
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2023, Vol. 84, No. 7, pp. 791–809.
c© The Author(s), 2023 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2023.
Russian Text c© The Author(s), 2023, published in Avtomatika i Telemekhanika, 2023, No. 7, pp. 41–65.

CONTROL IN TECHNICAL SYSTEMS

The Guaranteeing Estimation Method

to Calibrate a Gyro Unit

P. A. Akimov∗,a and A. I. Matasov∗,b
∗Moscow State University, Faculty of Mechanics and Mathematics,

Laboratory of Control and Navigation, Moscow, Russia
e-mail: aakmpavel@rambler.ru, balexander.matasov@gmail.com

Received November 7, 2022

Revised March 14, 2023

Accepted March 30, 2023
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1. INTRODUCTION

This paper proposes a calibration procedure for a unit of angular rate sensors (ARSs), i.e.,
gyros, based on the guaranteeing estimation method [1–5]. The purpose of calibration is to estimate
parametric errors (biases, scale factors, and misalignment angles) in a unit consisting of three ARSs.
These parameters are determined through a series of measurements on a bench with high-accuracy
control of the angular rate and orientation of the unit. During calibration, rotation modes are
selected and the resulting signals are processed.

Many traditional calibration methods involve dynamic models for estimating unknown parame-
ters based on measurements of inertial navigation system (INS) sensors (accelerometers and gyros);
for details, see [6–8]. Nevertheless [9], in some cases, it is preferable to determine ARS errors with-
out involving information from accelerometers. Such a situation arises, first, when the accuracy of
accelerometers is too low to use their signals in bench tests and, second, when calibrating laser gyros
on vibration suspensions. The Kalman filter and the least squares method [10] are the main tool
for estimation. The calibration problem includes a large number of unknown parameters (sensor
errors, bench errors) that nonlinearly affect the measurement results. Therefore, two questions are
essential here as follows. How can one construct a mathematical model of bench tests to consider
all these factors? How can one minimize the impact of errors on the estimation result? A possible
answer to these questions is presented in this paper, which continues the earlier research on the
application of the guaranteeing approach in inertial navigation; for example, see [11], where the
calibration of an accelerometer unit was considered. However, in contrast to the cited paper, this
method is applied below to a different class of systems with a large number of unknown parameters
and nonlinear effects. This class requires constructing other models and leads to other, structurally
more complex estimation problems.

The guaranteeing estimation method allows estimating unknown parameters under the “worst-
case” realizations of measurement errors with minimal estimation accuracy. In this case, typical
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maximum values of the bench errors are used instead of probabilistic hypotheses. The resulting
solution sets the directions of rotation of the gyro unit on the bench, i.e., explicitly describes the
optimal calibration modes.

This paper is organized as follows. In Section 1, the mathematical model of bench tests of
the gyro unit is constructed; the transition from the basic kinematic equations to several linear
models with signal averaging is performed; the applicability limits of these models are investigated.
Sections 2 and 3 formulate the guaranteeing estimation problems and the corresponding auxiliary
variational l1-approximation problems that can be solved numerically. In Section 4, we determine
optimal experiment plans, apply the estimation algorithms to model problems, and analyzing the
accuracy of the resulting solutions.

2. MATHEMATICAL MODEL

2.1. Basic Assumptions and Kinematic Relations for a Gyro Unit

Consider a mathematical model describing the basic kinematic relations of a gyro unit on a test
bench during calibration [12]. Let an experiment be conducted at the point M rigidly coupled to
the Earth on its surface. We introduce the following notations:

Mz = Mz1z2z3 is the instrumental frame rigidly coupled to the gyro unit;

Mx = Mx1x2x3 is the frame rigidly coupled to the bench base fixed relative to the Earth;

D(t) is the orthogonal orientation matrix of Mz relative to Mx. By definition of an orienta-
tion matrix, for any vector l, its coordinates in the reference frames Mz,Mx have the relation
lz = D(t) lx and the rows of the orientation matrix consist of the coordinates of the basis vectors
of Mz in the frame Mx;

Ω(t) is the angular rate vector of the gyro unit relative to the bench;

ω(t) is the absolute angular rate vector of the gyro unit;

ux are the coordinates of the angular rate of the Earth in the frame Mx and u is the absolute
angular rate of the Earth.

The absolute angular rate of the gyro unit is described in projections onto Mx by the relation

ωx(t) = Ωx(t) + ux.

In projections onto the axis of the frame Mz, this equality takes the form

ωz(t) = D(t) (Ωx(t) + ux). (1)

At the initial time instant, the orientation matrix D is known with some accuracy. We denote
this estimate D(0) by Dinit:

D(0) = Dinit(I3 + β̂), β = (β1, β2, β3)
T, β̂ =

⎛⎜⎝ 0 β3 −β2
−β3 0 β1
β2 −β1 0

⎞⎟⎠ ,

|βi| � βmax, i = 1, 2, 3.

(2)

The initial alignment errors of the gyro unit, i.e., the small rotation angles βi, are unknown but
their absolute values are bounded by βmax. Throughout this paper, In stands for an identity matrix
of dimensions n× n and β̂ denotes the skew-symmetric matrix constructed from the vector β
according to the above rule.

For the gyro unit, the output signals (measurements) are the readings of each ARS, i.e., the
components of the vector ωz(t). Let us introduce the measurement model

ζ(t) = ωz(t) + Γωz(t) + ν0 + δν(t). (3)
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THE GUARANTEEING ESTIMATION METHOD 793

Here: ζ(t) ∈ R3 are measurement values; Γ ∈ R3×3 is an unknown matrix describing the scale
factor errors and the orientation errors of the sensitivity axes; ν0 ∈ R3 are unknown zero biases
in the sensor readings; finally, δν(t) ∈ R3 are nonparametric measurement errors (fluctuations).
Without loss of generality, the matrix Γ is supposed symmetric [5].

The calibration problem consists in determining the values of Γ and ν0 from the set of available
measurements ζ(t). Note that the angular rate Ωx(t) is controlled on the bench, and the optimal
strategy of the unit’s motion on the bench is one purpose of the mathematical calibration problem.
Let the angular rate Ωx(t) be written as

Ωx(t) = s′(t)w,

where s′(t)∈ R denotes the angular rate and w∈R3 is the unit direction vector of the angular
rate of Mz in projections onto Mx. The considerations below concern a special case of motion of
the gyro unit on the bench that consists of several same-type experiments. Within each of them,
the unit is rotated about a fixed axis with a given angular rate; then the unit is placed in a new
position, a new direction of its rotation is set, and the experiment is repeated. The direction of
the rotation axis and the angular rate are known with some errors. In other words, the function
s(t) � 0 and vector y (‖y‖2 = 1) are given in the expressions

s′(t) = s(t) + ε(t), w = (I3 + α̂)y, Ωx(t) = (s(t) + ε(t))(I3 + α̂)y, (4)

which relate them to their true counterparts. The small rotation angles α∈R3 and the correspond-
ing skew-symmetric matrix α̂ determine the unknown errors in the rotation vector of the gyro unit
whereas the scalar function ε(t) determines the error in the angular rate value. As in the case of
the angles β, the maximum possible values for α are known: |αi| � αmax, i = 1, 2, 3.

At each test stage, the errors α and β are constant but nonidentical in different experiments: by
assumption, the programmed (target) angular rate and the unit orientation are set independently in
each experiment. Thus, several series of measurements ζ(t) are formed that correspond to different
rotation modes and different error realizations.

2.2. Linearization of the Equations and Signal Averaging

Substituting (1) and (4) into (3) yields the measurements

ζ(t) = (I3 + Γ)D(t)
(
s′(t)w + ux

)
+ ν0 + δν(t). (5)

In addition to the signal ζ(t), two angular rate components, D(t)ux and s′(t)D(t)w, as well as
the uncertain errors δν(t) and ε(t) depend on time. This section considers a mathematical model
corresponding to the rotation mode of the gyro unit with a directionally constant angular rate on
a time interval T . The calibration procedure will consist of a sequence of such rotation modes with
different directions.

Next, we construct a “time-averaged” analog of the measurement equation by considering the
averaging effect when Mz rotates relative to Mx. Averaging means calculating arithmetic means
from a series of measurements on a long time interval T (several tens of minutes), during which
the system makes multiple complete revolutions.

Recall that D(t) is the transition matrix from Mx to Mz, and Mz is rigidly coupled to the gyro
unit rotating relative to Mx with the angular rate Ωx. The transition from Mx to Mz consists of
three stages as follows.

1. Transition fromMx toMxfix, the stationary frame relative to the bench base, whose unit basis
vector efix3 coincides with w in direction. We denote by Dfix = (dfix1; dfix2; dfix3) the corresponding
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transition matrix; its third row is dfix3 = wT, and the first and second rows are orthogonal to it
and to each other and can be chosen in any suitable way.

2. Rotation about the axis Mxfix3 = Mzcir3 with the angular rate s′(t), translating Mxfix into
the frame Mzcir rigidly coupled to the gyro unit. We denote by ψ(t) the time-dependent rotation

angle in the plane Mxfix1xfix2. Therefore, dψ(t)
dt = s′(t), and the transition matrix from Mxfix to

Mz takes the form

Dcir(t) =

⎛⎜⎜⎝
cosψ(t) − sinψ(t) 0

sinψ(t) cosψ(t) 0

0 0 1

⎞⎟⎟⎠ .

3. Transition fromMzcir to Mz through an inexactly known orthogonal matrix. For convenience
of further calculations, this matrix is represented as D′ = (d′1, d′2, d′3).

Thus, the matrix D(t) can be written as a product of the fixed and time-dependent transition
matrices:

D(t) = D′Dcir(t)Dfix.

By definition, the first two rows of the matrix Dfix are orthogonal to w. Using this fact, we obtain
the following expression for s′(t)D(t)w :

s′(t)D(t)w = s′(t)D′Dcir(t)Dfixw = s′(t)D′

⎛⎜⎝ cosψ(t) − sinψ(t) 0

sinψ(t) cosψ(t) 0

0 0 1

⎞⎟⎠
⎛⎜⎝ 0

0

1

⎞⎟⎠ = s′(t)d′3. (6)

By the definition of the transition matrix D′, the column d′3 consists of the projections of the unit
basis vectors of the instrumental frame onto the axis Mzcir3. Since the direction of Mzcir3 does not
change in time and the rotation is about this axis, the projections of the unit basis vectors of the
instrumental frame onto this direction will also remain constant. Therefore, d′3 can be determined
from the a priori information (2):

d′3 = D(t)w = D(0)w = Dinit(I3 + β̂)w. (7)

In other words, when rotating about a fixed axis, the direction of the vector D(t)Ωx(t) remains
constant; its averaging yields the vector s′Dinit(I3 + β̂)w, where s′ is the mean value of s′(t).

Due to the motion mode under consideration, the averaging result for the vector D(t)ux will
have a special structure as follows.

Lemma 1. Let the angular rate of the rotating frame be described by the function s′(t) = s+ ε(t),
the “programmed” angular rate s be constant and s > εmax, and the rotation occur about a fixed
direction w. Then, under the time averaging of the signal, the projections of the Earth’s rotation
rate onto the axes of Mz are described by

ūz = Dinit(I3 + β̂)wwTux + u⊥.

In addition, the unknown vector u⊥ is orthogonal to the vector Dinit(I3 + β̂)w and its components
can be estimated as

|u⊥i | � u

(
4

T (s− εmax)
+ C

εmax

s

)
def
= umax,

where C is a bounded value depending on the initial and final values of the rotation angle on the
bench.
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Table 1. The orders of values for model parameters

Parameter The order of value

α, αmax 1’ ≈ 2.9× 10−4

β, βmax 5’ ≈ 1.5× 10−3

ε(t) 5× 10−6 1/s

ε, εmax 1× 10−8 1/s

s 17.5 1/s

T 600–1200 s

Γii 5× 10−3 (5× 10−5)

Γij , i �= j 5× 10−3 (5× 10−5)

ν0 2.4× 10−7 1/s (5× 10−8 1/s)

νmax 1.2× 10−8 1/s

u 7.292115 ×10−5 1/s

We obtain an explicit form of the measurement equation by passing to the mean values in (5)
and using the expressions (4) and (7) with Lemma 1:

ζ̃ = (I3 + Γ)

(
s′Dinit(I3 + β̂)w +Dinit(I3 + β̂) wwTux + u⊥

)
+ ν0 + δν̃

= (I3 + Γ)Dinit(I3 + β̂)

(
(s+ ε)(I3 + α̂)y + (I3 + α̂)yyT(I3 + α̂)Tux

)
+ (I3 + Γ)u⊥ + ν0 + δν̃.

(8)

Here, ε (the mean value of the noise ε(t)) and the error δν̃ (the mean value of the noise δν(t))
are supposed to be bounded:

|ε| � εmax, |δν̃j | � νmax, j = 1, 2, 3,

where a known constant νmax characterizes the a priori knowledge of the gyro error.

Depending on the scales of the variables α, β, Γ, ε, and ν, the measurement model can be
simplified in different ways by neglecting one or another group of variables. In Table 1 below,
we fix the characteristic scales of the model parameters corresponding to the typical accuracies of
benches and gyros as well as the accuracy requirements for estimating the parameters Γ and ν0
(indicated in parentheses).

Note that in the case under consideration, the values νmax and εmax are much smaller than the
characteristic amplitudes of δν(t) and ε(t). This corresponds to the averaging of the original signal.
The approach proposed in this paper is applicable to other scales of variables as well; the original
measurement model can be simplified in other ways depending on the real problem.

With the selected values, the terms in the measurements expression are divided into several
groups: non-small terms, such as sy and ζ̃; terms with a linear dependence on the small parameters
α, β, ε, and u; negligibly small second- and third-order infinitesimals not exceeding νmax; nonlinear
terms that cannot be neglected due to their dependence on sΓDinitα̂, sΓDinitβ̂, sDinitα̂β̂, Γu

⊥, u⊥

and (possibly) higher values than νmax.

After eliminating the small terms, Eq. (8) takes the form

ζ̃ = Dinit

(
s(I3 + α̂+ β̂)y + sβ̂α̂y + εy + (I3 + α̂+ β̂)yyTux − yyTα̂ux

)
+ u⊥ + Γu⊥ + ΓDinit(sy + yyTux) + ΓDinits(α̂+ β̂)y + ν0 + δν̃.
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The terms syTβ̂α̂y and ΓDinits(α̂+ β̂)y can be neglected if their value is comparable with the
unremovable noise δν̃, i.e., ‖syTβ̂α̂y‖∞ � νmax and ‖ΓDinits(α̂+ β̂)y‖∞ � νmax. The components
of the matrix Γ have a known scale: |Γij | � Γmax; see Table 1. Therefore, we introduce an additional
constraint on the angular rate s:

s � νmax

2max{αmaxβmax,Γmax(αmax + βmax)}
def
= smax. (9)

In other words, the errors α and β will have a smaller effect on the estimation result when rotating
the gyro unit on the bench with a lower angular rate.

Under too slow rotation, it may turn out that the averaging error (the term Γu⊥) exceeds
the required estimation accuracy. Hence, we obtain the second constraint on the parameter s:
‖Γu⊥‖∞ � νmax. Due to the a priori known scale of the components of the matrix Γmax and
Lemma 1,

‖Γu⊥‖∞ � 3Γmax u

(
4

(s− εmax)T
+ C

εmax

s

)
� νmax.

The term ΓmaxC uεmax/s is small compared to νmax. Hence, the constraint on s takes the form

3Γmax u
4

(s− εmax)T
� νmax, or s � 12Γmaxu

νmaxT
+ εmax

def
= smin. (10)

The effect of u⊥ can be compensated by radically increasing T. However, see below, this is achieved
in a different way (through scalarization).

In addition to rotation with the angular rate sy, another mode of bench tests is possible: the ARS
unit is stationary relative to the bench base and the gyros measure the angular rate of the Earth’s
rotation. In this case, the expression for measurements can be obtained from (5) by substituting
s′ = 0, s = 0, ε(t) = 0, and D(t) = Dinit(I3 + β̂) and passing to the averaged signals ζ̃:

ζ̃ = (I3 + Γ)Dinit(I3 + β̂)ux + ν0 + δν̃ = Dinit ux + ΓDinitux +Dinitβ̂ ux + ν0 + δν̃

within second-order infinitesimals.

Summarizing the results of this section, we formulate the averaged gyro signal model with the
constraints (9) and (10):

ζ̃ = Dinit

(
s(I3 + α̂+ β̂)y + εy + (I3 + α̂+ β̂)yyTux − yyTα̂ux

)
+ ΓDinit(sy + yyTux) + u⊥ + ν0 + δν̃, s ∈ {0} ∪ [smin, smax].

(11)

2.3. Measurement Models and Scalarization

In Eq. (11), the input information is the terms ζ̃ and Dinit(sy + yyTux), whereas the “useful
signal” is the terms ΓDinit(sy + yyTux) + ν0. The measurement errors consist of the vector δν̃
arising when averaging the fluctuation noise δν̃(t), and unknown systematic errors due to bench
inaccuracy (varying with each new bench test). After rearranging the known terms to the left-hand
side of Eq. (11), we obtain the linear measurement model

z(s, y) = ΓDinit(sy + yyTux) + ν0 + r + δν ′, (12)

with the “measurements” z = z(s, y) and their errors r = r(s, y, α, β, ε) and δν ′ given by

z = ζ̃ −Dinit(sy + yyTux), r = Dinit

(
s(α̂+ β̂)y + εy + (α̂+ β̂)yyTux − yyTα̂ux

)
, (13)

δν ′ = δν̃ + u⊥, |δν ′j | � νmax + umax
def
= ν ′max, j = 1, 2, 3. (14)
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For definiteness, this model will be called three-dimensional (3D) (since z(s, y) ∈ R3) or Model-1.

In model (12)–(14), the component δν̃ has no intelligible spectrum due to averaging and is
therefore exhaustively described by the inequality |δν̃j | � νmax. The component u⊥ is not equally
arbitrary; see Lemma 1. Therefore, the constraint |δν ′j | � ν ′max in (14) is coarse.

We use the scalarization method [11]: the original 3D measurement equations are multiplied by
a known vector (in this case, ỹ = Dinity). After this step, all terms representing the product of a
skew-symmetric matrix by the vector y in r are reduced. The scalar product yTDT

initu
⊥ can also

be considered approximately equal to 0 by Lemma 1:

0 = wT(I3 − β̂)DT
initu

⊥ = yT(I3 − α̂)(I3 − β̂)DT
initu

⊥ ≈ yTDT
initu

⊥ (15)

(within the infinitesimals of order (αmax + βmax)u(
4

T (s−εmax)
+ C εmax

s )). This approximation accu-
racy is sufficient because

(αmax + βmax)u

(
4

T (s− εmax)
+ C

εmax

s

)
� νmax

for the scales of the parameters αmax, βmax, s, T, and εmax.

Consequently, it becomes possible to pass to a one-dimensional (scalar) measurement model
with smaller scale errors:

zscal = zscal(s, y) = ỹTΓDinit(sy + yyTux) + ỹTν0 + rscal + ỹTδν̃, (16)

where

zscal = ỹTζ̃ − s− yTux, rscal = ε− yTα̂ux. (17)

This measurement model will be called scalar or Model-2. It covers the specifics of the term
containing the value u⊥, which almost vanishes during scalarization (see (15)). Therefore, the model
for the measurement noise zscal is more adequate in this case than for Model-1 (the 3D model),
which explains its better accuracy.

3. GUARANTEED ESTIMATION: PROBLEM STATEMENTS

Following the ideas presented in [5, 11], we obtain the unknown matrix Γ and vector ν0 through
guaranteeing estimation. The vector of unknown parameters in this estimation problem consists of
the components of the errors Γ and ν0:

γ = (Γ11,Γ21,Γ31,Γ12,Γ22,Γ32,Γ13,Γ23,Γ33)
T, q = (γT, ν01, ν02, ν03)

T ∈ R12.

It is required to estimate the scalar value aTq with a given vector a∈R12. For example, a =
(1, 0, . . . , 0)T when estimating the component Γ11.

The desired estimate is a linear functional of the measurements:

l(Φ) =

∫
(y,s)∈S

ΦT
0 (y, s)z(y, s)dyds +

K∑
k=1

ΦT (k)z(y(k), s(k)),

where the integral is taken over the set

S = {y ∈ R3 : ‖y‖2 = 1} × {{0} ∪ [smin, smax]
}
,
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Φ0(·) : S → R3, Φ(k) ∈ R3, and the aggregate {y(k), s(k)}Kk=1 specifies the set of isolated positions
and angular rates of rotation within the experiment. (For brevity, the set over which the integral is
taken will be omitted below.) To each element (y, s) we assign the measurements z(y, s) obtained
by processing the gyro signals during rotation with the corresponding angular rate. The structure
of measurements can be defined by Model-1 or Model-2 (see the previous section). Let us first
formulate the guaranteeing estimation problem for the 3D model and then, by analogy, for the
scalar model.

With a formal notation using the Dirac delta function, l(Φ) can be compactly written as

l(Φ) =

∫
y,s

ΦT(y, s)z(y, s)dyds, Φ(y, s) = Φ0(y, s) +
K∑
k=1

ΦT (k) δ(y − y(k), s − s(k)).

We denote by F the set of all such functions Φ(·).
Consider the guaranteeing estimation problem for the scalar parameter aTq : find an estimator Φ

minimizing the (guaranteeing estimation) error [11]

I(Φ) → inf
Φ∈F

, (18)

where the objective functional I(Φ) is the supremum of the error |l(Φ)− aTq|, i.e.,
I(Φ) = sup

(q,α,β,ε,δν′)∈B′
|l(Φ)− aTq|. (19)

This supremum is calculated over B′, the set of all admissible values of the unknown parameters
(q, α, β, ε, δν̃):

q ∈R12, |αj |�αmax, |βj |�βmax, |δν ′j |� ν ′max, j = 1, 2, 3, |ε|� εmax. (20)

The solution of problem (18)–(20) determines the optimal plan of the experiment. In practice,
it is often necessary to estimate each component of the vector q. For these purposes, 12 separate
problems of the form (20) are solved; in each of them, only one component a is nonzero.

For the guaranteeing estimation problem, an equivalent l1-approximation problem can be for-
mulated and numerically solved.

Proposition 1. A function Φ(y, s)∈F is the solution of the guaranteeing estimation problem
(18)–(20) for Model-1 (12)–(13) if and only if it is the solution of the optimization problem∫ (

ν ′
max‖Φ‖1 + αmax‖CαΦ‖1 + βmax‖CβΦ‖1 + εmax

∣∣∣yTDT
initΦ

∣∣∣ )dyds → inf
Φ∈F

(21)

subject to the constraints ⎛⎜⎝
∫

v(y, s)⊗ Φ dyds∫
Φ dyds

⎞⎟⎠ = a (22)

with the following notations:

v =Dinit(sy + yyTux),

Cα =
(
sŷ + yTuxŷ − ûxyy

T
)
DT

init,

Cβ =
(
sŷ + yTuxŷ

)
DT

init.

(23)
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Here, the symbol ⊗ stands for the Kronecker product; the vector v and the matrices Cα and Cβ

are functions of s, y. The proof of Proposition 1 is given in the Appendix.

Similarly, we formulate the guaranteeing estimation problems for Model-2 by defining the one-
dimensional estimator

χ(y, s) = χ0(y, s) +
K∑
k=1

χ(k) δ(y − y(k), s − s(k)).

The resulting estimate of the unknown scalar parameter aTq has the form

l(χ) =

∫
y,s

χ(y, s)zscal(y, s)dyds.

We denote by X the set of all such functions χ(y, s) with the described structure.

Proposition 2. A function χ(y, s)∈X is the solution of the guaranteeing estimation problem
(18)–(20) for Model-2 (16)–(17) if and only if it is the solution of the optimization problem∫

(νmax‖Dinity‖1 + αmax‖ûxy‖1 + εmax) |χ(y, s)| dyds → inf
χ∈X

(24)

subject to the constraints ∫
χ(y, s)

(
v(y, s)⊗Dinity

Dinity

)
dyds = a. (25)

Proposition 2 is established by analogy to Proposition 1.

4. DISCRETE OPTIMIZATION PROBLEMS

In the variational l1-approximation problem (21)–(22), the desired variable is the vector function
Φ(y, s) whose argument takes a continuum set of values. This fact complicates numerical solution.
For similar guaranteeing estimation problems, it was proved [5, 11] that the optimal estimator Φ
differs from zero on a finite set of points. In this paper, we will not obtain an analytical solution:
consider a discrete analog of the above problems and solve them numerically instead. Let a func-
tion Φ(y, s) be nonzero on a finite set of points {y(k), s(k)}Kk=1 corresponding to different values of
the angular rate vector of the unit on the bench and take values Φ(k) at them. This discrete set of
positions can be specified by introducing spherical coordinates to define the vector y and choose a
“value grid” for latitude and longitude with a given step.

Transition from integrals to finite sums in (21)–(22) yields the optimization problem

K∑
k=1

(
ν ′max‖Φ(k)‖1 + αmax‖Cα(k)Φ(k)‖1 + βmax‖Cβ(k)Φ(k)‖1

+ εmax|yT(k)DT
initΦ(k)|

)
→ inf

Φ(1),...,Φ(K)
(26)

subject to the constraints ⎛⎜⎜⎜⎜⎜⎝
K∑
k=1

v(k)⊗ Φ(k)

K∑
k=1

Φ(k)

⎞⎟⎟⎟⎟⎟⎠ = a, (27)
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where the vectors v(k) and the matrices Cα(k) and Cβ(k) depend on the known arguments y(k)
and s(k):

v(k) = Dinit(s(k)y(k) + y(k)yT(k)ux),

Cα(k) =
(
s(k)ŷ(k) + yT(k)uxŷ(k)− ûxy(k)y

T(k)
)
DT

init,

Cβ(k) =
(
s(k)ŷ(k) + yT(k)uxŷ(k)

)
DT

init.

Note that in this problem, the discrete value grid {y(k), s(k)}Kk=1 is considered a priori given
and only the values of Φ(k) have to be found. Multiplying the objective function (26) by the
constant ν ′−1

max and introducing the notations

αmax

ν ′
max

Cα(k)Φ(k) = xα(k),
βmax

ν ′
max

Cβ(k)Φ(k) = xβ(k),
εmax

ν ′
max

yT(k)DT
initΦ(k) = xε(k),

x =
(
ΦT(1), . . . ,ΦT(K), xTα(1), . . . , x

T
α (K), xTβ (1), . . . , x

T
β (K), xε(1), . . . , xε(K)

)T
∈ R10K ,

(28)

we write problem (26)–(27) in a compact form corresponding to the classical l1-approximation
problem

‖x‖1 → inf
x∈R10K

(29)

subject to the linear constraints Aeqx = aeq.

The matrix and vector from the constraint equation can be represented in the block form:

Aeq =

⎛⎜⎜⎜⎝
Aα I3K 03K×3K 0K×K

Aβ 03K×3K I3K 0K×K

Aε 0K×3K 0K×3K IK
AΦ 012×3K 012×3K 012×K

⎞⎟⎟⎟⎠ ∈ R(7K+12)×10K , aeq =

⎛⎝ 07K×1

a

⎞⎠ ∈ R7K+12,

where, due to (27) and (28),

Aα =
αmax

νmax

⎛⎜⎜⎜⎜⎝
Cα(1) 03×3 . . . 03×3

03×3 Cα(2) . . . 03×3

. . . . . .
. . . . . .

03×3 . . . 03×3 Cα(K)

⎞⎟⎟⎟⎟⎠ ,

Aβ =
βmax

νmax

⎛⎜⎜⎜⎜⎝
Cβ(1) 03×3 . . . 03×3

03×3 Cβ(2) . . . 03×3

. . . . . .
. . . . . .

03×3 . . . 03×3 Cβ(K)

⎞⎟⎟⎟⎟⎠ ,

Aε =
εmax

νmax

⎛⎜⎜⎜⎜⎝
yT(1)DT

init 01×3 . . . 01×3

01×3 yT(2)DT
init . . . 01×3

. . . . . .
. . . . . .

01×3 . . . 01×3 yT(K)DT
init

⎞⎟⎟⎟⎟⎠ ,

AΦ =

⎛⎜⎜⎜⎜⎝
v1(1) v1(2)I3 . . . v1(K)I3

v2(1)I3 v2(2)I3 . . . v2(K)I3

v3(1)I3 v3(2)I3 . . . v3(K)I3

I3 I3 . . . I3

⎞⎟⎟⎟⎟⎠ .
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A discrete analog of the scalarized model (24)–(25) can be formulated by analogy. In this
problem, it is required to minimize the sum of the moduli of the components of the unknown
vector under linear equality constraints:

K∑
k=1

(νmax‖Dinity(k)‖1 + αmax‖ûxy(k)‖1 + εmax) |χ(k)| → inf
χ(1),...,χ(K)

(30)

subject to

K∑
k=1

χ(k)

(
v(k)⊗Dinity(k)

Dinity(k)

)
= a. (31)

In matrix form, the problem is written as

‖xχ‖1 → inf
xχ∈RK

(32)

subject to the constraints Aχxχ = a.

Here, we adopt the notations

xχk = ρkχ(k), ρk = νmax‖Dinity(k)‖1 + αmax‖ûxy(k)‖1 + εmax, k = 1, . . . ,K;

Aχ =

⎛⎜⎜⎜⎜⎜⎝
ρ−1
1 v1(1)Dinity(1) ρ−1

2 v1(2)Dinity(2) . . . ρ−1
K v1(K)Dinity(K)

ρ−1
1 v2(1)Dinity(1) ρ−1

2 v2(2)Dinity(2) . . . ρ−1
K v2(K)Dinity(K)

ρ−1
1 v3(1)Dinity(1) ρ−1

2 v3(2)Dinity(2) . . . ρ
−1
K , v3(K)Dinity(K)

ρ−1
1 Dinity(1) ρ−1

2 Dinity(2) . . . ρ−1
K Dinity(K)

⎞⎟⎟⎟⎟⎟⎠∈R12×K .

Such convex optimization problems can be solved by various numerical methods, e.g., the interior
point method [13], ADMM [14], and the method of variationally weighted quadratic approxima-
tions [5]. Unlike the problem for the 3D model (29), problems (32) have a smaller dimension of
the unknown vector and constraint matrices (7–10 times less variables and constraints). Therefore,
they better suit numerical solution in the case of large values K.

Thus, the optimal estimators Φ(k) and χ(k) obtained by solving the l1-approximation prob-
lems (29) or (32) yield the target values of the angular rates s(k)y(k) of the gyro unit on the bench.
As a rule, a small number of angular rate positions correspond to non-zero values of Φ(k) or χ(k).
(This is a common property of guaranteeing estimation solutions; for example, see justification in
the book [5].) We denote this subset by K, K ⊂ {1, . . . ,K}.

The guaranteeing estimation algorithm for the ARS unit errors is a series of steps. At each step,
the following operations are carried out for each k ∈K:

(1) The gyro unit is rotated with the angular rate s(k)y(k), and the set of gyro readings ζ(t) ∈ R3

is formed.
(2) The signal ζ(t) is averaged on the time interval T of the fixed-rate rotation:

ζ̃ =

(
T∑
t=0

ζ(t)

)
/(T + 1).

(3) According to (13)–(17), the measurements z(y(k), s(k)) and zscal(y(k), s(k)) are formed for
the linear estimation models.

Then the unknown parameter aTq is estimated as∑
k∈K

ΦT(k)z(y(k), s(k)) or
∑
k∈K

χ(k)zscal(y(k), s(k)).
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5. NUMERICAL EXAMPLES

Consider several numerical examples illustrating the application of the guaranteeing estimation
methods proposed in this paper. The practical implementation of the algorithm includes several
stages as follows: solving the guaranteeing estimation problems; modeling the signal, i.e., the
measurements ζ(t) for given “true” values of the errors and the unknown parameters Γ and ν0;
building the estimates Γ and ν0 and comparing them with the “true” values. The corresponding
code was implemented in Python and standard procedures from CVXPY1 were used to solve the
l1-approximation problems (29) and (32).

The typical values of the errors and model parameters were selected according to Table 1. The
admissible limits for the angular rate were defined by formulas (9) and (10): smin = 1.25 ◦/s and
smax = 3.28 ◦/s. In the model example, we supposed the following: the absolute angular rate takes
the value s = 0 (no rotation) and two values from the segment [smin, smax], i.e., s1 = 1.5 ◦/s and
s2 = 2 ◦/s; the vectors y(k) are uniformly located on the unit sphere; Dinit = I3. Let us describe
the resulting solutions for each group of the unknown parameters Γ and ν0.

For the full and scalarized models, the optimal estimators for the diagonal components Γii have
the form

Φii(y, s) =χ0eiδ(y − ei, s− s2)− χ0eiδ(y + ei, s− s2),

χii(y, s) =χ0δ(y − ei, s − s2) + χ0δ(y + ei, s− s2),

where ei is a unit vector with ith component equal to 1 and χ0 is some value numerically determined
in the solution of the optimization problem.

In other words, to estimate, e.g., the component Γ11 (the scaling factor of the first gyro’s error),
it is necessary to carry out two series of measurements, rotating the unit along the sensitivity axis
of this gyro with the maximum angular rate s = s2 first in one direction (y(1) = (1, 0, 0)T) and
then in the other (y(2) = (−1, 0, 0)T).

For the off-diagonal elements Γ12 = Γ21, the optimal estimators are given by

Φ12(y, s) =

⎛⎜⎝ Φ1

Φ1

0

⎞⎟⎠ δ(y − e(π/4), s − s2) +

⎛⎜⎝ Φ2

−Φ1

0

⎞⎟⎠ δ(y − e(3π/4), s − s2)

+

⎛⎜⎝ −Φ2

−Φ2

0

⎞⎟⎠ δ(y − e(5π/4), s − s2) +

⎛⎜⎝ −Φ1

Φ2

0

⎞⎟⎠ δ(y − e(7π/4), s − s2),

χ12(y, s) =χ0δ(y − e(π/4), s − s2) + χ0δ(y − e(3π/4), s − s2)

+χ0δ(y − e(5π/4), s − s2) + χ0δ(y − e(7π/4), s − s2)

with the following notations: e(θ) = (cos θ, sin θ, 0)T are the unit vectors corresponding to the
rotation by the angle θ in the plane e1e2; Φ1 and Φ2 are the values numerically determined in
the solution of the optimization problem; χ0 is the same value as for the diagonal elements. The
estimators for the components Γ13 = Γ31 and Γ23 = Γ32 are determined by analogy within the
rearrangements of the indices in the corresponding vectors. Thus, the optimal experiment for
estimating the misalignment angles between the gyro sensitivity axes consists of four series of
measurements; in each of them, rotation is performed along the bisector of the angle between the
coordinate axes with the maximum admissible angular rate (by absolute value).

1 An open source Python-embedded modeling language for convex optimization problems;
https : //web.stanford.edu/ boyd/papers/pdf/cvxpyrewriting.pdf.
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Table 2. Guaranteed estimation errors

Model Variable

Γii Γij , i �= j ν0i
The order of value [0.7; 1.3]× 10−3 [4; 6]× 10−3 [2; 3]× 10−7

Required accuracy 5× 10−5 5× 10−5 5× 10−8

Model-1 2.01× 10−4 5.67× 10−4 7.01× 10−6

Model-2 2.23× 10−6 3.45× 10−6 5.16× 10−8

Table 3. Average estimation errors

Model Variable

Γii Γij , i �= j ν0i

The order of value [0.7; 1.3]× 10−3 [4; 6]× 10−3 [2; 3]× 10−7

Model-1 1.25× 10−6 (0.13%) 1.33× 10−6 (0.02%) 4.88× 10−8 (22%)

Model-2 1.20× 10−6 (0.13%) 1.24× 10−6 (0.03%) 2.89× 10−8 (14%)

The optimal estimators for the zero biases ν0i have the following structure:

Φνi(y, s) = φ1eiδ(y− ei, s− s2)+φ2eiδ(y+ ei, s− s2)+φ3eiδ(y− ei, s− s1)+φ4eiδ(y+ ei, s− s1),

χνi(y, s) = χ1δ(y − ei, s− s2)− χ2δ(y + ei, s− s2) + χ3δ(y − ei, s − s1)− χ4δ(y + ei, s− s1),

where the values φi > 0 and χi > 0 are numerically determined in the solution of the optimization
problem. They are close to 1/4.

Clearly, the rotation directions and weight coefficients obtained by guaranteeing estimation
have a simple geometric structure: the optimal motion modes imply rotation with the maximum
admissible angular rate, in the direction coinciding (within the initial alignment error) either with
the gyro sensitivity axes or with the bisectors of the angles between these axes. A similar result was
established using guaranteeing estimation in the calibration problem of an accelerometer unit [11].
However, unlike the latter problem, the mathematical model of measurements in this paper is
significantly more complex and depends on a larger number of parameters. Therefore, it is difficult
to justify the optimal structure of the estimator analytically, and numerical methods are employed
to find solutions.

The main quality indicator of the solutions is the guaranteeing estimation error, which does
not depend on particular realizations of errors and measurements. Table 2 shows the guaranteeing
estimation errors corresponding to the optimal estimators for the components Γ and ν0.

For the model parameters given in Table 1, the required guaranteeing estimation accuracy is
achieved for all components of the matrix Γ within Model-2. Model-1 can lead to errors of about
10% of the parameter estimated; for the components ν0i, the required accuracy is achieved within
Model-2.

We present the estimation results for the components Γ, ν0 from a series of numerical experi-
ments with this procedure under particular realizations of the systematic errors and noises in the
measurements. The “true” values of these parameters and errors α, β, ε(t), and δν(t) were out-
putted using a random number generator. For each parameter Γij, ν0i, the modeling and estimation
procedure was repeated 20 times to evaluate typical deviations of the estimate from the true value.
Table 3 shows the average absolute (|Γ0

ij − Γij|) and relative (|Γ0
ij − Γij |/|Γij |, in parentheses) de-

viations of the estimates obtained with Models-1 and -2 from the true values. Unlike guaranteeing
errors, these deviations do not determine an upper bound on the error but characterize both the
accuracy of the models and solutions of the estimation problems. This is important because the
input information ζ(t) is constructed using a nonlinear model of the original signal (3), and the
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optimal solution is the result of applying guaranteeing estimation to linearized Models-1 and -2.
In other words, this experiment reflects the effect of different factors on the estimation result: the
errors and noises in the measurements and the errors due to the transition to simpler linear models.

According to the series of numerical examples, the estimates of the unknown parameters based
on the proposed algorithm with the measurement information are close to their “true” values and
the deviations lie within the guaranteeing estimation errors.

Let us illustrate how the solution accuracy depends on the choice of the angular rate s2. Consider
an experiment in which, for the same pre-selected values Γ and νo, the unknown parameters are
estimated using the two models described above for 16 different values of s2. The relative accuracy
of the resulting estimates is presented in the graphs below: the estimation errors for Γ11 (Fig. 1;
for Γ12 the results are similar) and the estimation errors for ν01 (Fig. 2).

According to the graph, the critical drop in accuracy is observed under the minimum values
of the angular rate (less than the threshold smin obtained in Section 2.2). When estimating the
matrix Γ, the approaches appear to be insensitive to the increase in the angular rate s2. However,
when estimating ν0, the accuracy deteriorates as s2 increases, especially in the case of exceeding
the threshold s2 > smax = 3.28 ◦/s = 0.057 1/s.
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6. CONCLUSIONS

This paper has developed a calibration procedure for a gyro unit with three main ideas as fol-
lows: derivation of linear measurement models for averaged signals, scalarization, and guaranteeing
estimation. The guaranteeing estimation problems have been reduced to discrete l1-approximation
problems, which are solved using numerical algorithms. An important advantage is that this proce-
dure yields an optimal experiment plan as a result of solving the estimation problem. Guaranteed
estimation leads to simple-structure solutions: from a large set of admissible directions and angular
rates, an optimal combination contains 2–4 rotation modes. This calibration procedure and the
corresponding software implementations can be extended with minimum changes to more complex
systems, e.g., the ones with a limited number of rotation directions and with temperature-dependent
sensor errors.

Besides inertial navigation, the approach proposed above or its modifications can be used in
other applications requiring an optimal set of measurements to estimate unknown parameters or
an experiment plan from a set of admissible scenarios.

APPENDIX

Proof of Lemma 1. On the time interval T the rotation occurs about a fixed direction. Therefore,
the rotation matrix Dcir is decomposed by averaging as follows:

D̄cir = D̄cir1 + D̄cir2, D̄cir1 =

⎛⎜⎝ 0 0 0
0 0 0
0 0 1

⎞⎟⎠ , D̄cir2 =

⎛⎜⎝ c1 −c2 0
c2 c1 0
0 0 0

⎞⎟⎠ , (A.1)

where ci is the result of the time averaging of the functions sinψ(t) and cosψ(t).

Due to formulas (6), (7), and (A.1), in the course of averaging, the vector uz is represented as
the sum of two terms, one proportional to w and the other orthogonal to D(0)w:

ūz = D̄ux = D′D̄cir1Dfixux +D′D̄cir2Dfixux

= D′

⎛⎜⎝ 01×3

01×3

wT

⎞⎟⎠ux + u⊥ = d′3w
Tux + u⊥ = Dinit(I3 + β̂)wwTux + u⊥,

(A.2)

where u⊥ = D′D̄cir2Dfixux.

The orthogonality of u⊥ to the direction D(0)w = Dinit(I3 + β̂)w can be established using for-
mulas (2) and (6): D(0)w = D′Dcir(0)Dfixw = D′ (0, 0, 1)T; the corresponding scalar product is
explicitly calculated as

wTD(0)Tu⊥ = (0, 0, 1)D′TD′

⎛⎜⎝ c1 −c2 0
c2 c1 0
0 0 0

⎞⎟⎠Dfixux = (0, 0, 1)T

⎛⎜⎝ c1 −c2 0
c2 c1 0
0 0 0

⎞⎟⎠Dfixux = 0.

Using the component c1 as an example, we explain the idea of estimating from above the result
of the time averaging of the function cosψ(t). Consider the continuous case of averaging:

c1 =
1

T

T∫
0

cosψ(t)dt.
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The dynamics of the angle ψ are described by a differential equation and constraints on the functions
on its right-hand side:

dψ(t)

dt
= s+ ε(t), ψ(0) = ψ0, |ε(t)| � εmax, s+ ε(t) > 0.

The change of variables t = t(ψ), ε(ψ) = ε(t(ψ)), |ε(ψ)| � εmax, in the integral yields

T∫
0

cosψ(t)dt =

ψ(T )∫
ψ0

cosψ

s+ ε(ψ)
dψ.

This integral can be written as the sum of integrals on the half-periods of the function cosψ
(intervals where the function has a fixed sign) and two integrals corresponding to the time intervals
at the beginning and end of the interval [ψ0, ψ(T )]. For example, if ψ0 < π/2, this interval is
represented as follows:

[ψ0, ψ(T )] = [ψ0, π/2] ∪ [π/2, 3π/2] ∪ [3π/2, 5π/2] ∪ . . . ∪ [π/2 + 2πncir, ψ(T )],

where ncir is the number of complete revolutions of the system about the axis of rotation and the
length of the last interval does not exceed π, i.e., π/2 + 2πncir � ψ(T ) � 3π/2 + 2πncir.

The integrand on each such interval has a fixed sign, and the maximum value of the integrand
(hence, that of the integral) is achieved at ε(ψ) = −sgn(cosψ) εmax:∫

cosψ

s+ ε(ψ)
dψ �

∫
cosψ

min|ε|�εmax
(s+ ε)

dψ =

∫
cosψ

s− sgn(cosψ) εmax
dψ.

Therefore, each integral can be estimated bilaterally (from below and above):∣∣∣∣∣∣∣
π/2∫
ψ0

cosψ

s+ ε(ψ)
dψ

∣∣∣∣∣∣∣ �
2

s− εmax
,

∣∣∣∣∣∣∣
ψ(T )∫

π/2+2πncir

cosψ

s+ ε(ψ)
dψ

∣∣∣∣∣∣∣ �
2

s− εmax
,

−2

s− εmax
�

3π/2∫
π/2

cosψ

s+ ε(ψ)
dψ � −2

s+ εmax
,

2

s+ εmax
�

5π/2∫
3π/2

cosψ

s+ ε(ψ)
dψ � 2

s− εmax
.

As a result, the absolute value of the integral on the averaging interval admits the following
upper bound: ∣∣∣∣∣∣∣

ψ(T )∫
ψ0

cosψ

s+ ε(ψ)
dψ

∣∣∣∣∣∣∣ �
∣∣∣∣∣∣∣

π/2∫
ψ0

cosψ

s+ ε(ψ)
dψ

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣

ψ(T )∫
π/2+2πncir

cosψ

s+ ε(ψ)
dψ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
ncir∑
j=1

⎛⎜⎝ 3π/2∫
π/2

cosψ

s+ ε(ψ)
dψ +

5π/2∫
3π/2

cosψ

s+ ε(ψ)
dψ

⎞⎟⎠
∣∣∣∣∣∣∣

� 4

s− εmax
+

∣∣∣∣∣∣
ncir∑
j=1

−2

s+ εmax
+

2

s− εmax

∣∣∣∣∣∣ � 4

s− εmax
+

ncir 4εmax

(s + εmax)(s − εmax)
.

The angular rate and the number of complete revolutions of the system are related by

sT = 2π ncir +Δψ
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for some Δψ � 2π. Consequently,

|c1| =
∣∣∣∣∣∣ 1T

T∫
0

cosψ(t)dt

∣∣∣∣∣∣ � 4

T (s− εmax)
+

ncir 4εmax

T (s2 − ε2max)

=
4

T (s− εmax)
+

(sT −Δψ) 4εmax

2π sT s(1− ε2max/s
2)

=
4

T (s − εmax)
+

2 (1−Δψ/(sT ))

π (1− ε2max/s
2)

εmax

s
.

Thus, we obtain

|c1| � 4

T (s− εmax)
+C

εmax

s
,

where the parameter C = 2
π (1−ε2max/s

2) is an upper bound for the fraction 2(1−Δψ/(sT ))
π (1−ε2max/s

2) .

Proof of Proposition 1. We transform the integrand of the objective function into problem (18)
by substituting formulas (12) and (13) with the additional notation v = v(s, y) = Dinit(sy+yyTux):

ΦTz = ΦT
(
ΓDinit(sy + yyTux) + ν0 + r + δν ′

)
= ΦTΓv +ΦTν0 +ΦTδν ′ +ΦTDinit

(
−s(ŷα+ ŷβ) + εy + yTux(α̂+ β̂)y + yyTûxα

)
= (v ⊗ Φ)Tγ +ΦTν0 +ΦTδν ′ +ΦTDinit

(
−s(ŷα+ ŷβ) + εy − yTux(ŷα+ ŷβ) + yyTûxα

)
.

Hence,

ΦTz = (v ⊗ Φ)Tγ +ΦTν0 +ΦTδν ′ + εΦTDinity

+ΦTDinit

(
−sŷ − yTuxŷ + yyTûx

)
α+ΦTDinit

(
−sŷ − yTuxŷ

)
β.

(A.3)

These formulas involve, first, the properties of matrix operations

ΦTΓv = (ΦT ⊗ vT)γ = (v ⊗ Φ)Tγ, α̂y = −ŷα

and, second, the possibility of transferring the scalar product yTux to the other part of the corre-
sponding multiplier group: α̂yyTux = −yTux ŷα.

Let us define the matrices C ′
α and C ′

β :

C ′
α = Dinit

(
−sŷ − yTuxŷ − yTuxŷ

)
, C ′

β = Dinit

(
−sŷ − yTuxŷ

)
.

Then the right-hand side of (A.3) is represented as a function that linearly depends on the variables
q, α, β, ε, and δν̃:

ΦT(y, s)z(y, s) = (v ⊗ Φ)Tγ +ΦTν0 +ΦTδν ′ +ΦTC ′
αα+ΦTC ′

ββ + εΦTDinity. (A.4)

Substituting formula (A.4) into the original objective functional (19) yields

I(Φ) = sup
(q,α,β,ε,δν′)∈B′

|l(Φ)− aTq|

= sup
(q,α,β,ε,δν′)∈B′

∣∣∣∣∣
∫ (

(v ⊗ Φ)Tγ +ΦTν0 +ΦTδν ′ +ΦTC ′
αα+ΦTC ′

ββ + εΦTDinity
)
dyds− aTq

∣∣∣∣∣.
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Since q = col(γ, ν0), the function l(Φ)− aTq linear depends on q, and the multiplier at q is⎛⎜⎝
∫

v ⊗Φ dyds∫
Φ dyds

⎞⎟⎠− a.

Therefore, if condition (22) is violated, we have supq∈R12 |l(Φ)− aTq| = +∞ for a fixed Φ and
arbitrary admissible α, β, ε, and δν ′. Consequently,

sup
(q,α,β,ε,δν′)∈B′

|l(Φ)− aTq| = sup
(q,α,β,ε,δν′)∈B′

∣∣∣∣∫ (
ΦTδν̃ +ΦTC ′

αα+ΦTC ′
ββ + εΦTDinity

)
dyds

∣∣∣∣ .
In other words, it is necessary to maximize the absolute value of a linear function where each term
depends on only one variable not figuring in the other terms. This means that the maximum can
be found independently in each of the variables. For a fixed Φ, the maximum is determined in an
explicit form:

sup
α: |αi|�αmax

∫
ΦTC ′

ααdyds = sup
α: |αi|�αmax

∫ (
3∑

i=1

(C ′T
α Φ)iαi

)
dyds

=
3∑

i=1

sup
αi: |αi|�αmax

∫
(C ′T

α Φ)iαidyds

=

∫ (
3∑

i=1

αmax sgn((C
′T
α Φ)i) (C

′T
α Φ)i

)
dyds =

∫
‖CαΦ‖1 dyds.

A similar chain of considerations applies to the other terms in the objective functional (18). Thus,
the explicit calculation of the supremum of the original objective functional finally leads to the
optimization problem (21)–(22).
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