eet(ξk−Eξk) = Eetξ̃k � e
hkt2

2 ,

where ξ̃k = ξk − Eξk.

Proof of Lemma 4. In the case of lnn � d < n
m , parameter H is equal to sum of H1, H2, and H3

according to steps of algorithm A. Taking into account the notations and estimates obtained earlier,
we arrive at the following:

H1 = m
d∑

k=1

hk = m
d∑

k=1

1

(k + 1)2
< ψm,

where ψ ≈ 0.645. Here we use Euler estimation for the sum of inverse squares 1+ 1
22
+ 1

32
+ 1

42
+. . . =

π2

6 < 1.645.

H2 = 4C2
m

(
d− 1

2
h(d−1)/2 + h(d−1)

)
� 2m2

(
(d− 1)/2

((d− 1)/2 + 1)2
+

1

d2

)
= 2m2

(
2(d− 1)

(d+ 1)2
+

1

d2

)
� 4m2 d

(d+ 1)2
.

The last inequality holds for d � 3.

H3 = m
(
n−m(d+ 1)

)
h(d−1) �

mn

d2
−m2 d

(d+ 1)2
.

Since n � m(d+ 1) and m � 2, we get

H = H1 +H2 +H3 < ψm+ 4m2 d

(d+ 1)2
+

(
mn

d2
−m2 d

(d+ 1)2

)
� mn

d

(
dψ

n
+

1

d

)
+ 3m2 d

(d+ 1)2
�
(

ψd

2(d+ 1)
+

1

d
+

3d2

(d+ 1)3

)
mn

d
.

It is easy to verify that the expression in parentheses is less than 1 for all d � 3. Then we can
obtain the next estimation H � mn

d .

Proof of Lemma 5. Taking into account that ln d � lnn and d < n
lnn , it is true that

EW ′
A � m ln d+

2mn

d
� m lnn+

2mn

d
< m

n

d
+

2mn

d
=

3mn

d
= ÊW ′

A.
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Proof of Lemma 6. Because of Lemma 2, ln d � lnn, and n
d � lnn, we get

EW ′
A � m ln d+

2mn

d
� 3m ln n = ÊW ′

A.

Proof of Theorem 2. First of all, it must be noted that in the course of the Algorithm A we
have deal with random variables of the type ξk, 1 � k � d. In the case of graphs with weights

of edges from UNI(an; bn) these biased variables satisfy the conditions Eetξ̃k � e
hkt2

2 of Petrov’s
theorem [15, pp. 54–55] for constants T = 1 and hk = 1

(k+1)2 (see Lemma 3).

We will carry out the proof of the theorem for two cases of possible semiopen intervals of
parameter d.

Case 1: lnn � d <
n

lnn
.

According to Lemma 5 and formula (3) for relative error, we obtain

εn =
2(bn − an)

m(n− 1)an
ÊW ′

A =
2(bn − an)

m(n− 1)an

3mn

d
� 6n

(n− 1)

bn/an
d

.

We can see that εn → 0 as n → ∞, if the following conditions are satisfied on scatter of weights
of edges of graph G: bn

an
= o(dn).

Using Lemmas 1 and 5, we can estimate failure of probability:

δn = P
{
W̃ ′

A > ÊW ′
A
}
= P

{
W̃ ′

A >
3mn

d

}
.

From Lemma 4 and inequality d < n
lnn it follows that TH � mn

d < 3mn
d = x. According to

Petrov’s theorem [15, pp. 54–55], we get the next estimate of failure probability of algorithm A:

δn = P{W̃ ′
A > x} � exp

{
−Tx

2

}
.

Since lnn < n
d and Tx

2 = 3mn
2d > m lnn, then

δn = P{W̃ ′
A > x} � exp

{
−Tx

2

}
< exp(−m lnn) =

1

nm
→ 0 as n → ∞.

Therefore, in Case 1 Algorithm A gives asymptotically optimal solution for the m-d-UMST in
graph with weights of edges from UNI(an; bn).

Case 2:
n

lnn
� d <

n

m
.

According to Lemma 6 and formula (3) we get the following equation for relative error:

εn =
2(bn − an)

(n− 1)an
ÊW ′

A =
2(bn − an)

m(n− 1)an
3m ln n � 6(bn/an) lnn

(n− 1)
.

It is clear that εn → 0 as n → ∞, if bn
an

= o
(

n
lnn

)
.

Now using Lemmas 1 and 6, we can estimate failure probability δn = P
{
W̃ ′

A > ÊW ′
A
}
=

P
{
W̃ ′

A > 3m lnn
}
. If T = 1, d � n

lnn and bearing in mind Lemma 4, then the next inequality is

valid: TH � mn
d < 3m ln n = x. Since Tx

2 > m lnn and Petrov’s theorem [15, pp. 54–55] we obtain

the following estimate for failure probability of algorithm A: δn = P{W̃ ′
A > x} � exp

{− Tx
2

}
�

exp(−m lnn) = 1
nm → 0.
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From this it follows that in the Case 2 Algorithm A gives asymptotically optimal solution for the
problemm-d-UMST on n-vertex complete undirected graph with weights of edges from UNI(an; bn).

We conclude, that within the values of the parameter d for both cases, under conditions (5) we
have that estimates of the relative error εn → 0 and failure probability δn → 0 as n → ∞.

Proof of Lemma 7. With reference to (6) we obtain

Eξk =

∞∫
0

xdPξk(x) =

∞∫
0

xk(1−Pξ(x))
k−1dPξ(x) =

∞∫
0

xke−kxdx

= −x e−kx
∣∣∣∞
0

+

∞∫
0

e−kxdx = −1

k
e−kx

∣∣∣∞
0

=
1

k
.

Proof of Lemma 8. Let us estimate each expected value for random variables W ′
1, W

′
2, and W ′

3:

EW ′
1 =

m∑
s=1

d∑
k=1

Eξk = m
d∑

k=1

1

k
� m

(
ln d+

3

4

)
taking into account Statement 3 and Lemma 7;

EW ′
2 = C2

m

(
4
d− 1

2
Eξ(d−1)/2 + 4Eξd−1

)
= 2m(m− 1)

(
1 +

1

d− 1

)
� 2d

d− 1
m2 − 2m;

EW ′
3 = m(n−m(d+ 1))Eξ(d−1) = m

n−m(d+ 1)

d− 1
=

mn

d− 1
− d+ 1

d− 1
m2.

Adding the left and right parts of three ratios for EW ′
1, EW ′

2, EW ′
3 and bearing in mind that

m � n
d+1 , we get

EW ′
A � m ln d− 5

4
m+

mn

d− 1
+m2 � m ln d+

mn

d− 1
+

mn

d+ 1
� m ln d+

2mn

d− 1
.

Proof of Lemma 9. The following is true for quantities Eetξk according to formula (6).

Eetξk =

∞∫
0

etxdPξk(x) =

∞∫
0

etxke−kxdx =

∞∫
0

ke−(k−t)xdx

= − k

k − t
e−(k−t)x

∣∣∣∞
0

=
1

1− t/k
=

∞∑
s=0

(
t

k

)s

� 1 +
t

k
+

(
t

k

)2 1

1− t/k
.

Taking into account the inequality t
k � 1

2 , which is true under the conditions of the lemma, we
estimate the value Eetξk from above:

Eetξk � 1 +
t

k
+ 2

(
t

k

)2

= 1 +
t

k
+

1

2

(
t

k

)2

+
3

2

(
t

k

)2

�
(
1 +

t

k
+

1

2

(
t

k

)2
)(

1 +
3

2

(
t

k

)2
)

� et/k exp

(
3

2

(
t

k

)2
)

= etEξk exp

(
hkt

2

2

)
,

because of Lemma 7 Eξk = 1
k for EXP(an, λn). Consequently the conditions Eetξ̃k � e

hkt2

2 of
Petrov’s theorem are true for constants T = 1/2, hk = 3/k2.
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Proof of Lemma 10. For lnn � d < n
m parameter H is equal to sum of quantities H1, H2, and H3

according to steps of algorithm A. Taking into account previous notation and obtained estimations,
we have

H1 = m
d∑

k=1

hk = m
d∑

k=1

3

k2
< 3(1 + ψ)m < 5m,

where ψ equals Euler estimation for the sum of inverse squares minus 1 (ψ ≈ 0.645).

H2 = 4C2
m

(
d− 1

2
h(d−1)/2 + h(d−1)

)
= 6m(m− 1)

(
2

d− 1
+

1

(d− 1)2

)
� 6m2 2d− 1

(d− 1)2
.

H3 = m
(
n−m(d+ 1)

)
h(d−1) =

3

(d− 1)2

(
mn−m2(d+ 1)

)
� 3mn

(d− 1)2
− 3m2 d+ 1

(d− 1)2
.

With n � m(d+ 1) and m � 2 we get

H = H1 +H2 +H3 < 5m+
3m2

(d− 1)2

(
(4d − 2)− (d+ 1)

)
+

3mn

(d− 1)2

= 3m

(
5

3
+

3m

d− 1

)
+

3mn

(d− 1)2

� 3n

d+ 1

(
5

3
+

3m

d− 1

)
+

3mn

(d− 1)2
� 3n

d+ 1

(
5m

6
+

3m

d− 1

)
+

3mn

(d− 1)2

=
3mn

d− 1

(
5(d− 1)

6(d+ 1)
+

3

d+ 1
+

1

d− 1

)
� 3mn

d− 1
.

The last sign of inequality is due to the fact that, when n is sufficiently large, the value in parentheses
is less than 1 since d � lnn.

Proof of Lemma 11. Taking into account ln d � lnn, d < n
lnn and Lemma 8 we obtain

EW ′
A � m ln d+

2mn

d− 1
� m

n

d
+

2mn

d− 1
� 3mn

d− 1
= ÊW ′

A.

Proof of Lemma 12. According to Lemma 8 and inequality ln d � lnn and n � d lnn we get

EW ′
A � m ln d+

2mn

d− 1
� m lnn+

2md

d− 1
lnn � 5m lnn = ÊW ′

A.

Proof of Theorem 3. First of all, let us note that random variables ξ̃k = ξk − Eξk satisfy condi-

tions Eetξ̃k � e
hkt2

2 of Petrov’s theorem for constants T = 1/2 and hk = 3
k2 (see Lemma 9).

Let’s carry out the proof of the theorem for two cases of possible semiopen intervals of the value
of the parameter d.

Case 1: lnn � d <
n

lnn
.

Bearing in mind Lemma 11 and formula (3) for relative error we obtain

εn =
2λn

m(n− 1)an

3mn

(d− 1)
� 6n

(n− 1)

λn/an
(d− 1)

.

So we can see that n → ∞ as εn → 0, if λn
an

= o(dn).
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Now using Lemmas 1 and 11, we can estimate failure probability:

δn = P
{
W̃ ′

A > ÊW ′
A
}
= P

{
W̃ ′

A >
3mn

d− 1

}
= P

{
W̃ ′

A >
3mn

d− 1

}
.

For each edge with weight, which corresponds to random variable ξk, we define constants T = 1/2
and hk = 3

k2 .

From Lemma 10, it implies that TH � 3mn
2(d−1) <

3mn
d−1 = x.

According to Petrov’s theorem we get the next estimate for failure probability of algorithm A:

δn = P{W̃ ′
A > x} � exp

{
−Tx

2

}
.

Since n
d > lnn, then Tx

2 = 3mn
2(d−1) > m lnn. So we get that

δn = P{W̃ ′
A > x} � exp

{
−Tx

2

}
< exp(−m lnn) =

1

nm
→ 0 as n → ∞.

Thus, in Case 1, Algorithm A gives asymptotically optimal solution for the m-d-UMST in n-vertex
complete undirected graph with weights of edges from EXP(an, λn).

Case 2:
n

lnn
� d <

n

m
.

Knowing Lemma 12 and formula (3) for relative error εn we get

εn =
2λn

(n− 1)an
ÊW ′

A =
2λn

m(n− 1)an
5m lnn � 10(λn/an) lnn

n− 1
.

It is clear that εn → 0 as n → ∞, if the conditions λn
an

= o
(

n
lnn

)
are satisfied.

So using Lemmas 1 and 12, we can estimate failure probability

δn = P
{
W̃ ′

A > ÊW ′
A
}
= P

{
W̃ ′

A > 5m lnn
}
.

Putting constants hk as in the Case 1, we set T = 1/2 and x = 5m ln n.

Taking into account Lemma 10, quantities x, T , H, and d � n
lnn , we arrive at the following

inequality TH � 3mn
2d < 5m lnn = x.

Since Tx
2 > m lnn, according to Petrov’s theorem we obtain the next estimate for failure prob-

ability of Algorithm A:

δn = P
{
W̃ ′

A > x
}
� exp

{
−Tx

2

}
� exp(−m lnn) =

1

nm
→ 0 as n → ∞.

Consequently, in Case 2, Algorithm A gives asymptotically optimal solution for the m-d-UMST
in n-vertex complete undirected graph with weights of edges from EXP(an, λn).

Therefore, for values of parameter d we have estimate of relative error εn → 0 and failure prob-
ability δn → 0 as n → ∞ in both cases under conditions (7).

Proof of Statement 4. We present the proof of this statement, as in [18]. The difference of left
and right sides of inequality (8) is denoted as

h(x) =

√
2

π

x∫
0

e−
u2

2 du− (1− e−
x
2 ).
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It is easy to check that for function h(x) and its derivative

h′(x) =
√

2

π
e−

x2

2 − 1

2
e−

x
2

the following is correct h(0) = 0, lim
x→∞h(x) = 0, h′(x) > 0.

Since on positive positive semiaxis, the inequality h′(x) = 0 holds only in one unique point x0 =
1
2 (1 +

√
1 + 12 ln (2) − 4 ln (π) � 0, we can conclude that h(x) � 0 as x � 0, which implies the va-

lidity of the statement.
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