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Abstract—This paper considers a single-server queueing system with an incoming Markovian
Arrival Process (MAP) request flow with two states. Explicit expressions are derived for the
stationary probability distribution of the states and several numerical characteristics of the
system (the probability of idle time of the server, the expected number of requests in the
system, and the mean queue length). The resulting numerical characteristics are presented in
tables and plotted in graphical form as well. The recurrent MAP flow with two states as a
special case of correlated MAP request flows is studied.
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1. INTRODUCTION

Mathematical models of queueing systems and networks (QSs, QNs) adequately describe the
behavior of real physical, technical, economic, and other objects and systems. Therefore, they
have become widespread in the scientific community. A basic element of QSs and QNs are random
incoming request flows. Almost throughout the 20th century, research on QSs and QNs was based
on the assumption of the uncorrelated nature of incoming request flows. In other words, the
simplest request flows—stationary Poisson ones—were considered. However, at the end of the
century, the stationary Poisson flow model lost its adequacy to real information request flows in
telecommunication networks and systems, wireless and mobile communication networks due to their
intensive development.

The rapid change of digital technologies ensured the penetration of digital networks into all
spheres of human activity. It would be impossible without the use and development of mathemat-
ical modeling methods and algorithms for network technologies. Since the end of the 20th century,
intensive research in modern queueing theory has been dealing with queueing systems with corre-
lated flows (systems with doubly stochastic flows). The emergence of doubly stochastic event flows,
a new mathematical model with the most adequate description of the correlated nature of real
information flows, was motivated by the practical studies of modern telecommunication networks
with essentially nonstationary and correlated heterogeneous information flows.

Doubly stochastic flows are characterized by two stochastics: requests in the flow arrive at
random time instants (the first stochastics), and the flow intensity (the accompanying process) is a
random process (the second stochastics). There are two types of doubly stochastic flows depending
on their accompanying process (intensity): the ones with a continuous random process [1, 2] and
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764 GORTSEV, NEZHELSKAYA

the ones with a piecewise constant random process with a finite (arbitrary) number of states. The
studies of second-type flows were first presented almost simultaneously in 1979 in the papers [3–5].
In [3, 4], these flows were called Markov Chain (MC) flows; in [5], Markov Versatile Process (MVP)
flows. In [6, 7], the above flows were termed Markovian Arrival Process (MAP) flows. Their main
property is correlation. Note that MAP (MC) flows are the most appropriate mathematical model
of correlated request flows in real telecommunication systems and networks [8].

The monograph [8], unique in the world literature, systematically presented QSs and QNs with
correlated flows. As was emphasized in [8], the analytical investigation of QSs and QNs with
correlated flows is a rather difficult process; finding the explicit-form characteristics of QSs and
QNs is a nontrivial problem, sometimes unsolvable.

In this paper, we analytically investigate a single-server QS with waiting, the classical incoming
MAP request flow with two states [6, 7], and exponential service.

For the stationary operation mode of this QS, explicit analytical formulas are derived for the
probability of idle time of the server, the mean queue length, and the expected number of requests
in the system.

Note that QSs and QNs with incoming MAP request flows have been analyzed since the 1990s.
In particular, the states and parameters of an MAP request flow under perfect and incomplete
observability conditions (in the presence of dead time) were estimated by the authors. In this
regard, we refer to some publications [9–14].

In addition, the system under consideration differs from the systems operating in a synchronous
random environment: in such an environment, synchronous flows are considered in which the state
of the control process (accompanying process) changes at random time instants (the instants of
events occurrence). Thus, a synchronous random environment always assumes a nonzero probability
for changing the states of the control process at the instant of events occurrence in the synchronous
flow. In an MAP flow, in contrast, a flow event not necessarily occurs at the instant of changing
the state of the control process. (If the probability of event occurrence is always 1, we have a
synchronous flow.) Thus, the mathematical model of a random environment considered below
generalizes the mathematical model of a synchronous random environment, which is the novelty of
this study.

The evolution from the simplest flow to modern mathematical models of information flows in
telecommunication systems and networks (to the models of correlated flows, particularly MAP
flows) can be traced in the monograph [8]. In addition, it provides an extensive bibliography on
QSs and QNs. Among the recent works on this subject, let us mention the paper [15]. Note that
numerical analysis is a common feature of research on QSs and QNs with an incoming MAP request
flow. This paper continues the investigations initiated in [16].

2. MATHEMATICAL MODEL OF THE SYSTEM.
PROBLEM STATEMENT

Consider a single-server QS with waiting. The server receives an incoming MAP flow of events
(requests, messages, etc.) whose accompanying process λ(t) is a piecewise constant random process
with two states S1 and S2. If λ(t) = λi, then the process λ(t) (flow) has the ith state (Si), i = 1, 2;
λ1 > λ2 > 0. The sojourn time of the process λ(t) in the state Si is a random variable with the
exponential distribution function Fi(t) = 1− exp{−λit}, t � 0, i = 1, 2.

When the ith state of the flow (process λ(t)) ends, the following instantaneous changes in the
system state are possible:

1) A flow event occurs, and the process λ(t) passes from the state Si to the state Sj; the joint
probability of this situation is P1(λj |λi), i, j = 1, 2.
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2) No flow event occurs, and the process λ(t) passes from the state Si to the state Sj; the joint
probability of this situation is P0(λj |λi), i, j = 1, 2 (i �= j).

Note that P0(λj |λi) + P1(λj |λi) + P1(λi|λi) = 1, i, j = 1, 2 (i �= j). Here, the occurrence (non-
occurrence) of an event in the state Si is primary, i.e., it precedes the transition from the flow
state Si to the flow state Sj with the probability P1(λj |λi) (the transition from the flow state Si

to the flow state Sj with the probability P0(λj |λi), respectively).

Let the QS operate in a stationary mode. Under the assumptions made, λ(t) is the accompanying
stationary, piecewise constant, and transitive Markov process with the two states S1 and S2. If
the process λ(t) is in the state Si, then the request is served in a time τ � 0 with the exponential
distribution law F (i)(τ) = 1− exp{−μiτ} with the intensity μi (μi > 0), i = 1, 2.

Remark 1. For an MAP flow, the accompanying random process λ(t) does not coincide with the
flow intensity: in the states S1 and S2, the flow intensity takes the values λ1[1− P0(λ2|λ1)] and
λ2[1− P0(λ1|λ2)], respectively. Then the mean intensity of this flow is [17]

λ = λ1[1− P0(λ2|λ1)]π1 + λ2[1− P0(λ1|λ2)]π2,

π1 =
λ2[1− P1(λ2|λ2)]

λ1[1− P1(λ1|λ1)] + λ2[1− P1(λ2|λ2)]
,

π2 =
λ1[1− P1(λ1|λ1)]

λ1[1− P1(λ1|λ1)] + λ2[1− P1(λ2|λ2)]
,

(1)

where π1 and π2 denote the prior probabilities of the states S1 and S2 of the process λ(t) (flow),
respectively, in the stationary mode.

Let τk = tk+1 − tk, k = 1, 2, . . . , be the duration of the kth interval between the arrival time
instants tk and tk+1 of flow requests (τk � 0). Due to the stationary mode, the probability density
of the durations is p(τk) = p(τ), τ � 0, for any k � 1. Then, without loss of generality, tk can be
supposed 0, i.e., a request arrives at the time instant τ = 0. The following explicit formula for the
probability density p(τ) was derived in [11]:

p(τ) = γz1e
−z1τ + (1− γ)z2e

−z2τ , τ � 0,

γ = {z2 − λ1π1(0)[1 − P0(λ2|λ1)]− λ2π2(0)[1 − P0(λ1|λ2)]} (z2 − z1)
−1,

z1,2 =

[
(λ1 + λ2)∓

√
(λ1 − λ2)2 + 4λ1λ2P0(λ1|λ2)P0(λ2|λ1)

]
/2,

π1(0) =
P1(λ1|λ2) + P1(λ1|λ1)P0(λ1|λ2)

P1(λ1|λ2) + P1(λ2|λ1) + P1(λ1|λ1)P0(λ1|λ2) + P1(λ2|λ2)P0(λ2|λ1)
,

π2(0) = 1− π1(0).

(2)

In (2), πi(0) is the stationary probability that the process λ(τ) has the state Si, i = 1, 2, at the
time instant τ = 0 (the arrival of an MAP flow request); z1 and z2 are the roots of the characteristic
equation z2 − (λ1 + λ2)z + λ1λ2[1− P0(λ1|λ2)P0(λ2|λ1)] = 0, where 0 < z1 < z2 due to (2); γ is a
value that depends on the flow parameters.

Consider two adjacent intervals (tk, tk+1) and (tk+1, tk+2) with the durations τk = tk+1 − tk and
τk+1 = tk+2 − tk+1, respectively. Since the flow is stationary, they are located arbitrarily on the
time axis. Letting k = 1, we study two intervals (t1, t2) and (t2, t3) with the durations τ1 = t2 − t1
and τ2 = t3 − t2, respectively, where τ1 � 0 and τ2 � 0. In this case, τ1 = 0 corresponds to the

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



766 GORTSEV, NEZHELSKAYA

�1P1(�1 | �1)

�2P1(�2 | �2)

�
1 P

0 (�
2 | �

1 )

�
1 P

0 (�
2 | �

1 )

�
1 P

0 (�
2 | �

1 )

�
1 P

0 (�
2 | �

1 )� 2
P

0(
� 1

 | �
2)

� 2
P

0(
� 1

 | �
2)

� 2
P

0(
� 1

 | �
2)

� 2
P

0(
� 1

 | �
2)

� 2P
1(
� 1 

| � 2)

� 2P
1(
� 1 

| � 2)

� 2P
1(
� 1 

| � 2)
�

1 P
1 (�

2 | �
1 )

�
1 P

1 (�
2 | �

1 )

�
1 P

1 (�
2 | �

1 )

(�1, 1)

(�1, 2)

(0, 1)

(0, 2)

(1, 1) (i, 1)

(i, 2)(1, 2)

�1

�2

�1P1(�1 | �1)

�2P1(�2 | �2)

�1

�2

Fig. 1. The stochastic state transition graph for the process λ(t).

arrival time instant t1 of a flow request and τ2 = 0 to the arrival time instant t2 of the next flow
request. The joint probability density has the form [11, 13]

p(τ1, τ2) = p(τ1)p(τ2) + γ(1− γ)
P1(λ1|λ1)P1(λ2|λ2)− P1(λ1|λ2)P1(λ2|λ1)

1− P0(λ1|λ2)P0(λ2|λ1)

× (
z1e

−z1τ1 − z2e
−z2τ1

) (
z1e

−z1τ2 − z2e
−z2τ2

)
, τ1 � 0, τ2 � 0,

(3)

where z1, z2, and p(τk) are given by (2) for τ = τk, k = 1, 2.

According to (3), an MAP flow is generally a correlated flow; it turns recurrent or degenerates
into elementary only in special cases.

Special case 1: P1(λ1|λ1)P1(λ2|λ2)− P1(λ1|λ2)P1(λ2|λ1) = 0, a recurrent MAP request flow with
two states. In this case, p(τ) is given by (2), where γ = [z2 − λ1P1(λ1|λ1)− λ2P1(λ2|λ2)](z2 − z1)

−1.

From (3) it follows that p(τ1, τ2) = p(τ1)p(τ2). Since the arrival time instants t1, . . . , tk in the flow
induce a nested Markov chain {λ(tk)}, for an arbitrary number k, k � 2, we have p(τ1, . . . , τk) =
p(τ1) . . . p(τk).

The product γ(1− γ) in (3) can be represented as

γ(1 − γ) =
z1z2

(z2 − z1)2
{λ1[1− P0(λ2|λ1)]− λ2[1− P0(λ1|λ2)]}

× {π1(0)λ1[1− P1(λ1|λ1)]− π2(0)λ2[1− P1(λ2|λ2)]} (4)

× {λ1λ2[1− P0(λ2|λ1)][1 − P1(λ2|λ2)] + λ1λ2[1− P0(λ1|λ2)][1− P1(λ1|λ1)]}−1.

The expression (4) implies special cases 2 and 3; see below.

Special case 2: λ1[1− P0(λ2|λ1)]− λ2[1− P0(λ1|λ2)] = 0, an elementary flow with a parame-
ter z1. From (2) it follows that z1 = λ1[1− P0(λ2|λ1)], γ = 1; p(τ) = z1e

−z1τ , τ � 0.

Special case 3: π1(0)λ1[1− P1(λ1|λ1)]− π2(0)λ2[1− P1(λ2|λ2)] = 0, an elementary flow with
a parameter z1. From (2) it follows that z1 = λ2[P1(λ2|λ1) + P1(λ2|λ2)P0(λ2|λ1)], γ = 1; p(τ) =
z1e

−z1τ , τ � 0.

The problem is to find an explicit analytical form of the numerical characteristics of this QS:

(a) the probability of idle time of the server,

(b) the mean queue length,

(c) the expected number of requests in the system.

Let i(t) be the number of requests in the queue at an arbitrary time instant t (i(t) = 0, 1, . . .).
Since the incoming MAP flow is correlated, the random process i(t) is not Markovian. To con-
struct a Markov process, it is necessary to consider the state of the incoming MAP flow. For this
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purpose, we introduce an additional variable j(t), i.e., the state of the incoming MAP flow (the
state of the accompanying process λ(t) at an arbitrary time instant t), j(t) = 1, 2. If j(t) = 1, then
λ(t) = λ1; if j(t) = 2, then λ(t) = λ2, which ensures the Markov property of the two-dimensional
process (i(t), j(t)).

Remark 2. Because the intensity of the server in the state Sj is μj (μj > 0), j = 1, 2, the com-
ponent j(t) of the two-dimensional Markov process (i(t), j(t)) must be observable in the same way
as the component i(t) is. Then the accompanying process λ(t), generally unobservable, must be
treated as an observable process that controls the change of states in the MAP request flow.

Since the stationary operation mode is considered, the system state will be denoted by (i, j),
i = 0, 1, . . . , j = 1, 2. There are two more possible states, (−1, 1) and (−1, 2); in these states, the
system receives no requests (the queue length is zero and the server is idle).

Under the prerequisites above, the mathematical model of the QS under study can be represented
as a connected stochastic graph [18]; see Fig. 1. Here, the vertices reflect the states of the QS; each
arc corresponds to infinitesimal characteristics (state transition intensities), without loops in each
state; each vertex (each state) is reachable and recurrent.

3. DERIVATION OF NUMERICAL CHARACTERISTICS OF THE SYSTEM

We denote by P (i, 1) and P (i, 2) the stationary (final) probabilities of the system states (i =
−1, 0, . . .). The stochastic graph cutsets Gi1 = {(i− 1, 1; i, 1), (i, 1; i − 1, 1), (i, 1; i + 1, 1),
(i+ 1, 1; i, 1), (i, 1; i, 2), (i, 2; i, 1), (i − 1, 2; i, 1), (i, 1; i + 1, 2)}, Gi2 = {(i − 1, 2; i, 2), (i, 2; i − 1, 2),
(i, 2; i + 1, 2), (i + 1, 2; i, 2), (i, 2; i, 1), (i, 1; i, 2), (i − 1, 1; i, 2), (i, 2; i + 1, 1)}, i = 0, 1, . . . , satisfy
the following infinite system of difference equations with constant coefficients:

μ1P (i+ 1, 1) − (λ1 + μ1)P (i, 1) + λ1P1(λ1|λ1)P (i− 1, 1)

+ λ2P0(λ1|λ2)P (i, 2) + λ2P1(λ1|λ2)P (i− 1, 2) = 0,

μ2P (i+ 1, 2) − (λ2 + μ2)P (i, 2) + λ2P1(λ2|λ2)P (i− 1, 2)

+ λ1P0(λ2|λ1)P (i, 1) + λ1P1(λ2|λ1)P (i− 1, 1) = 0, i = 0, 1, . . . .

(5)

The solution of system (5) is found in the form P (i, 1) = ξi, P (i, 2) = Cξi (i = 0, 1, . . .). The
characteristic equation for (5) is

(ξ − 1)
{
μ1μ2ξ

3 − [λ1μ2 + μ1(λ2 + μ2)]ξ
2

+ [λ1λ2 + λ1μ2P1(λ1|λ1) + λ2μ1P1(λ2|λ2)− λ1λ2P0(λ1|λ2)P0(λ2|λ1)]ξ

− λ1λ2[P (λ1|λ1)P1(λ2|λ2)− P1(λ1|λ2)P1(λ2|λ1)]
}
= 0.

(6)

Consider conditions for the existence of the stationary operation mode of the QS (the existence
of the probabilities P (i, 1) and P (i, 2), i = −1, 0, . . .). The random variable τ , the duration of the
time interval between sequential events in the MAP request flow, has the expectation

E(τ ) =

∞∫
0

τp(τ)dτ, (7)

where the density p(τ) is given by (2). Substituting this function into (7) yields E(τ ) =
[γz2 + (1− γ)z1]/z1z2. Then the expected number of requests in the incoming correlated MAP flow
per unit time can be written as λ = 1/E(τ ) = λ1[1− P0(λ2|λ1)]π1 + λ2[1− P0(λ1|λ2)]π2, which
coincides with (1). On the other hand, the expected number of requests served per unit time is
μ = μ1π1 + μ2π2.
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Consider a situation where λ = μ, or (μ1−λ1[1−P0(λ2|λ1)])π1+(μ2−λ2[1−P0(λ1|λ2)])π2 = 0.
Hence, this expression vanishes only if μ1 = λ1[1− P0(λ2|λ1)], μ2 = λ2[1− P0(λ1|λ2)]. Substituting
these formulas for μ1 and μ2 into (6), we obtain the characteristic equation

λ1λ2(ξ − 1)2
{
[1− P0(λ1|λ2)][1− P0(λ2|λ1)]ξ

2 − [2− P0(λ1|λ2)− P0(λ2|λ1)]ξ

+ [P1(λ1|λ1)P1(λ2|λ2)− P1(λ1|λ2)P1(λ2|λ1)]
}
= 0.

(8)

Since Eq. (8) has multiple roots, the general solution of system (5) with μ1 = λ1[1− P0(λ2|λ1)]
and μ2 = λ2[1− P0(λ1|λ2)] takes the form

P (i, 1) = D1ξ
i
1 +D2iξ

i
2 +D3ξ

i
3 +D4ξ

i
4,

P (i, 2) = B1D1ξ
i
1 +B2D2iξ

i
2 +B3D3ξ

i
3 +B4D4ξ

i
4, i = 0, 1, . . . .

(9)

In (9), Ps(i, 1) = Dsξ
i
s and Ps(i, 2) = BsDsξ

i
s, s = 1, 4, are partial solutions of system (5); their

constants Bs and Ds are determined from the boundary conditions, ξ1 = ξ2 = 1, and

ξ3,4 =

{
[2− P0(λ1|λ2)− P0(λ2|λ1)]

∓
(
[2− P0(λ1|λ2)− P0(λ2|λ1)]

2 − 4[1− P0(λ1|λ2)][1− P0(λ2|λ1)]b
) 1

2

}
×
{
2[1− P0(λ1|λ2)][1− P0(λ2|λ1)]

}−1
,

b = P1(λ1|λ1)P1(λ2|λ2)− P1(λ1|λ2)P1(λ2|λ1).

(10)

Here, three cases are possible: b > 0, b < 0, and b = 0.

The case b > 0. From (10) it follows that 0 < ξ3 < 1 < ξ4. Since P (i, 1) and P (i, 2) are proba-
bilities, they must satisfy the normalization condition

∞∑
i=−1

P (i, 1) +
∞∑

i=−1

P (i, 2) = 1.

A necessary condition for this equality is the limit relations limP (i, 1) = 0 and limP (i, 2) = 0 as

i → ∞. Otherwise, the series
∞∑

i=−1
P (i, 1) and

∞∑
i=−1

P (i, 2) will diverge. In view of the aforesaid, the

general solution (9) with D1 = D2 = D4 = 0 takes the form

P (i, 1) = D3ξ
i
3, P (i, 2) = B3D3ξ

i
3, i = 0, 1, . . . . (11)

We find the constant B3. Substituting (11) into the first equation of system (5) with μ1 =
λ1[1− P0(λ2|λ1)] and μ2 = λ2[1− P0(λ1|λ2)] gives B3 < 0 after nontrivial transformations.
Then (11) implies D3 < 0. The inequality D3 < 0 leads to a contradiction: P (i, 1) < 0, i � 0;
P (i, 2) > 0, i � 0. Letting D3 = 0 yields P (i, 1) = P (i, 2) = 0, i � 0; in other words, the contradic-
tion is eliminated. Therefore, the final distribution P (i, 1), P (i, 2), i � 0, does not exist for λ = μ
and, a fortiori, for λ > μ.

We analyze the situation λ < μ. Due to (6), the general solution of system (5) takes the form

P (i, 1) = A1ξ
i
1 +A2ξ

i
2 +A3ξ

i
3 +A4ξ

i
4,

P (i, 2) = C1A1ξ
i
1 + C2A2ξ

i
2 +C3A3ξ

i
3 + C4A4ξ

i
4, i = 0, 1, . . . ,

(12)
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where Ps(i, 1) = Asξ
i
s and Ps(i, 2) = CsAsξ

i
s are partial solutions of system (5); their constants

Cs and As, s = 1, 4, are determined from the boundary conditions; ξ4 = 1, ξ1, ξ2, and ξ3 are the
roots of the cubic equation in (6), positive real numbers: 0 < ξ1 < ξ2 < 1 < ξ3. In addition, the limit
relations limP (i, 1) = limP (i, 2) = 0 as i → ∞ hold (a necessary condition). Hence, A3 = A4 = 0,
and the general solution of (12) takes the form

P (i, 1) = A1ξ
i
1 +A2ξ

i
2,

P (i, 2) = C1A1ξ
i
1 +C2A2ξ

i
2, i = 0, 1, . . . .

(13)

Substituting the partial solution Ps(i, 1) = Asξ
i
s, Ps(i, 2) = CsAsξ

i
s, i = 0, 1, . . . , into the first

equation of system (5), first for s = 1 and then for s = 2, we obtain the constants

Cs = −μ1ξ
2
s − (λ1 + μ1)ξs + λ1P1(λ1|λ1)

λ2[P0(λ1|λ2)ξs + P1(λ1|λ2)]
, s = 1, 2. (14)

The values Ai, i = 1, 2, and the probabilities P (−1, 1) and P (−1, 2) are found using the boundary
equations and the normalization condition. The stochastic graph cutsets

G−1,1 = {(−1, 1; 0, 1), (0, 1;−1, 1), (−1, 1; 0, 2), (−1, 1;−1, 2), (−1, 2;−1, 1)},
G−1,2 = {(−1, 2; 0, 2), (0, 2;−1, 2), (−1, 2; 0, 1), (−1, 2;−1, 1), (−1, 1;−1, 2)},

G = {(i, 1; i + 1, 2), (i, 1; i, 2), (i, 2; i + 1, 1), (i, 2; i, 1), i = −1, 0, 1, . . .}
determine the corresponding boundary equations:

μ1P (0, 1) − λ1P (−1, 1) + λ2P0(λ1|λ2)P (−1, 2) = 0,

μ2P (0, 2) − λ2P (−1, 2) + λ1P0(λ2|λ1)P (−1, 1) = 0,

λ1[1− P1(λ1|λ1)]
∞∑

i=−1

P (i, 1) − λ2[1− P1(λ2|λ2)]
∞∑

i=−1

P (i, 2) = 0.

(15)

Supplementing (15) with the normalization condition

P (−1, 1) + P (−1, 2) +
∞∑
i=0

[P (i, 1) + P (i, 2)] = 1,

in view of (13), we arrive at the system of equations for the unknowns Ai, i = 1, 2, P (−1, 1), and
P (−1, 2). Solving (15) yields

P (−1, 1) = a11A1 + a12A2, P (−1, 2) = a21A1 + a22A2,

A1 = (1− ξ1)
π1[C2 + a22(1− ξ2)]− π2[1 + a12(1− ξ2)]

[1 + a11(1− ξ1)][C2 + a22(1− ξ2)]− [1 + a12(1− ξ2)][C1 + a21(1− ξ1)]
,

A2 = −(1− ξ2)
π1[C1 + a21(1− ξ1)]− π2[1 + a11(1− ξ1)]

[1 + a11(1− ξ1)][C2 + a22(1− ξ2)]− [1 + a12(1− ξ2)][C1 + a21(1− ξ1)]
,

a11 =
μ1 + μ2P0(λ1|λ2)C1

λ1[1− P0(λ1|λ2)P0(λ2|λ1)]
, a12 =

μ1 + μ2P0(λ1|λ2)C2

λ1[1− P0(λ1|λ2)P0(λ2|λ1)]
,

a21 =
μ2C1 + μ1P0(λ2|λ1)

λ2[1− P0(λ1|λ2)P0(λ2|λ1)]
, a22 =

μ2C2 + μ1P0(λ2|λ1)

λ2[1− P0(λ1|λ2)P0(λ2|λ1)]
.

(16)

The values C1 and C2 are given by (14); the probabilities π1 and π2, by (1). The values ξ1 and ξ2
are the roots of the cubic equation in (6) (0 < ξ1 < ξ2 < 1).
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Table 1. The probability of idle time P (−1) depending on λ1 for b > 0

P1(λ1|λ2)
λ1 2 4 6 8 10 11

1/4 0.780 0.718 0.680 0.651 0.627 0.616

1/6 0.787 0.728 0.693 0.667 0.645 0.636

1/8 0.790 0.734 0.700 0.675 0.654 0.645

1/10 0.792 0.737 0.704 0.679 0.659 0.651

1/12 0.794 0.739 0.706 0.682 0.663 0.655

1/13 0.794 0.739 0.707 0.684 0.664 0.656

Table 2. The mean queue length E(I) depending on λ1 for b > 0

P1(λ1|λ2)
λ1 2 4 6 8 10 11

1/4 0.052 0.097 0.145 0.196 0.249 0.276

1/6 0.047 0.085 0.125 0.167 0.209 0.231

1/8 0.045 0.080 0.116 0.153 0.191 0.210

1/10 0.043 0.076 0.110 0.145 0.180 0.198

1/12 0.042 0.074 0.106 0.140 0.173 0.190

1/13 0.042 0.073 0.105 0.138 0.171 0.187

Table 3. The expected number of requests E(I + 1) in the system depending on λ1 for b > 0

P1(λ1|λ2)
λ1 2 4 6 8 10 11

1/4 0.272 0.379 0.465 0.545 0.622 0.659

1/6 0.260 0.357 0.432 0.500 0.564 0.595

1/8 0.254 0.346 0.416 0.478 0.537 0.565

1/10 0.251 0.340 0.406 0.466 0.521 0.547

1/12 0.249 0.335 0.400 0.457 0.510 0.536

1/13 0.248 0.334 0.398 0.454 0.506 0.531

Formulas (13) and (16) allow deriving explicit expressions for the numerical characteristics of
the system: P (−1) (the probability of idle time of the server), E(I) (the mean queue length), and
E(I + 1) (the expected number of requests in the system), where I is the random queue length in
the QS. They are:

P (−1) = (a11 + a21)A1 + (a12 + a22)A2,

E(I) = A1(1 + C1)
ξ1

(1 − ξ1)2
+A2(1 + C2)

ξ2
(1 − ξ2)2

,

E(I + 1) =
A1(1 + C1)

(1− ξ1)2
+

A2(1 + C2)

(1− ξ2)2
,

(17)

where C1 and C2 are given by (14); A1, A2, a11, a21, a12, and a22, by (16). The values ξ1 and ξ2
are the roots of the cubic equation in (6) (0 < ξ1 < ξ2 < 1).

The initial data for calculating the numerical characteristics (17), see the tables below, are
chosen to assess the degree of their correspondence to the physical understanding of the service
process in the QS.

Tables 1–3 present the characteristics P (−1), E(I), and E(I + 1) (17) depending on the parame-
ter λ1 (λ1 = 2, 4, . . . , 10, 11) under the fixed parameter values λ2 = 1, μ1 = 12, μ2 = 2; P1(λ1|λ1) =
P1(λ2|λ1) = P0(λ2|λ1) = P1(λ2|λ2) =

1
3 for b > 0 and P1(λ1|λ2) =

1
4 (P0(λ1|λ2) =

5
12 ); P1(λ1|λ2) =

1
6
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Fig. 2. The probability of idle time P (−1) depending on λ1 for b > 0.
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Fig. 3. The mean queue length E(I) depending on λ1 for b > 0.

P1(�1 | �2) = 1/4 P1(�1 | �2) = 1/6 P1(�1 | �2) = 1/8

P1(�1 | �2) = 1/10 P1(�1 | �2) = 1/13
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Fig. 4. The expected number of requests E(I + 1) in the system depending on λ1 for b > 0

(P0(λ1|λ2) =
1
2); P1(λ1|λ2) =

1
8 (P0(λ1|λ2) =

13
24 ); P1(λ1|λ2) =

1
10 (P0(λ1|λ2) =

17
30); P1(λ1|λ2) =

1
12

(P0(λ1|λ2) =
7
12); P1(λ1|λ2) =

1
13 (P0(λ1|λ2) =

23
39 ).

The behavior of these characteristics depending on the parameter λ1 for b > 0 matches the
physical understanding of the service process in the single-server QS with an incoming correlated
MAP request flow.

Figures 2–4 show the graphs of the numerical characteristics (17) plotted on the numerical values
of Tables 1–3, respectively.

The case b < 0. First of all, we investigate the existence of the stationary mode, i.e., the
situation λ = μ. Then it follows from (10) that ξ3 < 0 and ξ4 > 1; similar to the case b > 0, the
general solution of the system takes the form (11). Since ξ3 < 0, this fact entails the negative
probability P (i, 1) for i = 1, 3, . . . , (an obvious contradiction to its definition). This contradiction
is eliminated by letting D3 = 0: P (i, 1) = P (i, 2) = 0, i � 0. Therefore, in the case b < 0, the final
distribution P (i, 1), P (i, 2), i � 0, does not exist for λ = μ and, a fortiori, for λ > μ.

Now we study the situation λ < μ. Due to (6), the general solution of system (5) takes the
form (12). In the case b < 0, we have ξ4 = 1, ξ1, ξ2, and ξ3 are the real roots of the cubic equation
in (6): ξ1 < 0, 0 < ξ2 < 1 < ξ3. Hence, it follows that A1 = A3 = A4 = 0 in (12), and the general
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Table 4. The probability of idle time P (−1) depending on λ1 for b < 0

P1(λ2|λ2)
λ1 2 4 6 8 10 11

1/4 0.796 0.729 0.687 0.654 0.627 0.615
1/6 0.815 0.748 0.705 0.672 0.645 0.633

1/8 0.824 0.757 0.714 0.681 0.654 0.642

1/10 0.830 0.762 0.719 0.686 0.659 0.647

1/12 0.833 0.765 0.722 0.690 0.662 0.650

1/13 0.834 0.767 0.724 0.691 0.664 0.652

Table 5. The mean queue length E(I) depending on λ1 for b < 0

P1(λ2|λ2)
λ1 2 4 6 8 10 11

1/4 0.044 0.091 0.143 0.200 0.260 0.291

1/6 0.035 0.077 0.124 0.177 0.232 0.261

1/8 0.031 0.071 0.116 0.166 0.220 0.248

1/10 0.029 0.067 0.112 0.161 0.213 0.241

1/12 0.027 0.065 0.109 0.157 0.209 0.236

1/13 0.027 0.064 0.108 0.156 0.207 0.234

Table 6. The expected number of requests E(I + 1) in the system depending on λ1 for b < 0

P1(λ2|λ2)
λ1 2 4 6 8 10 11

1/4 0.249 0.362 0.457 0.546 0.633 0.675

1/6 0.219 0.329 0.419 0.504 0.587 0.528

1/8 0.206 0.314 0.402 0.485 0.566 0.606

1/10 0.199 0.305 0.392 0.474 0.554 0.594

1/12 0.194 0.300 0.386 0.467 0.547 0.586

1/13 0.193 0.298 0.384 0.465 0.544 0.583

solution of (12) is written as

P (i, 1) = A2ξ
i
2, P (i, 2) = C2A2ξ

i
2, i = 0, 1, . . . . (18)

In (18), the constant C2 is given by (14) for s = 2. The constant A2 and the probabilities P (−1, 1)
and P (−1, 2) are determined using Eqs. (15) and the normalization condition. As a result,

P (−1, 1) = a12A2; P (−1, 2) = a22A2;

A2 =
1− ξ2

1 + C2 + (a12 + a22)(1− ξ2)
,

(19)

where C2 is given by (14) for s = 2; a12 and a22, by (16). The value ξ2 is the root of the cubic
equation in (6) (0 < ξ2 < 1).

Formulas (18) and (19) allow deriving the system characteristics:

P (−1) = (a12 + a22)A2;

E(I) = A2ξ2
1 + C2

(1− ξ2)2
, E(I + 1) =

(1 + C2)A2

(1− ξ2)2
,

(20)

where C2 is given by (14) for s = 2; a12 and a22, by (16); A2, by (19). The value ξ2 is the root of
the cubic equation in (6) (0 < ξ2 < 1).
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Fig. 5. The probability of idle time P (−1) depending on λ1 for b < 0.
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Fig. 6. The mean queue length E(I) depending on λ1 for b < 0.

P1(�2 | �2) = 1/4 P1(�2 | �2) = 1/6 P1(�2 | �2) = 1/8

P1(�2 | �2) = 1/10 P1(�2 | �2) = 1/13
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0.58
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Fig. 7. The expected number of requests E(I + 1) in the system depending on λ1 for b < 0.

Tables 4–6 present the characteristics P (−1), E(I), and E(I + 1) (20) depending on the param-
eter λ1 (λ1 = 2, 4, . . . , 10, 11) for the fixed parameter values λ2 = 1, μ1 = 12, μ2 = 2; P1(λ1|λ1) =
P1(λ2|λ1) = P0(λ2|λ1) = P1(λ1|λ2) =

1
3 for b < 0 and P1(λ2|λ2) =

1
4 (P0(λ1|λ2) =

5
12 ); P1(λ2|λ2) =

1
6

(P0(λ1|λ2) =
1
2); P1(λ2|λ2) =

1
8 (P0(λ1|λ2) =

13
24); P1(λ2|λ2) =

1
10 (P0(λ1|λ2) =

17
30); P1(λ2|λ2) =

1
12

(P0(λ1|λ2) =
7
12); P1(λ2|λ2) =

1
13 (P0(λ1|λ2) =

23
39 ).

Figures 5–7 show the graphs of the numerical characteristics (20) plotted on the numerical values
of Tables 4–6, respectively.

The behavior of these characteristics depending on the parameter λ1 for b < 0 also matches the
physical understanding of the service process in the single-server QS with an incoming correlated
MAP request flow.

4. A SPECIAL CASE: A RECURRENT MAP REQUEST FLOW

In this special case, we have b = 0, which implies the recurrence of the MAP request flow; see (3).
Consider conditions for the existence of the stationary probabilities P (i, 1) and P (i, 2), i � 0. In the
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Table 7. The probability of idle time P (−1) depending on λ1 for b = 0

P1(λ1|λ1)
λ1 2 4 6 8 10 11

1/4 0.831 0.781 0.750 0.726 0.707 0.698

1/6 0.888 0.854 0.833 0.818 0.805 0.799

1/8 0.916 0.891 0.875 0.863 0.854 0.850

1/10 0.933 0.913 0.900 0.891 0.883 0.880

1/12 0.944 0.927 0.917 0.909 0.902 0.900

1/13 0.949 0.933 0.923 0.916 0.910 0.907

Table 8. The mean queue length E(I) depending on λ1 for b = 0

P1(λ1|λ1)
λ1 2 4 6 8 10 11

1/4 0.030 0.056 0.083 0.111 0.139 0.152

1/6 0.013 0.023 0.033 0.043 0.053 0.058

1/8 0.007 0.012 0.018 0.023 0.028 0.030

1/10 0.004 0.008 0.011 0.014 0.017 0.019

1/12 0.003 0.005 0.008 0.010 0.0129 0.013

1/13 0.002 0.005 0.006 0.008 0.010 0.011

Table 9. The expected number of requests E(I + 1) in the system depending on λ1 for b = 0

P1(λ1|λ1)
λ1 2 4 6 8 10 11

1/4 0.199 0.275 0.333 0.385 0.432 0.454

1/6 0.124 0.169 0.200 0.226 0.248 0.259

1/8 0.091 0.122 0.143 0.160 0.174 0.181

1/10 0.071 0.095 0.111 0.124 0.134 0.139

1/12 0.059 0.078 0.091 0.101 0.109 0.113

1/13 0.054 0.072 0.083 0.092 0.100 0.103

situation λ = μ, the characteristic Eq. (8) takes the form

λ1λ2(ξ − 1)2ξ
{
[1− P0(λ2|λ1)][1 − P0(λ1|λ2)]ξ − [2− P0(λ1|λ2)− P0(λ2|λ1)]

}
= 0, (21)

and the general solution of system (5) is (9). The characteristic Eq. (21) has the roots

ξ1 = ξ2 = 1, ξ3 = 0, ξ4 =
1

1− P0(λ1|λ2)
+

1

1− P0(λ2|λ1)
> 1. (22)

In view of (22), letting D1 = D2 = D4 = 0 in the general solution (9) yields P (i, 1) = P (i, 2) = 0,
i � 0. Therefore, in the case b = 0, the final distribution P (i, 1), P (i, 2), i � 0, does not exist for
λ = μ and, a fortiori, for λ > μ.

We analyze the situation λ < μ. In the case b = 0, the characteristic Eq. (6) is written as

ξ(ξ − 1)
{
μ1μ2ξ

2 − [λ1μ2 + μ1(λ2 + μ2)]ξ

+ [λ1λ2 + λ1μ2P1(λ1|λ1) + λ2μ1P1(λ2|λ2)− λ1λ2P0(λ1|λ2)P0(λ2|λ1)]
}
= 0.

(23)
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Fig. 8. The probability of idle time P (−1) depending on λ1 for b = 0.
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Fig. 9. The mean queue length E(I) depending on λ1 for b = 0.
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Fig. 10. The expected number of requests E(I + 1) in the system depending on λ1 for b = 0.

The characteristic Eq. (23) has the roots ξ3 = 0, ξ4 = 1, and

ξ1,2 =

{
(λ1μ2 + λ2μ1 + μ1μ2)∓

[
(λ1μ2 + λ2μ1 + μ1μ2)

2

− 4μ1μ2

(
λ1λ2 + λ1μ2P1(λ1|λ1) + λ2μ1P1(λ2|λ2)− λ1λ2P0(λ1|λ2)P0(λ2|λ1)

)] 1
2

}
/2μ1μ2,

(24)

0 < ξ1 < 1 < ξ2. Due to (23) and (24), the general solution (12) of system (5) takes the form

P (i, 1) = A1ξ
i
1, P (i, 2) = C1A1ξ

i
1, i = 0, 1, . . . . (25)

In (25), the constant C1 is given by (14) for s = 1. The constant A1 and the probabilities P (−1, 1)
and P (−1, 2) are determined using Eqs. (15) and the normalization condition. As a result,

P (−1, 1) = a11A1; P (−1, 2) = a21A1;

A1 =
1− ξ1

1 + C1 + (a11 + a21)(1− ξ1)
,

(26)

where C1 is given by (14) for s = 1; a21 and a11, by (16); ξ1, by (24).
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Formulas (25) and (26) allow deriving the system characteristics:

P (−1) = (a21 + a11)A1;

E(I) = A1ξ1
1 + C1

(1− ξ1)2
, E(I + 1) =

(1 + C1)A1

(1− ξ1)2
,

(27)

where C1 is given by (14) for s = 1; a21 and a11, by (16); A1, by (26); ξ1, by (24).

Tables 7–9 present the characteristics P (−1), E(I), and E(I +1) (27) depending on the param-
eter λ1 (λ1 = 2, 4, . . . , 10, 11) for the fixed parameter values λ2 = 1, μ1 = 12, μ2 = 2 for b = 0 and
(P1(λi|λi) = P1(λj |λi) =

1
4 ; P0(λ1|λ2) = P0 (λ2|λ1) =

1
2); (P1 (λi|λi) = P1 (λj |λi) =

1
6 ; P0 (λ1|λ2) =

P0 (λ2|λ1) =
2
3 ); (P1(λi|λi) =P1(λj |λi) =

1
8 ; P0(λ1|λ2) =P0(λ2|λ1) =

3
4 ); (P1(λi|λi) =P1(λj|λi) =

1
10 ;

P0(λ1|λ2) = P0(λ2|λ1) =
4
5); (P1(λi|λi) = P1(λj |λi) =

1
12 ; P0(λ1|λ2) = P0(λ2|λ1) =

5
6 ); (P1(λi|λi) =

P1(λj |λi) =
1
13 ; P0(λ1|λ2) = P0(λ2|λ1) =

11
13 ); i, j = 1, 2 (i �= j).

As in the cases b > 0 and b < 0, the behavior of these characteristics depending on the parame-
ter λ1 for b = 0 matches the physical understanding of the service process in the single-server QS
with an incoming correlated MAP request flow.

Figures 8–10 show the graphs of the numerical characteristics (27) plotted on the numerical
values of Tables 7–9, respectively.

5. CONCLUSIONS

The paper has considered a single-server QS with an incoming correlated MAP request flow
with two states. The analysis problems formulated in Section 2 have been completely solved for
this queueing system.

Let us summarize the results and present the final formulas.

The case b > 0. The stationary probabilities P (i, 1) and P (i, 2), i = 0, 1, . . . , are given by
P (i, 1) = A1ξ

i
1 +A2ξ

i
2 and P (i, 2) = C1A1ξ

i
1 + C2A2ξ

i
2, respectively, where: the constants Cs,

s = 1, 2, are calculated using (14); ξ1 and ξ2 (0 < ξ1 < ξ2 < 1) are the roots of the cubic Eq. (6); the
probabilities P (−1, 1) and P (−1, 2) as well as the constants A1 and A2 are calculated using (16).
The numerical characteristics P (−1), E(I), and E(I + 1) are given by (17).

The case b < 0. The stationary probabilities P (i, 1) and P (i, 2), i = 0, 1, . . . , are given by
P (i, 1) = A2ξ

i
2 and P (i, 2) = C2A2ξ

i
2, respectively, where: the constant C2 is calculated using (14)

for s = 2; ξ2 (0 < ξ2 < 1) is the root of the cubic Eq. (6); the probabilities P (−1, 1) and P (−1, 2)
as well as the constant A2 are calculated using (19). The numerical characteristics P (−1), E(I),
and E(I + 1) are given by (20).

The case b = 0. The stationary probabilities P (i, 1) and P (i, 2), i = 0, 1, . . . , are given by
P (i, 1) = A1ξ

i
1 and P (i, 2) = C1A1ξ

i
1, respectively, where: the constant C1 is calculated using (14)

for s = 1; ξ1 (0 < ξ1 < 1) is the root (24) of the characteristic Eq. (23); the probabilities P (−1, 1)
and P (−1, 2) as well as the constant A1 are calculated using (26). The numerical characteristics
P (−1), E(I), and E(I + 1) are given by (27).

Formulas (17), (20), and (27) have been derived by introducing an additional variable and using
the method of transition intensity diagrams (the method of stochastic graph cutsets) [8]. The case
b = 0 degenerates the incoming correlated MAP request flow into a recurrent one.

The analytical formulas (17), (20), and (27) serve to calculate the numerical characteristics of
an MAP request flow with given parameters without involving numerical methods. The graphs
of the numerical characteristics presented above match the physical understanding of the service
process in this QS.
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