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Abstract—This paper considers the use of machine learning for diagnosis of diseases that is
based on the analysis of a complete gene expression profile. This distinguishes our study
from other approaches that require a preliminary step of finding a limited number of relevant
genes (tens or hundreds of genes). We conducted experiments with complete genetic expression
profiles (20 531 genes) that we obtained after processing transcriptomes of 801 patients with
known oncologic diagnoses (oncology of the lung, kidneys, breast, prostate, and colon). Using
the indextron (instant learning index system) for a new purpose, i.e., for complete expression
profile processing, provided diagnostic accuracy that is 99.75% in agreement with the results of
histological verification.
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1. INTRODUCTION

The common denominator of existing approaches to the diagnosis of oncologic diseases based on
gene expression profiles is the use of a limited set of genes; see, for example, methodological and
review papers [1–6]. With this approach, it is also necessary to perform a preliminary analysis and
identify individual genes or combinations of genes whose expression activity is most characteristic in
the case of specific diseases. However, the diagnostic accuracy achieved does not exceed 95% on sets
that include up to 90 genes [4], which is presumably due to the limited number of genes used. For
example, in [5], this number is reduced to just 10 genes. Thus, the data analysis process consists of
two stages. For example, in [6], in the first stage, researchers use the principal component analysis,
selecting 103 genes. They carry out the final diagnosis in the second stage, where a Bayesian
neural network provided 93.66% accuracy, a deep neural network provided 93.41%, and logistic
regression — 92.82%. Furthermore, the third stage can take place. It would reject questionable
results based on a decision threshold that allows to almost completely eliminate wrong diagnoses [6]
at the cost of not diagnosing some cases, which is considered to be more acceptable than a wrong
diagnosis.

This study examines the use of machine learning for disease diagnosis based on the analysis of
the complete gene expression profile, i.e., the activity of all 20 531 known genes, which simplifies
the process by eliminating the need for preselection of relevant genes. This paper discusses the
details of the operation of the machine learning system used.
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Fig. 1. HiSeq 2500 system.

In biology, the expression level estimates the transcriptional activity of a gene as the amount of
messenger RNA (mRNA) it produces. Obtaining gene expression profiles is a minimally invasive
or completely non-invasive procedure, such as saliva sampling, which determines the comfort of
such a procedure for the patient. The quality of diagnosis depends on the completeness of the
profile, i.e., the number of genes considered. However, the use of complete gene expression profiles
is more of a future of medical diagnosis, as currently there is a lack of inexpensive equipment
for mass application to obtain such profiles. Currently, we can obtain profiles using the following
technologies, among others [7]:

— PCR tests;

— DNA microarrays;

— sequencing.

If the analysis involves the expression level of a relatively small number of genes, we can use
the available and relatively inexpensive real-time quantitative PCR (qPCR) method. The second
technology, DNA microarrays, provides a more accurate assessment of gene expression. However,
when it comes to the expression profile of all genes, sequencing is currently required. One of the
most popular platforms for high-throughput sequencing is Illumina equipment [8]. The HiSeq 2500
system utilizes next-generation SBS technology, which supports massively parallel sequencing using
fluorescently labeled nucleotides, allowing the reading of individual bases as they are incorporated
into growing DNA strands. Figure 1 shows an example of equipment that utilizes this method.

Illumina HiSeq performs two functions, such as genome sequencing and determination of ex-
pression level. The latter is achieved by reading not DNA but mRNA code. The expression level
is inferred from the number of mRNA copies. Considering the decreasing cost of RNA sequenc-
ing, it is possible in the future to create simpler and less expensive equipment for installation in
widely spread laboratories such as INVITRO. With the widespread availability of such equipment,
prospective diagnostics could be discussed as the use of the complete expression profile automat-
ically takes into account all possible active gene combinations, which are difficult to predict and
that influence the onset of various diseases. Additionally, gene expression profiles serve as valuable
materials not only in diagnostics but also in various scientific and clinical research.

The second component of the considered methodology is machine learning, which allows auto-
matic learning from complete biological profiles without analyzing genetic combinations for subse-
quent classification and diagnosis. Artificial neural networks [9] are traditionally used for machine
learning and have become a popular method applied to solve a variety of prediction and pattern
recognition problems. However, training such networks takes a long time and requires significant
computational resources, as it involves the calculation of a large number of coefficients to adapt
the multilayer network architecture to a specific task. Nevertheless, we can significantly accelerate
training and make it borderline instantaneous if we use an image indexing system [10, 11], similar to
search engines like Google [12], where incremental learning is reduced to indexing new documents.
In 1998, the term indextron was introduced [13] — a term used only as the name of the image
indexing device, but not the name of the image indexing method. The difference between index-
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tron and search engines lies in the fact that it inverts numerical data instead of textual documents.
Section 3 discusses the specifics of inverting numerical images.

It should be noted that the approach used in [10] has similarities with the later proposed TF-IDF
method [14], developed for document retrieval by computing the inverse document word frequencies.
The TF-IDF method is utilized in search engines, where document name frequencies are calculated
in fully inverted files. However, textual search engines do not work with numerical data as the
document frequency of a word can change depending on the current set of documents, and the
keyword itself might completely disappear due to even slight noise.

It should be mentioned that the indexing approach to pattern recognition is hardly employed
in machine learning systems, where most methods utilize iterative learning, gradient descent, and
a significant number of adaptive coefficients, which ultimately leads to slow learning. At the same
time, the human brain can memorize new visual patterns at a glance. This study employ the
method of numerical data indexing instead of iterative learning to achieve almost instantaneous
learning when dealing with large volumes of data. Previous work on indexing non-textual numerical
data can be found in [15], where the authors use such fast methods for image recognition in movies.
However, the study [15] reduces the recognition of noisy numerical patterns representing images to
converting the numerical patterns to textual form, followed by the use of existing methods for text
information retrieval. The approach we use in this paper is applying the index recognition method
[10, 11], which enables the indexing of noisy numerical patterns without intermediate conversion
into textual form. It is also worth noting that the objective of this article is not to develop a
new machine learning method, but to utilize the indexing recognition method for a new purpose,
namely, for nearly instantaneous learning when working with large databases of biological data.

2. SOURCE DATA

In the experiment, we used a dataset called Gene Expression Cancer RNA-Seq [16] to compare
the effectiveness of training and classifying data using a neural network and an indextron. This data
set consists of 801 rows, each containing 20 531 floating point numbers (see Table 1). Each number
with profile/gene coordinates represents the level of activity of the corresponding gene, measured
in arbitrary units ranging from 0 (no activity or absence of the gene) to a maximum activity of 15.
The numbers in each nth row represent the activity levels of the corresponding genes of the nth
patient. The diagnoses of all patients in the dataset [15] are known and were determined using
other clinical methods. In the experiment, we used the 401 odd rows for training, during which we
provided the system with the diagnosis associated with the corresponding row. During testing, we
used the 400 even rows, which were classified by assigning them to one of the five classes, and the
class found was compared with the known diagnosis of the corresponding patient.

Table 1. Gene activity of patients

Profile Gene 0 Gene 1 Gene 2 . . . Gene 20 529 Gene 20 530 Class
(diagnosis)

0 0.0 2.017 3.266 . . . 5.287 0.0 3

1 0.0 0.592 1.588 . . . 2.094 0.0 1
. . . . . . . . . . . . . . . . . . . . . . . .

800 0.0 2.325 3.806 . . . 4.551 0.08 5

3. RECOGNITION PROBLEM STATEMENT AND SOLUTION METHOD

In this study, we use the index recognition method, proposed and considered in [10] and improved
in [11] and other works, for a new purpose, namely diagnosing diseases by classifying gene expression
profiles. We discuss the specifics of this method application in this problem below.
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Fig. 2. Inverse patterns shown as K column groups.

Let all variables be integers, and let there be N patterns, where each pattern is represented by
a K-dimensional feature vector

xn = (xn,1, . . . , xn,k, . . . , xn,K), n = 1, . . . , N. (1)

Here, Chebyshev distance between any two patterns xp and xq (p, q � N) is greater than a certain
predetermined number R, i.e. |xp − xq| > R, and variable xn,k (0 � xn,k < X) is a value of kth
feature of the vector that represents nth pattern. Inequality |xp − xq| > R means that for vec-
tors xp, xq there exists at least one dimension k such that |xp,k − xq,k| > R. In this case, every
nth vector represents the nth class, which includes all vectors x such that |x− xn| � R. Value R
determines the size of the class and is called a radius of generalization.

Classification problem. For given vector x = (x1, . . . , xk), find class n such that |x− xn| � R.
If such a class does not exist then add a new vector xN+1 = x to the list (1) and increase the
number of classes by 1.

Obviously, we can solve this problem by comparing the given vector x with vectors that represent
classes, i.e., by exhaustive enumeration of classes. However, solving the classification problem with
the inverse pattern method allows a significantly accelerated search, especially in the case of a large
number of classes.

Consider solving the classification problem with inverse patterns. When using this method an
unknown pattern x belongs to class m such that

m : HR(m|x) = N
max
n=1

HR(n|x).

Here, HR(m|x) is a histogram of class names contained in inverse patterns of features of vector x.
Thus, HR(m|x) is a conditional histogram of classes, as it depends on vector x.

Note that if radius of generalization R is equal to zero, then the number of classes would be
equal to number N of vectors in the list (1). If the number of actual externally determined classes
is less than N then we use table function class(n), n = 1, . . . , N that settles the mapping between
the classes in the list (1) and external classes which are always known during supervised learning.
Studies [10, 11] determine inverse patterns of features such as certain sets of class names. We index
such sets with two-dimensional indices. Each two-dimensional index is determined by a pair of
numbers (x, k), where x is a feature value, and k is a measurement number. The set of names
of {n} classes in the left part of equality (2) is an inverse pattern of feature x in measurement k.

{n}x,k = {n : xn,k = x}, k = 1, . . . ,K, x = 0, 1, . . . ,X − 1. (2)

Figure 2 graphically illustrates the concept of inverse patterns. There, they are represented
by columns of points, heights of which equal energies of the corresponding inverse patterns. As
mentioned above, the elements of columns are class names. Due to the fact that inverse sets have
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two-dimensional indices, we split all columns into K groups where each group k can contain up
to X columns and each column up to N classes. Here, X is a feature value range. What remains
to be done to solve the classification problem with inverse patterns is to find the class histogram
HR(n|x). Let the input pattern be presented by vector x = (x1, . . . , xk). Then we can find the
histogram of classes contained in inverse patterns using the following algorithm:

∀n ∈ {n}x(k)+r,k, HR(n|x) = HR(n|x) + 1. (3)

Here r = −R, . . . ,−1, 0, 1, . . . , R, k = 1, . . . ,K , x(k + r), k = xk+r,k. Therefore, the classifica-
tion criterion presented above is a class histogram, the maximum position of which we have to find.
To understand the algorithm we need to use the concept of “inverse patterns.” Expression (2)
defines it and is equipped with the necessary commentaries. Inverse patterns that contain sets of
pattern classes act as input information for loop (3). This loop histograms classes and yields the
required histogram as its output. The position of its maximum corresponds to the desired class.
In terms of programming, this is a loop on macrocolumns r, measurements k, and classes n that
are contained in inverse patterns.

During the indextron training, if the histogram maximum for input x is lower than a certain
chosen threshold then the number of classes is increased by 1, N = N + 1, and this new number
gets stored in corresponding inverse patterns

{n}x(k),k = {n}x(k),k
⋃
N, k = 1, . . . ,K.

The initial condition is always N = 0. However, we do not calculate the class histogram (3) if the
training uses a zero-valued radius of generalization R = 0. At the same time, every iteration the
number of classes increases by 1. The study [17] presents a graphical illustration of this algorithm.

During recognition, if the histogram maximum for input x is lower than a certain threshold,
then the input patterns remain unrecognized.

Note that the histogram maximum equals the dimension K of pattern x. It is possible to show
that it is derived from the following properties of inverse patterns: the columns of each group

• contain strictly N different class names:
X−1∑
x=0

|{n}x,k| = N ,

• do not intersect: {n}x,k ∩ {n}y,k = ∅.

During learning and recognizing a pattern, we use the value of its features xk, k = 1, . . . ,K as
an address of a column located in the kth dimension. At the same time, we coerce the real feature
values x into an integer range of [0–255]:

x = 255(x − xmin)/(xmax − xmin).

Experience suggests that such continuous value sampling usually does not reduce the accuracy
of classification. Table 2 presents an example of normalization of Table 1 data.

Therefore, the features of each received K-dimensional pattern isolate K columns — one column
in each group. The issue is that, usually, for numerical features, the column intersection appears

Table 2. Normalized data

Profile Gene 0 Gene 1 Gene 2 . . . Gene 20 529 Gene 20 530 Class
(diagnosis)

0 0 82 137 . . . 112 0 3

1 0 24 66 . . . 36 0 1
. . . . . . . . . . . . . . . . . . . . . . . .

800 0 95 160 . . . 95 0 5

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



828 MIKHAILOV et al.

to be empty due to measurement errors and pattern deformations alter the column addresses. For
this reason, we introduce macrocolumns, i.e., along with the column with address x we consider
its neighbors with addresses x ∈ [−R,R]. The possibility of using macrocolumns is the result of
inverse pattern properties mentioned above. As noted previously, we find the column intersections
by calculating a histogram that determines the frequencies of class appearances. At the same time,
the input pattern belongs to the most frequently appearing class.

4. SOFTWARE AND HARDWARE IMPLEMENTATION OF INDEXTRON

We implemented the parallel version of the algorithm in Python and ran it on the Nvidia GeForce
GTX 1660 Super GPU. This graphics card has 44 multiprocessors and 1408 cores, allowing for
parallelization of one process into 1408 parallel subprocesses. In the problem considered, training
can be parallelized into 20 531 processes, corresponding to the number of all genes in the profile.
The maximum possible parallelization is 20 531 ∗ (2R+ 1) processes, as for each gene, all values
within the generalization radius can be checked in parallel.

We achieved parallelization using the cuda module from the numba library. To process threads
by the GPU multiprocessors, the threads were divided into blocks using the following formula:

blocks per grid = (number of iterations| + (threads per block − 1 ))//threads per block ,

where number of iterations is the number of parallel iterations.

Before the execution of the program, we copied the arrays of input data from the main memory
to the GPU memory using the cuda.to device() function, and upon completion of the program,
we copied the execution results back to the main memory using the device array.copy to host()
function.

We used a decorator to parallelize the write and read functions. Within the parallelized func-
tions, we call a function returning the index of the thread on which the corresponding parallel
iteration should be executed.

5. RESULTS

Table 3 presents the accuracy and the number of operations for the indextron and the neural
network training for the disease diagnosis problem based on data from 801 patients.

Table 3. Results comparison.

Neural network Indextron

Accuracy (%) 99.5 99.75

Number of operations 46 bln addition/
multiplication operations

8 mil memory write
operations

The indextron training time on a single-core 1.6 GHz laptop is 0.43 s. Training time of the
four-layer neural network on the same hardware increases, according to the increase in the number
of operations, 46 ∗ 109/8 ∗ 106 = 5750 times. Note that the architecture of the indextron is ideal
for parallel implementation. It allowed us to achieve almost instant learning in 75 ms for the
problem considered. Generalization radii R in the training and recognition modes are 0 and 84
correspondingly, i.e., 33% of the feature variation range (0–255).

6. CONCLUSION

1. The simplicity of the indextron algorithm, which only requires writing K integers to memory
for training each pattern and has classification complexity of O(hK) operations for reading and
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summation, allows the creation of large gene expression databases to diagnose various diseases
(h is the average column height, where h = N/X).

2. With the wide availability of equipment for finding gene expression profiles, it becomes
possible to create a search diagnostic system similar to Google for mass use, where queries are in
numerical form rather than text.

3. The experiments carried out confirm the existence of such a possibility, as fast training with
the addition of new data to the database, even at the software level, takes only 0.43/800 = 0.00054 s,
and the accuracy of diagnosing five types of cancer was 99.75%. However, diagnosing many other
diseases will require the creation of a large number of different databases.
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