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Abstract—The article describes a method for automatically recognizing the target points of
the trajectories of unmanned vehicles moving underwater, such as autonomous submarines
and flying underwater vehicles of aircraft-like structures. The coordinate of the center of an
object with radial symmetry properties is considered a terminal control point. A method for
constructing a multiscale weighted image model based on the developed fast radial symmetry
transformation and the Hough method is proposed, which ensures noise stability and high speed
of calculating the coordinates of the desired point. When the object of interest has a contour
of a specific color, a model is based on our proposed chromatic and weight components. As an
example of detection, we have given an algorithm for detecting a base underwater station with
light markers as a signal luminous ring.
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1. INTRODUCTION

When building automatic control systems for unmanned vehicles, a necessary condition is to
set the final position of the device in space. In most works on automatic control of unmanned
vehicles, the researcher sets the final position in the form of a set of specific coordinates [1, 2].
However, in actual conditions, problems arise when the device must independently detect an object
of interest, the position of which will set the final position of the device during control. Transport
systems, where the device independently determines the end point of its movement and calculates
the trajectory of movement to it, are usually called intelligent transport systems [3]. The method
for determining the terminal point and constructing the optimal trajectory does not necessarily
have to include elements of artificial intelligence (AI), such as machine learning models, neural
networks, etc. However, if the calculation method does not involve AI, the system is more often
defined as “automatic” or “automated.”

The most common unmanned vehicles are unmanned aerial vehicles (UAVs) [4]. The most com-
mon unmanned vehicles are unmanned aerial vehicles (UAVs) [5, 6]. For unmanned vehicles moving
underwater, the so-called autonomous uninhabited underwater vehicles (AUV) [7], positioning in
most cases is carried out using ultrasonic signals [8]. The main disadvantage of this approach is
the mandatory presence of special navigation equipment on board the vehicle and the need for a
response signal from the target positioning point, which makes the vehicle vulnerable to external
detection.
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Fig. 1. The design of a diving aircraft with a folding wing (source—see [16]).

Fig. 2. The mechanics of moving guillemots in the air and underwater, applied to simulate the UAV dynamics
(source—see [18]).

Positioning systems based on computer vision do not have these disadvantages. They can provide
high recognition accuracy and, at the same time, do not give out their presence by external signals.
In addition, visual positioning is only possible during underwater target setting for such modern
unmanned systems as hybrid unmanned aerial underwater vehicles (HUAUVs) [9]. HUAUVs can
overcome distances first by air, dive into the water, and perform underwater maneuvers. Due to
signal propagation and dispersion characteristics at the junction of two air-water media, positioning
using ultrasonic signals is challenging to implement.

For UAVs and unmanned ground vehicles, the problem of object detection based on computer
vision has been well studied [10–12]. There are works on visual positioning of the UAV landing
point [13], determining the position of an aircraft based on previously made satellite images of
the terrain and neural network recognizers [14] etc. A common disadvantage of the proposed
approaches is the need to have additional information for positioning and high requirements for
computing power equipment on board the UAV.

For unmanned vehicles moving underwater, computer vision algorithms must meet additional
requirements due to the peculiarities of light propagation in water and additional interference due
to the turbidity of natural water bodies [15]. In the case of HUAUVs, the speed of the algorithm
is also of great importance due to the relatively high speeds of movement of the vehicle and the
number of calculations necessary for detecting an object since flying underwater vehicles are not
capable of carrying high-power computers and their energy consumption is high relative to AUVs.
Therefore, developing a visual positioning algorithm for a target set underwater with minimal
energy and computational costs is especially relevant for hybrid UAUVs.

The case when the final target position of the device is underwater is more typical for flying
underwater vehicles of the “diving aircraft” type [16], than, for example, for floating quadro-
copters [17]. Aircraft-like structures are mainly adapted only to the direct air-to-water transition
and experience significant difficulties or cannot carry out the reverse water-to-air transition at all.
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Transition

Fig. 3. UAV tail configuration in various environments (source—see [19]).
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Fig. 4. The authors propose a control system for reaching the endpoint underwater by the vehicle (source—
see [19]).

In [16] a design of a diving aircraft with wings deviating by 65 degrees during diving was proposed
(see Fig. 1).

The design includes a variable-sweep wing and a compressed carbon dioxide engine. In [18] a
design of a diving HUAUV simulating the flight and diving of a guillemot was proposed (see Fig. 2).

In [19] the automatic control system of a diving aircraft with a folding tail is described (see
Fig. 3).

In [19] the authors propose a control system for reaching the endpoint underwater by the vehicle
(see Fig. 4).

The control optimality criterion is the accuracy of reaching a given position (xtarget, ytarget) at
the final time tf .

J =
√
(xh(tf )− xtarget)

2 − (yh(tf )− ytarget)
2. (1)

The control parameters are the initial pitch angle θ0 and the initial velocity along the axis OX vx0 ,
the trajectory is calculated without the possibility of maneuvering. As the target coordinates
(xtarget, ytarget) the authors define a specific point underwater. However, in the case of adaptive
control, the device can calculate these coordinates independently in an automatic mode based
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Fig. 5. An example of docking an autonomous uninhabited underwater vehicle with a docking station (source—
see [20]).

on machine vision. Thus, the problem arises of recognizing the coordinates of a specific target
object underwater, the mathematical center of gravity of which will be the target control point
(xtarget, ytarget). This problem is one of the possible typical examples of a recognition problem to
solve the optimal control problem.

For underwater unmanned vehicles, setting objects of interest underwater is the only possible
one. Such an object of interest can mainly be a particular docking station [20], sed to recharge the
AUV battery and/or transmit data (see Fig. 5).

In this case, the positioning features of the AUV and HUAUV will be the same since the target
is underwater in both cases. The fact that the target is under water is vital for developing a target
object detection method since water turbidity, the presence of suspension, and image distortion due
to light refraction impose stringent requirements on the detection method for resistance to external
noise. For example, optical positioning methods for underwater targets are described in [21, 22].
One [23] and two [24] cameras can be used in this case. The main limitation of the proposed
methods is their high consumption of computing and energy resources since almost all of them are
designed for AUVs. This circumstance makes the proposed methods poorly applicable to HUAUVs.
So, in [20] a convolutional neural network CNN is used as a mathematical recognition model. The
efficiency of such networks is high if they are specially trained for a relatively narrow class of objects.
For example, it has been shown that CNNs can recognize handwritten text with an accuracy of
up to 99% [25]. However, their accuracy drops to 70% or less when recognizing arbitrary natural
objects. In addition, CNNs require powerful computing devices for training, which can last from
several hours to several days [26]. Modern modifications can give either higher accuracy or higher
speed but cannot yet combine both of these qualities. So, in [27] the so-called two-pass algorithms
of the FASTER RCNN type are described, reaching an accuracy of 73.2% (VOC071 dataset). The
network training time is not described, but the network has a relatively low recognition rate of
17 images per second. Single-pass networks like YOLO achieve a recognition rate of 155 images
per second, but their accuracy is only 52.7% on the same VOC07 dataset.

Thus, developing an algorithm for detecting objects underwater with minimal computational
and time costs is relevant, especially for HUAUVs.

2. FORMULATION OF THE PROBLEM

Consider the problem of recognizing an underwater object in automatic mode from an unmanned
vehicle by detecting a base docking station with light markers in the form of a signal luminous ring.
The center of the ring defines the target point of the optimal control trajectory without maneuvering

1 VOC07 is a free access data set containing classified images (Visual Object Classes-VOC) for 20 classes, edition
2007
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(xtarget, ytarget) according to the example of the problem (1). In the general case, the task can be
solved simultaneously for several possible Ntarget targets.

Given:

(a) color image I = (Iij)Nx×Ny in RGB color model;
(b) the set of radii of circles N to be found;
(c) the set of admissible colors C, in shades of which the desired circles can be colored;
(d) allowable mismatch between the positions of the centers of the circles Δ.

Find:

(e) the set of centers of circles with their radii defining the terminal point of the optimal control

Ã =
{(

xktarget, y
k
target

)
, rk

}
, k = 1, Ntarget.

This study aims to develop a computational algorithm that takes positions (a)–(d) as input
and generates positions (e) as output. An additional requirement for the algorithm is resistance to
external noise and minimization of computational costs and computation time.

When the actual size of a circle (for example, a docking ring) is known, several decreasing
values from the real to the minimum possible radius should be chosen as the desired image radii.
Subsequently, based on the found value of the radius on the image, it will be possible to determine
the distance to the object using additional measuring instruments.

The method should provide recognition under slight deformations of the circle into an ellipse
with a ratio of the minor and significant semiaxes of at least 0.95, corresponding to a shift of the
direct projection of the view by no more than 20◦ [28].

3. METHOD FOR SOLVING THE PROBLEM OF RECOGNITION
OF COLORED ROUND OBJECTS

An important task solved using computer vision is processing images from an unmanned vehicle
to detect and localize given objects — light markers. These objects are characterized by shape and
color. Therefore, methods for analyzing color and shape features are used to detect and recognize
them.

Recently popular algorithms based on deep neural networks for this problem statement will be
redundant since a simple geometric figure is subject to recognition rather than a complex multi-
color object. In addition, the generalization complexity and the training stage’s duration remain
topical problems when using neural networks. Therefore, classical methods in which image analysis
is performed remain relevant.

Many practical approaches to the analysis of the shape of objects in images are based on the
methods of contour analysis [29]. Light markers for docking underwater vehicles are colored objects
with a radially symmetrical shape. For their detection and localization, methods based on analyzing
the properties of radial symmetry can be applied. The proposed method is based on the joint use
of the well-known Hough method [30] and the transformation of fast radial symmetry using the
construction of the Gaussian pyramid.

3.1. Fast Radial Symmetry Transformation

This paper proposes an efficient approach to solving the problem under consideration based on
the fast radial symmetry transformation FRST (Fast Radial Symmetry Transform). The FRST
transformation makes constructing a weighted image model possible, which can effectively localize
the center of a radially symmetric object [31, 32].

To obtain a weighted image model, you must perform the following steps:

1) convert the image to grayscale;
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2) calculate the gradients of the brightness function on the image;

3) calculate the values of the weight matrix elements;

4) normalize the values of weight matrix elements;

5) calculate the values of the elements of the matrices of generalized weights;

6) perform low-pass filtering of generalized weight matrices;

7) calculate the values of the matrix elements of averaged weights.

The first step is to convert the image to grayscale, in which each pixel is assigned a brightness
value. In the simplest case, the transformation calculates the average values of the intensities of the
red, green, and blue color components. Thus, as a result of the first step, the image is represented
as a brightness function, the arguments of which are the values of the pixel coordinates.

In the second step, the gradients of the brightness function on the image are calculated using
the following operators:

gx(p) := Î(i+ 1, j)− Î(i, j); (2)

gy(p) := Î(i, j + 1)− Î(i, j); (3)

|g(p)| =
√
g2x(p) + g2y(p), (4)

where g(p) = (gx(p), gy(p)) is the gradient at pixel p with coordinates (i, j); gx(p), gy(p) are the

components of the gradient for the horizontal and vertical directions at pixel p respectively; Î(i, j),
Î(i + 1, j), Î(i, j + 1) are the brightness values in pixels of the grayscale image with coordinates
(i, j), (i+1, j) and (i, j+1) respectively. In expressions (2)–(4), the sign := denotes the assignment
operator, which will be used in the future.

In the third step, the values of the elements of the weight matrices are calculated. For this, the
following procedure is applied:

1) the set of integer values N is determined, where N is the set of radii of the objects to be
found;

2) for each value n from the set N , the initial values of the elements of two weight matrices are
formed:

Mn(p) := 0; (5)

On(p) := 0, (6)

where p is the vector of coordinates (i, j).
3) for all elements of the weight matrices determined by the values n from the setN, the following

operators are applied:

p+ := p+

⌈
gx(p)

|g(p)| n
⌉
; (7)

p− := p−
⌈
gx(p)

|g(p)| n
⌉
; (8)

Mn (p+) := Mn (p+) + |g(p)|; (9)

Mn (p−) := Mn (p−)− |g(p)|; (10)

On (p+) := On (p+) + 1; (11)

On (p−) := On (p−)− 11, (12)

where �·� is the operator of rounding an actual number to the nearest no less than integer value.
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In the fourth step, the elements of the weight matrices are normalized:

Mn(p) :=
|Mn(p)|

max
q

{|Mn(q)}| ; (13)

On(p) :=
|On(p)|

max
q

{|On(q)}| . (14)

In the fifth step, the values of the elements of the matrices of generalized weights are calculated:

Fn(p) := (On(p))α Mn(p), (15)

where α is the radial stiffness parameter.

In the sixth step, low-pass filtering of the generalized weight matrices is performed. In this case,
a Gaussian low-pass filter is used as a rule. Filtering is expressed using the convolution operator

Sn := Fn ∗Gn, (16)

where Gn is matrix of coefficients of the Gaussian low-pass filter, defined for the value n from the
set N.

In the last, seventh step, the values of the elements of the matrix of averaged weights are
calculated:

S(p) :=
1

|N|
∑
n∈N

Sn(p). (17)

The matrix of average weights obtained as a result of the FRST transformation is a weight
model of the image, the analysis of which makes it possible to determine the shape parameters of
objects, for example, the center coordinates and the radius of round objects.

3.2. Image Weight Model

When building a weighted image model using a fast radial symmetry transformation, it is nec-
essary to perform a relatively large number of calculations, which is determined by the power of
the set of integer values N. The elements of this set are used to analyze significant changes in
brightness at the corresponding distances from the current pixel, i.e., have the meaning of radii for
radially symmetrical objects centered in image pixels.

Objects in actual images have a multiscale nature since they have different sizes. For the problem
under consideration, this means using a set N with many elements, which are determined by the
range of changes in the radii of objects of interest. Therefore, analyzing the original image presented
in a multiscale form is advisable. Such a multiscale analysis reduces the number of calculations
and improves object detection accuracy in the image.

To build a multi-scale image weight model, you must perform the following steps:

1) convert the image to grayscale;
2) construct a Gaussian pyramid;
3) calculate the values of the average weight matrices’ elements for all Gaussian pyramid levels;
4) bring the matrices of averaged weights to the size of the original image;
5) calculate the values of the elements of the integral matrix of averaged weights.

The first step is to convert the image to grayscale, in which each pixel is assigned a brightness
value.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023
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In the second step, the Gaussian pyramid is built [33]. It is a set of images P=
{
Pl

∣∣ l=0, L−1
}
,

where L is the number of levels in the pyramid. The original grayscale image Î is considered as the
zero level of the pyramid P0. The remaining levels of the pyramid are formed as follows:

Pl := G ∗ (2 ↓ [Pl−1]) , (18)

where G is the coefficient matrix of the Gaussian low-pass filter; 2 ↓ [·] is the image downsampling
operator, for example, by removing every second pixel in a row and column. An element of the
Gaussian pyramid of level l will have dimensions four times smaller compared to the dimensions of
an element of level l − 1.

In the third step, with the help of operators (5)–(17), weight models of images of all levels of the

Gaussian pyramid are formed, i.e., a set of matrices of averaged weights
{
S(0), S(1), . . . , S(L−1)

}
is

built.

In the fourth step, the set
{
S(0),S(1), . . . ,S(L−1)

}
is transformed into the set

{
R(0),R(1), . . . ,

R(L−1)
}
, each element which R(l) is the result of reducing the matrix S(l) to the dimensions of the

original image, i.e., to the dimensions S(0). The specified transformation is performed as follows:

R(l) := G ∗
(
2 ↑

[
S(l)

])
, (19)

where G is the coefficient matrix of the Gaussian low-pass filter; 2 ↑ [·] is the image upsampling
operator (the matrix S(l) is considered as an image with each pixel which is associated with a weight
value), for example, by duplicating each pixel in a row and column.

In the last, fifth step, the resulting matrices R(0), R(1), R(L−1) are added to construct an integral
matrix of averaged weights:

S(p) :=
1

L

L−1∑
l=0

R(l)(p), (20)

where p is a pixel of the original image corresponding to the coordinates of the weight matrix
elements.

As a result of the above steps, a multiscale weight model is formed, the analysis of which makes
it possible to determine the shape parameters of objects in the image. The use of this model makes
it possible to increase the accuracy of work and reduce computational complexity due to the smaller
image area at the upper level of the pyramid.

3.3. Chromatic Image Model

When analyzing images of light markers from an unmanned underwater vehicle, it is advisable
to use a model containing chromatic and weight components. The first allows you to consider the
color characteristics of objects of interest, and the second is the geometric features of their shape.

Then the image model can be represented as 〈C, S〉, where C is the chromatic component, and
S is the weight component. The weight component of the model is formed using the procedures
described in the previous sections. The chromatic component is formed due to color transformation
and color segmentation.

To describe the chromatic component of the model, the advantages and disadvantages of several
color spaces were investigated: RGB, Lab, and HSV. These spaces were compared in terms of
description methods to highlight areas of the image, the color of which lies in a specific range [34].
As a result, it was noted that the main factor limiting and complicating the use of the RGB color

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



METHOD FOR UNMANNED VEHICLES AUTOMATIC POSITIONING 839

model for color segmentation is a single description of both the illumination and the color compo-
nent of the object, which makes it difficult to clearly define the ranges of the desired colors [35].
The indisputable advantage of the L*a*b* color model is a separate L* channel responsible for
illumination and planes (a*, b*), responsible for color. However, this model describes color ranges
(chromatic characteristics) as geometric figures on a plane, possibly having a complex structure.
This fact complicates constructing a color distribution model for segmentation [36]. The HSV color
model, in contrast to L*a*b*, allows you to set the range of desired colors by specifying the range of
values of the H channel (in most cases, it is enough to specify the threshold value of the saturation
set in the S channel above the value whose color purity becomes acceptable), which significantly
simplifies the implementation of the method [37].

Thus, the HSV color space (model) was chosen as the color space for analyzing color images. This
model is based on the characteristics of information perception by the human visual system and is
represented as a set of color channels H, S, and V , which determine the color’s tone, saturation,
and value (brightness).

The chromatic component C of the image model is represented as follows:{
(h(p), s(p), v(p)), ∃ k, l, m : h(p) ∈ Hk ∧ s(p) ∈ Sl ∧ v(p) ∈ Vm;

(0, 0, 0), ∀ k, l, m : h(p) /∈ Hk ∨ s(p) /∈ Sl ∨ v(p) /∈ Vm,
(21)

where p is the pixel of the original image; Hk, Sl, Vm are the kth, lth, and mth intervals of the
H, S and V channels, respectively, from the set of color intervals of the given objects.

3.4. Algorithm for Detecting Round Objects on Images of Light Markers

In general, the procedure for detecting round objects of a given color is as follows:

1) convert the original image from the RGB to the HSV color model;
2) build the chromatic component of the image model;
3) convert the original image to grayscale, considering the chromatic component;
4) find circles using the Hough method on the image by the chromatic component;
5) build the weight component of the image model (weight image);
6) threshold the weight image;
7) find contours on the weight image;
8) calculate the centers of mass for each contour;
9) find circles on the image by the weight component;
10) remove falsely found circles on the halftone image by the Hough method, the centers of

which do not coincide with the permissible error with any center of mass of the contours on the
weighted image;

11) generate a set of coordinates of target control points with radii Ã =
{(

xktarget, y
k
target

)
, rk

}
.

4. COMPUTATIONAL EXPERIMENTS

The presented algorithm was tested on the problem of recognizing circular luminous markers of
an underwater docking station at different angles in turbid water conditions. For computational
experiments, images of the docking station were obtained during the experiments of Liu S., Ozay M.,
Okatani T., published in [20]. Examples of images of the docking station docking block in the form
of illuminated circles, which were recognized as a result of the experiments, are shown in Fig. 6.

The images were taken with a 620 TVL (0.8 Mpx) NanoSeaCam monocular color camera with
viewing angles of 59◦ × 44◦ × 72◦ (up-down-sideways).
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(a) (b)

(c) (d)

Fig. 6. Variants of images of circles — the docking luminescent ring of the underwater docking station:
(a) a single object in the central part of the image, the area of the object of interest relative to the image
is more than 5%; (b) a single object displaced relative to the center of the image, the area of the object of
interest relative to the image is more than 5%; (c) a single object displaced relative to the center of the image,
the area of the object of interest relative to the image is less than 5%; (d) multiple objects of interest in one
image. (source: freely available dataset http://vision.is.tohoku.ac.jp/liushuang/a-vision-based-underwater-
docking-system/dataset).

4.1. The Criterion for Assessing the Accuracy of the Algorithm

The effectiveness of the developed algorithm was evaluated based on the so-called pixel-oriented
technique described in [38].

This is a statistical evaluation measure based on the count of misclassified pixels. To obtain
such an estimate, we must calculate the probabilities that a randomly selected pixel in an im-
age segmented using the algorithm belongs either to the desired object or, respectively, to the
background.

Unlike generally accepted metrics such as Accuracy, Precision, or Recall, followed by ROC
analysis, the pixel-based metric evaluates not the accuracy of object classification (object detected
or not detected) but the detection quality. Evaluation of the detection quality includes assessing
the accuracy of object localization (determining the coordinates of the center) and determining
its geometric characteristics, i.e., the radius. Therefore, for the problem posed, the pixel-oriented
estimate is preferable [39].
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Table 1. Initial data and preliminary results of experiments on the recognition of test images

Experiment
number

Prior data
Data obtained after applying

the algorithm

p(o) p(b)

Data obtained
after applying
the algorithm,

%

Estimation
of the object’s
relative area

Percentage
of erroneous
recognitions
algorithm

by criterion p(b|o)

Percentage
of erroneous
recognitions
algorithm

by criterion p(o|b)
1 0.01 0.99 1% ≤ 5% 1 1

2 0.01 0.99 1% ≤ 5% 1 5

3 0.01 0.99 1% ≤ 5% 1 10

4 0.01 0.99 1% ≤ 5% 1 25

5 0.05 0.95 5% ≤ 5% 1 1

6 0.05 0.95 5% ≤ 5% 1 5

7 0.05 0.95 5% ≤ 5% 1 10

8 0.05 0.95 5% ≤ 5% 1 25

9 0.1 0.9 10% > 5% 1 1

10 0.1 0.9 10% > 5% 1 5

11 0.1 0.9 10% > 5% 1 10

12 0.1 0.9 10% > 5% 1 25

13 0.25 0.75 25% > 5% 1 1

14 0.25 0.75 25% > 5% 1 5

15 0.25 0.75 25% > 5% 1 10

16 0.25 0.75 25% > 5% 1 25

17 0.5 0.5 50% > 5% 1 1

18 0.5 0.5 50% > 5% 1 5

19 0.5 0.5 50% > 5% 1 10

20 0.5 0.5 50% > 5% 1 25

According to the chosen method, the segmentation error probability of the entire image is
determined as follows:

perr = p(b|o)p(o) + p(o|b)p(b). (22)

Here: p(o) is the a priori probability that a randomly selected pixel of the original image belongs
to the object (the ratio of the area of the object to the area of the entire image); p(b) is the a
priori probability that a randomly selected pixel of the original image belongs to the background
(the ratio of the background area to the area of the entire image); p(o|b) is the probability that a
pixel belonging to the background is erroneously assigned to the object during segmentation (the
ratio of the part of the background area erroneously assigned by the algorithm to the object to the
entire background area). In the theory of statistical hypotheses, such an error is called an error
of the first kind; p(b|o) is the probability that a pixel belonging to an object will be erroneously
assigned to the background (the ratio of the part of the object’s area erroneously assigned by the
algorithm to the background to the area of the object) — an error of the second kind.

So p(o|b) and p(b|o) are cumulative segmentation errors.

In this case, the area is understood as the number of pixels of a given area.

For cases when the desired objects are small in size relative to the entire image (occupying less
than 5% of the image area), i.e.,

#(o) � #(D),
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probability (22) depending on the a priori probability p(o) and a posteriori probability p(b|o).

0.20�0.25
0.15�0.20

0.05�0.10
0�0.05

0.10�0.15

0.05
0.01

0.25

0.20

0.15

0.05

0

0.10

E
rr

o
r 

p
ro

b
ab

il
it

y

0.10

0.25

0.50 1%
5%

10%
25%

p(o|b)

p(o)
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where #(o) is the power of the set of pixels belonging to the desired object, and #(D) is the power
of the set of pixels of the entire image, it is advisable to use estimate (22) instead of formula (23):

perr :=
#(os)−#(o)

#(D)
, (23)

where os is the set of found objects as a result of segmentation.

To determine the optimal way to calculate the algorithm’s accuracy, we conducted 20 indepen-
dent experiments on recognizing circles in images. Among them, in 8 images, the object of interest
occupied 5% or less of the area, and in 12 images, it occupied more than 5%. After image processing
by the developed algorithm, posterior recognition errors p(o|b) and p(b|o) were obtained. A priori
and a posteriori experimental data are presented in Table 1.

Then, based on the obtained data, the accuracy was calculated according to the methods (22)
and (23). The results are presented in Figs. 7–10.
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Fig. 10. Difference in accuracy of method (22) relative to method (23).

The results show that for objects with an area of up to 5% of the area of the entire image,
inclusive, the correctness estimates calculated by both methods with a fixed type 2 error level
of 0.01, generally have minor differences. However, if the desired object occupies an area of more
than 5% of the area of the entire image, it is advisable to apply the estimate according to the
Eq. (22). Thus, method (22) is preferred.

For all further studies, the accuracy was calculated according to (22).

4.2. Influence of Radial Symmetry Transformation Parameters

The dependence of the circle detection accuracy on the radial stiffness parameter α is studied.
We generated and examined 100 images of circles with radii from 1 to 100 pixels on the 2400× 8400-
pixel original image. ext, we conducted experiments with a change in the stiffness parameter from
α = −3 to α = +7. The results are presented in Fig. 11a. It can be seen that with an increase in
the radial stiffness parameter α to a value of +2, the detection accuracy reaches 75% (0.75). With a
further increase in α an accuracy of 95% is achieved at a value of +4 and then asymptotically tends
to 100%. On Fig. 11b hows the influence of the standard deviation on the accuracy of detecting
circles at the value of the radial stiffness parameter α equal to 2. It can be seen that this parameter
has an insignificant effect on the result under these conditions.
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4.3. Influence of Noise on Recognition Accuracy

The turbidity of the water, the presence of slight organic and inorganic inclusions, and distor-
tions caused by the refraction of light between the water and the camera lens are mathematically
described as additive noise. In particular, a refined solid suspension in water is modeled as an im-
pulse noise of the “salt” and “pepper” types. The effects of distortion and turbidity were modeled
using masks as Gaussian and “blurring” noises. The impact on the recognition of each type of noise
is discussed below.

4.3.1. Influence of Impulse Noise

To determine the effect of impulse noise on the algorithm’s operation, 84 images of circles with
radii from 1 to 84 pixels were examined. The original image was noisy, with noise at 25% intensity
and 10% of the image area. The results of the algorithm are shown in Fig. 12.

It can be seen that impulse noise has a significant effect on objects of small sizes. Its influence
on the result of the recognition of larger objects is less significant.

4.3.2. Influence of Gaussian Noise

To study the effect of Gaussian noise on the operation of the algorithm, we imposed noise
on the original image by filling image pixels with normally distributed random numbers with
mathematical expectation μ = 0 and standard deviation σ = 5. Then the image was processed by
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a radial symmetry detector with a radial stiffness parameter α, equal to 2. The results are presented
in Fig. 13.

Gaussian noise has a significant effect on small objects. For large objects, the effect of this kind
of noise is insignificant.

4.3.3. Influence of Blur-Type Noise

To study the influence of noise of the “blur” type, we subjected the original image to blurring
with filters of dimensions 3× 3, 5× 5 and 7× 7. The results of changing the accuracy of circle
recognition are shown in Fig. 14.

The blur-type noise practically does not affect the result of object detection. The loss of accuracy
is no more than 0.09%.
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(a) (b)

Fig. 15. Light Marker Detection Example: (a) the original image of the marked ring of the docking station at
an angle; (b) a recognized circle with a calculated center.

An interesting fact is the increase in recognition accuracy in the presence of “blur” type noise
compared to a non-noisy image in several experiments. This is due to the problem of false detection
when the algorithm erroneously refers to the found circles of a given radius and also closely spaced
circles of other, close in value, radii. With blur noise applied, the probability of such a false positive
detection is reduced in some cases.

The obtained results of studying the influence of various types of noise on the accuracy of
recognition of radial images show that it is not required to apply additional sharpening algorithms
since the developed method is sufficiently resistant to noise within the framework of the problem
being solved.

4.4. Image Detection

The image of a light docking ring in turbid water refers to images with a high degree of blurring
distortion and, to a lesser extent, Gaussian and impulse noise. Thus, for objects with a radius of
more than 10 pixels (large objects), the developed algorithm provides high resistance to all types
of noise, and according to the main distorting criterion, blur, it provides stability for recognizing
an underwater docking luminescent ring of all sizes.

An example of the image of a light marker in turbid water at an angle of 16◦ o the camera with
a recognized docking center is shown in Fig. 15.

In the course of numerical experiments, both the circles themselves were recognized, and their
centers were found, the coordinates of which can potentially serve as the coordinates of the final
optimal position of the unmanned vehicle during automatic control. For the image presented in
Fig. 15, in particular, we have:

Original image parameters:

(a) a color image with a dimension of 448 × 448 pixels in *.jpeg format;

(b) the number of desired circles is 1, the desired radius is 85 pixels;

(c) the set of acceptable colors — shades of yellow;

(d) allowable mismatch between the positions of the centers of the circles — 5 pixels;

found a circle centered at a point:

• xtarget = 282;

• ytarget = 298.
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Table 2. Comparison of recognition accuracy for radial objects with a uniform increase in radii

Minimum distance
between circle centers,

pix.

The actual number
of circles in the image

Found by the
Hough method

Found by the
developed algorithm

5 7 21 8

10 7 7 7

15 7 7 7

20 7 7 7

25 7 7 7

30 7 7 7

35 7 7 7

40 6 7 6

45 7 8 8

50 6 6 6

Table 3. Comparison of recognition accuracy for radial objects with a random change in radii

Minimum distance
between circle centers,

pix.

The actual number
of circles in the image

Found by the
Hough method

Found by the
developed algorithm

5 8 152 12

10 8 53 8

15 8 30 8

20 8 22 8

25 8 14 8

30 8 10 8

35 8 10 8

40 8 10 8

45 8 8 8

50 8 6 8

4.5. Comparison of the Efficiency of Algorithms

In this section, we will be comparing the accuracy and speed of the developed algorithm with
the Hough and fast radial symmetry algorithms that were used separately. It’s worth noting that
methods such as neural network recognition require additional computational costs and memory
costs of the computing device at the training stage. This is mainly because of the need to have
a relevant training dataset that includes all possible combinations of input parameters to obtain
an adequate model. Due to this, the use of such machine-learning algorithms is unsuitable for
low-performance computing devices that are installed on board HUAUVs or similar unmanned
vehicles.

4.5.1. Comparison of Accuracy of Radial Objects Detection

To illustrate the method’s effectiveness for detecting radial objects in images based on the
proposed algorithm, we conducted two computational experiments: images of circles with uniform
and random changes in radii.

Tables 2 and 3 show the results of comparing the accuracy of the algorithms when varying the
minimum distance between the centers of the circles. An image is considered correctly recognized
if the deviation of the found centers from the real ones does not exceed 15 pixels.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



848 SHAKIRZYANOV et al.

Table 4. Characteristics of image datasets for experiments comparing the speed of algorithms

Dataset name Short description

LISA Traffic Light Dataset 100 images from a set of size 1280×960 in JPG format

Bosch Small Traffic Lights Dataset PNG-format images from a set of various sizes

Selective set from Kaggle 200 PNG-format images from a set of various sizes

Table 5. Comparison of the speed of recognition of radial objects of different ranges of circles

Range of circles
for recognition

FRST algorithm
running time, ms

Proposed algorithm
running time, ms

Speed gain
of the developed
algorithm, times

1–10 89 988 50 569 1.8

1–20 171 902 79 753 2.1

1–30 253 435 111 020 2.3

1–50 465 673 128 970 3.6

The comparison results show that the accuracy of the developed algorithm is, on average,
35% higher than the accuracy of classical methods used separately.

4.5.2. Comparison of the Speed of Radial Objects Detection

For a relative comparison of the speed of the developed algorithm, we used a computer with the
following characteristics:

• processor: Intel Core i5-3230M 2.60 GHz;
• RAM: 8 GB;
• operating system: Windows 10, 64-bit.

The experiments were carried out for three test sets of images: 2 complete datasets, “LISA
Traffic Light Dataset” and “Bosch Small Traffic Lights Dataset” of the Kaggle open type dataset,
as well as 200 sample images from various Kaggle datasets relevant to the study. A description of
the test set of images from these databases is given in Table 4.

We conducted computational experiments on circle recognition in four ranges: from 1 to 10
pixels, from 1 to 20 pixels, from 1 to 30 pixels, and from 1 to 50 pixels. Table 5 shows the results
of estimating the speed of the algorithm proposed by us in comparison with the primary method
based on the radial symmetry transformation FRST.

It is evident that with the increase in the range of desired circles, the advantage of the proposed
method’s speed increases compared to the basic one.

It should be noted that the computer used for the experiments had excess power for the practical
implementation of the proposed algorithm and was used solely to compare the author’s algorithm
with the classical one. In natural conditions, the power of HUAUV onboard computers is sufficient
for the algorithm due to the simplicity of the implemented calculations.

5. CONCLUSION

We have proposed a method that can be used to detect and localize objects of a given shape
and color in images of light markers. For example, our method can be used to detect an object of
interest in an unmanned underwater or aerial underwater vehicle. The described method is easy
to implement and resistant to interference. It can be supplemented with various image process-
ing operations at all stages to improve performance, vital for detecting an object in an aquatic
environment with reduced visibility.
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In addition, it should be noted that the procedure for generating a multiscale image weight
model has the properties of natural parallelism. This determines the possibility of increasing the
processing speed through hardware and software tools for high-performance parallel computing,
essential for effective real-time control of an unmanned vehicle and reducing power consumption.

The limitation of the algorithm’s applicability in water turbidity conditions is the size of the
detected radial object. In particular, objects with a radius of less than 10 pixels are difficult to
detect by the developed algorithm. Larger objects are recognized with a high accuracy of over 95%.
In this case, the radial stiffness parameter α should equal +4. For effective detection of objects,
the level of impulse noise in images should not exceed 25%, while Gaussian noise has little effect on
detecting objects whose radius exceeds 5 pixels. The developed algorithm is resistant to blurring
noise with averaging filters. Because of the preceding, the algorithm does not require additional
methods to improve image clarity, which is its undeniable advantage over analogs.

This advantage is obtained through the joint application of several basic algorithms, such as
the Hough method, the fast radial symmetry transformation, and the construction of the Gaussian
pyramid. The resulting unified model outperforms each of the basic algorithms individually and,
when applied in pairs, in performance and computing resource requirements.
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