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Abstract—With regard to location and navigation tasks for single-position passive observer,
a bearing-free method for identifying parameters of a polynomial model of object motion has
been developed taking into account evolution of the discrepancy between the periodic radiated
and received quasi-periodic signal. The passage of a signal in an arbitrary physical environment
is considered, at the same time, knowledge of the period of the emitted signal and assessing the
current Doppler frequency are not required. The method is based on counting the number of
periods of the received signal in a given surveillance intertissue. The issues related to the analysis
of the resulting discrepancy by the observability of the method and its accuracy characteristics
are considered. Useful practical recommendations and an illustrative context are given.
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1. INTRODUCTION

Methods of passive location and navigation of a radiating target based on a single-position pas-
sive observer are widely reflected in the well-known literature [1–20]. Among them, doppler-time
bearing-free methods are quite popular, operating with periodic signals and geared towards mea-
surement capability the continuous displacement of the doppler frequency the received signal at the
observation point caused by target movement (for location tasks) motion of the observer (for nav-
igational tasks); [6] on pp. 169–173 an exhaustive list of literature on this issue is given, and it is
available in the open press. In this case, measurements can be implemented at any characteristic
frequency from the spectrum of the emitted signal (for example, on the central) or modulating func-
tion; as well as by comparing the moments of the arrival of the fronts of consecutive pulses taking
into account the known period. These methods are based on the idea of “base synthesis,” which
ultimately leads to the formation of several observation points on the guidepath and possibilities
of using well-known methods of multi-position location and navigation (for example, triangulation,
difference-rangefinder, trilateration and their combinations [21, 22]). In this case, as a rule, such
path functions are considered, which are either known at the observation site (for example, orbital
ones with known motion parameters), or are approximated with sufficient accuracy for practice
by a model of straight-line uniform motion (both with known and unknown motion parameters).
At the same time, the fundamental point is accounting of information given a priori about the
speed of the target or observer, which is often unacceptable for practice.
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PERIOD-TIME PARAMETRIC IDENTIFICATION METHOD 811

In [20] the period-time method is developing (PTM), which removes the restriction, related to
obtaining of information given a priori about the speed value, and also the question of parametric
identification is considered in relation to the model of nonlinear motion, taking into account the
possible maneuver of the target or observer. At the same time, a preliminary current estimate of
the Doppler frequency is not required, which is equivalent to finding the derivative of time mistie
between the periods of the radiated (periodic) and accepted (quasi-periodic) signal. However,
the results obtained in [20], apply only to radio signals (spreading as an electromagnetic wave at
the speed of light) with a known period, and the dependence of the resulting time mistie on the
parameters of the target movement has not been investigate. This article is a further development
of the well-known PTM in terms of eliminating these shortcomings in relation to signals, spreading
in arbitrary physical environments.

2. PROBLEM STATEMENT

Let the moving RT form in the current t periodic signal S0(t) (periodic signal TS = const
may be unknown), spreading in a given physical medium in the form of a wave at a speed of vS
(we can talk about different waves, for example, electromagnetic or acoustic). At the observation
point associated with SOPO, at the surveillance intertissue [0, T ] a quasi-deterministic signal is
received S(t) with a variable period.

According to the PTM, the observation segment is represented as

[0, T ] =
N⋃

n=1

[tn−1, tn] , tn > tn−1, t0 = 0, tN ≤ T, (2.1)

where t0 = 0 is a fixed moment of time corresponding to the beginning of the received signal (for
example, the arrival of the first pulse), tn is a fixed time of receipt Mn =

∑n
p=1ΔMp periods of the

received quasi-periodic signal (ΔMp — the number of periods counted on the segment [tp−1, tp]), at
the same time, at the moment of time tn number Mn the whole period fits into the segment [0, tn].

Theoretical and practical issues related to the calculation of these periods, are solved using
electronic digital frequency meters and are described in detail in the well-known technical literature
[23, pp. 148–161].

At the observation point (where the SOPO is located) taking into account the movement of
the RT, the signal becomes quasi-periodic, because there is a time mistie δ(t) between the periods
of the emitted and received signals

δ(t) = v−1
S ΔR(t) = v−1

S [R(t)−R0] , t ∈ [0, T ] , (2.2)

where R(t) — current range to RT, R0 = R(0) — initial range.

In a rectangular cartesian reference system XY Z (in the center of which there is SOPO) the
motion of the RT is described by a polynomial model (to simplify the calculations and clarity of
the method instead of a generalized finite polynomial with arbitrary basis functions, we restrict
ourselves to a power polynomial of the second degree with an initial condition r0 = r (0), ‖r0‖ = R0)

r(t) = r0 + v0t+ 2−1a0t
2, t ∈ [0, T ] , (2.3)

where r(t) = r = [x, y, z]T — position vector (‖r(t)‖ = R(t)),

v0 = [vx0, vy0, vz0]
T — initial velocity vector (v0 = ‖v0‖ — speed value),

a0 = [ax0, ay0, az0]
T — acceleration vector (a0 = ‖a0‖ — acceleration value), while the vec-

tors r0, v0 and a0 are a priori unknown.
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If we take the value tn as the measured parameter, then we can use the following vector equation
of observation:

h = t+ ξ = t̄+ δ+ ξ, (2.4)

where h =
[
hn, n = 1, N

]T
, t =

[
tn, n = 1, N

]T
, t̄ =

[
t̄n, n = 1, N

]T
, δ =

[
δn, n = 1, N

]T
,

ξ =
[
ξn, n = 1, N

]T
, hn = h(tn), ξn = ξ (tn).

In (2.4), ξ =
[
ξn, n = 1, N

]T
is understood as the Gaussian measurement with zero mathemat-

ical expectation and the correlation matrix Kξ, measured parameter tn connected with number of
counted periods by the ratio

tn = MnTS + δn = t̄n + δn = t̄n + v−1
S [Rn −R0] , (2.5)

where δn = δ(tn) is unknown time discrepancy, t̄n = MnTS , Rn = R (tn), t0 = 0.

Formula (2.5) can be commented as follows [6, p. 154]: during the time t̄n = MnTS the distance
between the RT and SOPO the range will change by ΔRn = Rn −R0, which corresponds to the
time mistie δn = v−1

S ΔRn between the periods of the emitted and received signals. If the target
was stationary or moving in a circle (in the center of which there is SOPO) that range increment
would be missing and δn = 0 for all n. It is the passage of an additional section of the path length
by the wave ΔRn with speed vS is the cause of the time mistie δn.

Recall that for a known period TS as a measured parameter, it was possible to take the value
δn = tn −MnTS (this is how the observation equation was formed in [6, 20]), for an unknown
period TS only the values tn and Mn are available for measurement.

If the distance between the RT and the SOPO decreases, then δn < 0, otherwise δn > 0. The
appearance of the time mistie δn = δ(tn) is due to the effect of compression or stretching of the
initial periodic signal at the observation point due to the movement of the RT.

It is required, taking into account (2.1)–(2.5) to develop a method of parametric identification
of RT with a curved (polynomial) movement based on a period-a temporary SOPO that does not
require knowledge of the period TS the emitted signal and the calculation of the current Doppler
frequency. The method should include solving the following issues:

— obtaining dependencies that allow us to assess the nature of the evolution of the received
signal period (caused by the movement of RT), is fundamental for this method;

— formation of an algorithm for identification of the inclined range and a number of character-
istic parameters of the RT movement based on accurate data (taking ξn = 0, n = 1, N );

— determination of the conditions for the correct application of the method on accurate data
(i.e., determination of the observability conditions of the method);

— accounting for random measurement errors;

— solving the identification problem on redundant data (h) taking into account measurement
noise (smoothing problem based on the least squares method (PTM)) and obtaining a ratio for
calculating the correlation matrix of identification errors;

— conducting a computational experiment to demonstrate the capabilities of the method.

3. INVESTIGATION OF THE EVOLUTION OF THE SIGNAL PERIOD

The foray δ(t) is described by the expression (for the case of rectilinear uniform motion)

δ(t) = v−1
S

{[
R2

0 + 2tR0v0 cos γ0 + t2v20

]1/2 −R0

}
, t ≥ 0, δ (0) = 0, (3.1)

where γ0 — angle between vectors r0 and v0.
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For 0 < γ0 ≤ π/2 the function δ(t) is non-negative, smooth and strictly convex, δ(1)(t) =
dδ(t)/dt = 0 at the point t = 0. Ror π/2 < γ0 < π the function δ(t) is smooth and strictly convex,
has two roots (t = 0 and t = −2R0 cos γ0/v0), at the point t = −R0 cos γ0/v0 reaches the minimum
value (v−1

S R0 (sin γ0 − 1)). For γ0 = 0 we have δ(t) = (v0/vS) t, the raid is a linear non-negative
function independent of R0. For γ0 = π we have δ(t) = − (v0/vS) t for 0 ≤ t ≤ R0/v0, so δ(t) is a
linear function and reaches its minimum (−R0/vS) at the point t = R0/v0. Since for γ0 = 0 and
γ0 = π the foray δ(t) does not depend on R0, then, for these incorrect cases associated with the
movement of the RT along the line of sight, it is impossible to determine the range taking into
account the evolution of the signal period at the observation point.

For a more detailed study of δ(t) we will find the first few occurrences in time (at the point
t = 0): ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ
(1)
0 = v−1

S vR,

δ
(2)
0 = (vSR0)

−1 v2τ ,

δ
(3)
0 = −3

(
vSR

2
0

)−1
v2τvR,

(3.2)

where vR = R0 cos γ0 and vτ = v0 sin γ0 — respectively, the values of the radial and tangential
velocity.

As a result, you can use the decomposition based on the Taylor series

δ(t) = v−1
S t

(
vR +

v2τt

2R0
− v2τvRt

2

2R2
0

+ . . .

)
= v−1

S t

[
vR +

v2τt

2R0

(
1− vRt

R0

)
+ . . .

]
, (3.3)

from which it follows that the spectral composition of the function δ(t) significantly depends on
the observation conditions, and in many practically important cases it is not possible to neglect
derivatives of the second and higher orders, especially for long observation intervals and short
ranges.

Formulas (3.1)–(3.3) are very useful in substantiating the possibility of practical implementation
of the developed PTM in each specific case, taking into account the accepted initial data.

4. BUILDING A PARAMETRIC IDENTIFICATION ALGORITHM
BASED ON ACCURATE DATA

Taking into account (2.3) we can use the following dependency

R2(t)−R2
0 = 2t 〈r0,v0〉+ t2

(
v20 + 〈r0,a0〉

)
+ t3 〈v0,a0〉+ 4−1t4a20, (4.1)

where 〈·, ·〉 is the symbol of the scalar product of two vectors, ‖·‖ is the symbol of the vector norm.

Formula (4.1) represents the first basic ratio of the developed PTM.

The second basic relation follows directly from the formula (2.2):

R2(t)−R2
0 = 2vSR0δ(t) + v2Sδ

2(t). (4.2)

Equating expressions (4.1) and (4.2), after simple transformations we obtain the equation

−2vSδ(t)χ1 + 2tχ2 + t2χ3 + t3χ4 + 4−1t4χ5 = v2Sδ
2(t), (4.3)
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814 BULYCHEV, MOZOL

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

χ1 = R0,

χ2 = 〈r0,v0〉 ,
χ3 =

(
v20 + 〈r0,a0〉

)
,

χ4 = 〈v0,a0〉 ,
χ5 = a20

(4.4)

— unknown fraction that have a clear physical meaning and are subject to identification.

Since the values of δn are unknown, then, taking into account (2.5) for discrete time, we write
down the equation with respect to unknown quantities TS and χi, i = 1, 5:

−2vS (tn −MnTS)χ1 + 2tnχ2 + t2nχ3 + t3nχ4 + 4−1t4nχ5 = v2S [(tn −MnTS)]
2 . (4.5)

After simple but cumbersome transformations, formula (4.5) can be represented as a new equa-
tion (relative to the coefficients Ai)

6∑
i=1

BinAi = Dn, (4.6)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = (vSχ1 − χ2)v
−2
S T−1

S , A2 = −χ1v
−1
S ,

A3 =
(
v2S − χ3

) (
2v2STS

)−1
, A4 = 2−1TS,

A5 = −χ4
(
2TSv

2
S

)−1
, A6 = χ5

(
8TSv

2
S

)−1
,

B1n = tn, B2n = Mn, B3n = t2n,

B4n = M2
n, B5n = t3n, B6n = t4n,

Dn = Mntn.

(4.7)

The relations (4.6) and (4.7) are the basis for identifying the parameters of the curvilinear
motion of the RT at an unknown period of the emitted signal. In (4.6) the unknown coefficients
are Ai, i = 1, 6, those that are uniquely related to the desired parameters of the motion of the RT
and the period of the emitted signal. If Eq. (4.6) n = 1, N , where N ≥ 6, then we get a system of
linear algebraic equations (SLAE) (with a rectangular matrix B)

BA = D, (4.8)

where B =
[
Bin, n = 1, N, i = 1, 6

]
, A =

[
ai, i = 1, 6

]T
, D =

[
Dn, n = 1, N

]T
.

This SLAE allows us to solve the problem of estimating these coefficients and parameters, as
well as the signal period for redundant measurements. For N > 6 we are talking about the problem
of smoothing based on OLS using orthogonal-singular decomposition [24].

Consider a special case when the RT moves rectilinearly and uniformly, and the signal period is
unknown. Now instead of (4.3) we have the equation

−2vSδ(t)χ1 + 2tχ2 + t2χ3 = v2Sδ
2(t), (4.9)

where ⎧⎪⎪⎨⎪⎪⎩
χ1 = R0,

χ2 = 〈r0,v0〉 ,
χ3 = v20 .

(4.10)
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In this case, instead of (4.6) we have

tnA1 +MnA2 + t2nA3 +M2
nA4 = Mntn. (4.11)

If we assume that the signal period is known, i.e., the values are known δn, then, taking into
account (4.9) to find the parameters of a rectilinear uniform motion of the RT, it is sufficient to
solve the SLAE (regarding χi, i = 1, 3)

−2vSδnχ1 + 2tnχ2 + t2χ3 = v2Sδ
2
n, n = 1, N. (4.12)

At the same time, we find the range R0, the speed value v0 = ‖v0‖ and the angle γ0 between the
vectors r0 and v0 taking into account the obvious relations:⎧⎪⎪⎨⎪⎪⎩

R0 = χ1,

v0 =
√
χ3,

γ0 = arccos
[
χ2 (R0v0)

−1
]
.

(4.13)

In the case of rectilinear equidistant motion of the RT (when the vectors v0 and a0 are collinear)
it is necessary to solve the SLAE (regarding χi, i = 1, 5)

−2vSδnχ1 + 2tnχ2 + t2nχ3 + t3nχ4 + 4−1t4nχ5 = v2Sδ
2
n. (4.14)

Now we have ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

χ1 = R0,

χ2 = R0v0 cos γ0,

χ3 =
(
v20 +R0a0 cos γ0

)
,

χ4 = v0a0,

χ5 = a20.

(4.15)

Based on the found values χ1, . . . ,χ5 we calculate the following parameters of the movement of
the RT: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

R0 = χ1,

a0 =
√
χ5,

v0 = χ4a
−1
0 ,

γ0 = arccos
[
χ2 (R0v0)

−1
]
.

(4.16)

Expressions (4.1)–(4.16) form the mathematical basis of the developed PTM.

In the next section we will analyze the observability conditions of the developed method, i.e.,
we will identify situations in which it becomes incorrect from a computational point of view.

5. ANALYSIS OF THE OBSERVABILITY OF THE METHOD

The developed PTM can be implemented on any set of nodes from the set {t1, . . . , tN}, which
allows not only to reduce the amount of calculations, but also in some cases to increase the reliability
of the generated estimates (especially in the absence of reliable a priori information about the
weighting factors necessary for the implementation of LSM). To do this, we introduce vectors of

temporary nodes t[l] =
[
t[l]p, p = 1, P[l]

]T
, where l = 1, L, t[l]p ∈ {t1, . . . , tN}, t[l]p+1 > t[l]p. Here L is
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the number of sets, P[l] — the number of nodes in the l set, t[l]p is the node with number [l] p (this
is a natural number belonging to the set {1, . . . , N}). Based on (4.12) we will form the following
SLAE:

C[l]χ[l] = Y[l], (5.1)

where Y[l] =
[
δ2[l]p, p = 1, P[l]

]T
, χ[l] =

[
χi[l], i = 1, 5

]T
, and the matrix C[l] (size P[l] × 5) is formed

by strings v−2
S

(
−2vSδ[l]p, 2t[l]p, t

2
[l]p, t

3
[l]p, 4

−1t4[l]p

)
, p = 1, P[l].

The introduction of t[l] makes it possible to find such sets of nodes taking into account the
observation geometry, the characteristics of the RT and the SOPN, to find such sets of nodes on
which the identification issue is solved most qualitatively (this refers to the well-known problem of
experiment planning [25]).

Without reducing the generality of reasoning, we will limit ourselves to the flat case (assuming
z = 0) and a signal with a known period, and also, we will ask P[l] = 5, what corresponds to a
square matrix C[l]. It is obvious that for the correct application of the developed method, related
to the SLAE solution (5.1), it is necessary and sufficient to fulfill the condition detC[l] �= 0, what

leads to the desired result χ[l] = C−1
[l] Y[l]. To identify cases in which this condition is violated, we

write down the columns of the matrix C[l] in the form of vectors:

C[l]1 =
[
−2vSδ[l]p, p = 1, 5

]T
, C[l]2 =

[
2t[l]p, p = 1, 5

]T
,

C[l]3 =
[
t2[l]p, p = 1, 5

]T
, C[l]4 =

[
t3[l]p, p = 1, 5

]T
, C[l]5 =

[
4−1t4[l]p, p = 1, 5

]T
.

It is light to notice that the columns C[l]2, C[l]3 and C[l]4 are linearly independent, therefore, to
check the condition detC[l] �= 0 it is enough to show that the column C[l]1 cannot be represented
as a linear combination of these columns.

Since R[l]p =
[
x2[l]p + y2[l]p

]−2 (
where R[l]p = R

(
t[l]p
)
, x2[l]p =

(
x0 + vx0t[l]p + 2−1ax0t

2
[l]p

)2
and

y2[l]p =
(
y0 + vy 0t[l]p + 2−1ay0t

2
[l]p

)2 )
, that violation of the condition detC[l] �= 0 it is equivalent

to the fact that the vectors μ[l] =
[
x2[l]p, p = 1, 5

]T
and η[l] =

[
y2[l]p, p = 1, 5

]T
are not bound by the

collinearity condition: μ[l] = kη[l], where k — where is the proportionality coefficient. Otherwise
we have

R[l]p =
[
x2[l]p + y2[l]p

]−2
=
[
k2y2[l]p + y2[l]p

]−2
= q

∣∣∣y[l]p∣∣∣ , (5.2)

−2vSδ[l]p = −2
[
R[l]p −R0

]
= −2

[
q
∣∣∣y[l]p∣∣∣−R0

]
, (5.3)

where q =
(
k2 + 1

)−2
.

It follows from (5.2) and (5.3) that the coordinates of vector C[l]1 can be represented by a
linear combination of the coordinates of vectors C[l]2, C[l]3 and C[l]4. The physical meaning of the
condition μ[l] = kη[l] (the condition of computational incorrectness of the method) is that the RT
moves rectilinearly along the line of sight SOPN.

Thus, for the correctness of the method, it is necessary to exclude cases when the RT moves
along the specified line or in its vicinity. This imposes certain restrictions on the conditions for
monitoring RT, which must be provided for in practice.

If we limit ourselves to the model of rectilinear uniform motion and a signal with a known period

in this case,
(
in (5.1) we must put p = 1, 3 and t[l] =

[
t[l]1, t[l]2, t[l]3

]T)
, the solution of SLAE (5.1)
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with the correct application of the method, allows us to determine the desired parameters of the
motion of the RT ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0[l] = 2−1vS

(
δ2[l]1Δ

t
[l]23 − δ2[l]2Δ

t
[l]13 + δ2[l]3Δ

t
[l]12

−δ[l]1Δ
t
[l]23 + δ[l]2Δ

t
[l]13 − δ[l]3Δ

t
[l]12

)
,

〈r0,v0〉[l] = 2−1v2S

(
t2[l]1Δ

δ
[l]23 − t2[l]2Δ

δ
[l]13 + t2[l]3Δ

δ
[l]12

−δ[l]1Δ
t
[l]23 + δ[l]2Δ

t
[l]13 − δ[l]3Δ

t
[l]12

)
,

v0[l] =

[
t[l]3Δ

δ
[l]12 − t[l]2Δ

δ
[l]13 + t[l]1Δ

δ
[l]23

δ[l]1Δ
t
[l]23 − δ[l]2Δ

t
[l]13 + δ[l]3Δ

t
[l]12

]1/2
,

γ0[l] = arccos

[ 〈r0,v0〉[l]
R0[l]v0[l]

]
,

(5.4)

where Δt
[l]12 = t[l]1t[l]2

(
t[l]1 − t[l]2

)
, Δδ

[l]12 = δ[l]1δ[l]2

(
δ[l]1 − δ[l]2

)
and, if you do not take into ac-

count measurement and calculation errors, R0[l] =R0, v0[l] = v0, 〈r0,v0〉[l] = 〈r0,v0〉, γ0[l] = γ0.

Therefore, it becomes possible to determine the motion parameters R0, v0 and γ0
(
where

R0 = χ1, v0 =
√
χ3, γ0 = arccos

[
χ2 (R0v0)

−1
])
, without resorting to the numerical solution of

SLAE, which is an undoubted advantage of the developed PTM.

6. ACCOUNTING FOR RANDOM MEASUREMENT ERRORS

Assuming the signal period is known, we use the traditional procedure for calculating the ele-
ments of the correlation matrix to assess the effect of random measurement errors on the accuracy
characteristics of the method Kχ[l] errors in estimating the coordinates of the vector χ in linear
approximation [26]. To do this, taking into account SLAE (5.1) (assuming for simplicity the ma-

trix C[l] square size 5× 5) let’s use the representation χ[l] = C−1
[l] Y[l] =

[
χk
(
δ[l]

)
, k = 1, 5

]T
(where

δ[l] =
[
δ[l]p, p = 1, 5

]T
) and partial derivatives of the following form: ∂χk[l]

(
δ[l]

)
/∂δ[l]p. The corre-

lation matrix is found by the rule

Kχ[l] = Fχ[l]KξF
T
χ[l], (6.1)

where Fχ[l] =
[
∂χk[l]

(
δ[l]

)
/∂δ[l]p, k = 1, 5, p = 1, 5

]
.

Expression (6.1) allows a priori, based on the mathematical expectations of the measured pa-
rameters, to assess the potential capabilities of the developed PTM and develop practical recom-
mendations for its best use under specific conditions of observation of RT, and also reasonably
approach the choice of the main parameters of the method (the length of the observation inter-
val (T ), the number of nodes (N) and time sets (t[l])). So, the number l∗ ∈ {1, . . . , L} of optimal
set δ[l∗], ensuring the minimization of the estimation error, is found according to the following
adaptive rule:

l∗ = argmin
l

∥∥∥Kχ[l]

∥∥∥ , (6.2)

where
∥∥∥Kχ[l]

∥∥∥ — this is any of the norms of the matrix Kχ[l], used in evaluation tasks.

In the practical implementation of the developed PTM, the factor should be taken into account
that for large values of vS (for example, when vS = c, where c is the speed of light), the solution of
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the square SLA (4.8) in the presence of random measurement errors can lead to incorrect results.
Let us explain this fact for the case N = 6 by the example of calculating the velocity v0. Because
v0 = c

√
1− 2TSA3, that’s a mistake Δ3 = Â3 −A3 (where Â3 — calculated coefficient value A3 by

solving SLAE (4.8) taking into account measurement errors) leads to the following speed estimate:

v̂0 =
√
v20 + 2c2TSΔ3. That is, a correct assessment of the speed is possible only if the condition is

met Δ3 > −v20
(
2c2TS

)−1
, which imposes a very strict restriction on the magnitude of the error Δ3.

This effect also applies to all SLOUGH coefficients (4.8), except A2 and A4.

To overcome this incorrectness (at high vS speeds), a two-step approach to identification is
recommended. At the first stage, SLAE is solved (4.8), of which only an assessment will be
required Â4 for A4. This allows you to form the desired estimate T̂S = 2Â4 for period TS , and
based on it, estimates for residuals δ̂n = tn −MnT̂S . All estimates of the parameters of the RT
movement are based on the SLAE (5.1), in which the value of δn is substituted instead of δ̂n.

7. ACCOUNTING FOR REDUNDANT MEASUREMENTS

Now consider the case of redundant measurements when the matrix C[l] and the vector Y[l]

in (5.1) have an arbitrary number of lines P[l] ≤ N , which, as a rule, significantly exceeds the num-
ber of estimated parameters. To simplify the calculations, we will consider in SLAU (5.1) the com-

ponent. Y[l] =
[
v2Sδ

2
[l]p, p = 1, P[l]

]T
as a vector of secondary measured parameters h[l]1, . . . , h[l]P[l]

and primary measurements (5.1) the correlation matrix of measurement errors of the coordinates
of the vector Y[l] we can imagine it like this

KY[l] = Fδ[l]KξF
T
δ[l]. (7.1)

Assuming that the matrix Kξ is diagonal, we have KY [l] = diag
[
4δ2[l]1, 4δ

2
[l]2, . . . , 4δ

2
[l]P[l]

]
. Under

the condition of sufficiently small measurement errors, the least squares method can be used to
construct a smoothed estimate of the vector χ [25]

χ∗
[l] =

(
CT

[l]K
−1
Y [l]C[l]

)−1
CT

[l]K
−1
Y[l]hY[l], (7.2)

where hY[l] =
[
hY[l]p, p = 1, P[l]

]T
— the vector of secondary measurements.

The correlation matrix of estimation errors is found as follows:

Kχ∗
[l]
=
(
CT

[l]K
−1
Y[l]C[l]

)−1
. (7.3)

To select the optimal set with a number l∗∈ {1, . . . , L} we use an adaptive algorithm of type (6.2).

It should be noted that the approach (7.1)–(7.3) is not strictly optimal, since the elements of
the matrix C[l] depend on the results of observations. But with certain limitations on measurement
errors, it gives a completely acceptable result.

For more accurate smoothing, well-known nonlinear optimal estimation procedures can be used,
which in practice lead to time-consuming recurrent computational algorithms involving the setting
of a sufficiently high-quality initial condition.

Another simplest and fairly reliable way to construct a smooth estimate of χ∗
[l] is to pre-smooth

the primary measurements h[l]1, . . . , h[l]P[l]
by the corresponding polynomial δ∗[l](t) and the applica-

tion of the results obtained to the solution of SLAE (5.1). In addition, you can find a smoothed
range estimate for any t ∈ [0, T ], exactly,

R[l](t) = R∗
0[l] + cδ∗[l](t). (7.4)

Here we take a set with a number as the optimal one l = l∗ ∈ {1, . . . , L}.
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8. SOME GENERALIZATIONS AND PRACTICAL RECOMMENDATIONS

The case of estimating the initial range was considered above R0 = R (0) for time t = 0. However,
if the Taylor series used to describe the curvilinear motion of the RT is written with respect not
to the initial, but to any arbitrary t = t∗ ∈ [0, T ], then, by analogy with the above, it is possible
to solve the identification problem precisely for the moment of time t∗, in particular, to find the
range R∗ = R (t∗).

The developed method is easy to implement in the form of the following algorithms: by sampling
an increasing volume, on a “sliding grid” or in the form of a filter [25]. At the same time, the
movement of RT in the observation interval can be considered as piecewise polynomial (in [20] it
was considered as piecewise linear).

During the practical implementation of the method, questions arise (for example, the choice of
the degree of the polynomial describing the motion of the RT or the number of counted pulses)
related to the organization of the measuring experiment. [25] provides practical recommendations
for solving these issues in full. It is obvious that the developed method is most effective when
it comes to large distances traveled (i.e., a base of sufficient size is “synthesized”), and this sets
certain restrictions on the type of RT (in particular, on his speed, maneuverability, etc.), on the
adequacy of the polynomial used at a given observation interval and on the technical characteristics
of the SOPN.

For cases related to the movement of RT along the line of sight, a hybrid variant of using the
developed and well-known energy method can be proposed [27]. It is proved that this method,
operating with the relative level of the received signal, implements its potential capabilities when
moving RT along the line of sight. In a sense, the developed and energetic methods are “orthogonal”
to each other in terms of accuracy. Therefore, by combining these methods, it is possible to align
the working area of the hybrid method and achieve acceptable accuracy characteristics for various
conditions of observation of the RT.

For a more effective application of the energy method, clustering and majority processing pro-
cedures should be used to reduce and eliminate unreliable measurements.

9. ILLUSTRATIVE EXAMPLE

Suppose that the RT carries out a planar movement x(t) = x0 + vx0t, y(t) = y0 + vy0t, where
x0 = y0 = 11× 103, vx0 = −5× 102, vy0 = 6× 102, γ0 = 85. Here and further, the time and mea-
surement errors of time intervals are set in seconds (s), coordinates and range — in meters (m),
speed — in m/s, acceleration — in m/s2, frequency — in hertz (Hz), angle — in degrees, relative
error — as a percentage.

The RT generates a pulsed radio signal

S0(t) =
K∑
k=1

rect
[
(t− kTS) τ

−1
]
cos (2πf0t),

where TS = 10−2, τ = 10−5, f0 = 1010. Parameters of the SOPN operation: T = 18, vS = c =
3× 108, L = 1 (that is, one single set of nodes is used), P[1] = 4 (set size), ΔMp = ΔM = 10,
Kξ = diag

[
σ 2, . . . ,σ 2

]
, at the same time, the measurement errors of the time position of the pulse

fronts were assumed to be uncorrelated and were set according to the normal distribution law with
zero mathematical expectation and the value of the standard deviation σ = 10−9.

The method was implemented in two stages using a random number sensor and averaging over a
thousand experiments. At the first stage, SLAE (4.8) was solved with a square matrixB of size 4× 4
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(since the RT with zero acceleration is considered), at the same time, a vector is used to calcu-

late the elements of matrix B and column D t[1] = t̄[1] + δ[1] =
[
t[1]p, p = 1, 4

]T
with node num-

bers: [1]1 = 12, [1]2 = 65, [1]3 = 118, [1]4 = 171, t̄[1] =
[
t̄[1]p, p = 1, 4

]T
=
[
[1]p × 10−1, p = 1, 4

]T
.

From all four estimates of unknown coefficients, only the estimate of the signal period is selected
T̂S[1] = 9.999999731646 × 10−3 (obtained based on the set t[1] = t̄[1] + δ[1]), which corresponds to
the relative error δTS[1] = 2.683540941544882 × 10−6.

At the second stage, taking into account δ̂[1]p = t[1]p −M[1]pT̂S[1] = t[1]p − [1] pΔMT̂S[1] The
SLAE (5.1) was solved with a square matrix C[l] (3× 3 in size), with χ4 = χ5 = 0 and a

set was used t̄[1] =
[
t̄[1]p, p = 1, 3

]T
= [1.1; 9.1; 17.1]T. The matrix itself is formed by strings

c−2
(
−2cδ̂[1]p, 2t[1]p, t

2
[1]p

)
, p = 1, 3. As a result of the true range R0 = 1.555634918 × 104

match rating R̂0[1] = 1.559672203 × 104 measure of inaccuracy ΔR0[1] = 0.259526489, true speed
v0 = 7.810249675 × 102 — assessed value v0[1] = 7.821417156 × 102 measure of inaccuracy Δv0[1] =
0.142984942, true angle γ0 = 84.805571092 — assessed value γ0[1] = 84.761511501 measure of in-
accuracy Δγ0[1] = 0.051953650.

The figure shows a graph of the dependence of the relative error of the range estimation, obtained
taking into account (7.4).

For more effective use of the method developed in the article, the question of choosing the size
of the observation interval and the nodes of the time grid is, as well as their coordination with the
dynamics of the RT movement and the magnitude of measurement errors should be solved in the
optimization formulation. When solving SLAE, well-known regularization methods should be used.
The results of the numerical experiment show that the greater the distance between the nodes of
the time grid used, the less influence random measurement errors have on the resulting estimation
accuracy. This distance must be consistent with the dynamics of the RT, namely: the lower the
speed of movement of the RT, the greater the step of this grid and the duration of the observation
interval should be.
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10. CONCLUSION

The developed PTM makes it possible to identify a model of curvilinear polynomial motion of
the RT based on the results of recording the time discrepancy between the periods of the emitted
signal and the same periods, calculated at the observation point. The method does not require
knowledge of the signal period and a preliminary estimate of the current Doppler frequency, as well
as knowledge of any a priori data on the parameters of the accepted motion model of the RT. The
observability and the main limitations of the method, the conditions for its most effective application
are investigated. Analytical relations are obtained that allow us to estimate the evolution of the
time discrepancy taking into account the characteristics of the RT and the SOPO, as well as the
accuracy characteristics of the method for various observation conditions.

The method can be implemented in various ways: by a fixed sample of measurements, by a
sample of measurements of increasing volume, in the form of a dynamic filtration algorithm (linear,
quasi-linear or nonlinear), etc.

The method can be implemented either independently or as part of a hybrid method, combining
other well-known approaches of passive single-position and multi-position location and navigation
of RT. Since the developed method allows you to determine the range, it can be used in rangefinder-
rangefinder systems of multi-position location when solving the well-known trilateration problem
[21, 22].

If there are not only fluctuation errors in the period-time measurements, but also singular errors,
it is advisable to initially subject these measurements to the procedure of generalized invariant-
unbiased estimation [28], compensation for these errors, achieving the smoothing effect and optimal
estimation of various numerical characteristics (linear functionals, e.g., derivatives, integrals, spec-
tral coefficients, etc.), useful not only for improving the computational stability of the method,
but also for evaluating its effectiveness. To solve the SLAE using the regularization procedure, a
well-known approach can be applied [29].
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