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Abstract—In this paper, a heating process control law with steam supply is designed for a fluid
in a heat exchanger. The process is described by a linear hyperbolic equation of the first order
with a nonlocal boundary condition with a time-delayed argument. The temperature of the
supplied steam is found as a linear dependence on fluid temperature values at measurement
points in the heat exchanger. Explicit formulas are obtained for the gradient of the objective
functional of the control problem in the space of the feedback coefficients (parameters) of this
dependence. A numerical scheme is developed for determining the feedback parameters based
on these formulas. Finally, an algorithm is proposed for determining the rational (optimal)
number of measurement points.
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1. INTRODUCTION

In this paper, an optimal heating process control law is designed for a fluid in a tubular heat
exchanger described by a hyperbolic equation [1]. The fluid is heated by supplying steam to the heat
exchanger and the steam temperature is the control action. The heated fluid circulates in a closed
heating system. Hence, there exists a cyclic boundary condition relating fluid temperature values
when leaving the heat exchanger and returning to it after passing through the heating system. The
circulation time of the fluid in the heating system is given and is determined by fluid velocity and
the length of the pipeline network.

The goal of control is to maintain a required value of fluid temperature at the heat exchanger
outlet. In the problem under consideration, the temperature of the steam supplied to the heat
exchanger is found as a linear dependence on the fluid temperature values measured at separate
points of the tubular heat exchanger. In other words, a linear dependence on the measured temper-
ature values is used for the designed control law. The linear dependence coefficients (the feedback
parameters to be designed) are obtained by minimizing an objective functional that determines
the deviation of the desired fluid temperature at the heat exchanger outlet from the mathematical
model-based value under given feedback parameters. A similar problem was considered in [1] and
later in [2–5].
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OPTIMIZING THE PLACEMENT AND NUMBER OF MEASUREMENT POINTS 727

In contrast to the problem statements presented previously, besides determining the values of
control parameters, we introduce an approach to optimizing the placement of temperature mea-
surement points for the fluid in the tubular heat exchanger. Moreover, we investigate an efficient
(in some sense, optimal) number of temperature measurement points.

The process control design approach described below reduces the original hyperbolic differential
equation to a loaded differential equation in which the loading points are the optimized locations
of the measurement points. Such loaded problems were examined in [6, 7], and numerical methods
for their solution were proposed in [8, 9].

Generally speaking, control design problems for distributed parameter systems described by
partial differential equations [1, 10] are underinvestigated compared to those described by ordinary
differential equations [11]. First of all, the reasons are the complexity of building adequate mathe-
matical models and their parametric identification. This is due to missed or insufficiently accurate
operational information about the current state of the processes. The lack of effective numerical
methods and computational tools for solving initial boundary-value problems and reliable remote
control equipment is of no small importance.

In recent years, interest in these problems has increased significantly [12–18] following the grow-
ing capabilities of computing and measuring devices as well as the development of numerical meth-
ods of computational mathematics, optimization, and optimal control.

Relatively few authors have proposed solutions to regulation and optimal control problems for
systems with lumped or distributed parameters and feedback, in contrast to control problems
without feedback; for example, see [19–24]. The history and current state of research on control
design problems were rather comprehensively analyzed in [11].

The approach presented below differs from the known optimal feedback control methods mainly
as follows: the original problem is reduced to an optimal parametric control problem of a relative
loaded differential equation. In this case, the parameters to be optimized are the feedback param-
eters, and the loading points are the measurement points (the locations where the current state of
the process is observed). In particular, this approach was applied in our earlier studies [4, 16, 17] to
design control laws within other problem statements (with different types of differential equations,
boundary conditions, and objective functionals).

As an illustrative example, the control design method and the feedback parameter formulas are
applied to a test problem. Numerical experiments are carried out and their results are discussed.

2. PROBLEM STATEMENT

Consider an optimal heating process control problem for a fluid in a tubular heat exchanger. The
fluid then enters a heating system. Heating is carried out by supplying hot steam with a controlled
temperature into the heat exchanger; see Fig. 1. According to [1], the fluid heating process in a
tubular heat exchanger of a given length L can be described by a linear hyperbolic differential

T(0, t)

T(�f, t) T(�N, t)

T(L, t)q(t)

Fig. 1. The block diagram of a heating system.
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transfer equation of the form

∂T (x, t)

∂t
+ ϑ

∂T (x, t)

∂x
= λ [q(t)− T (x, t)] , x ∈ (0, L), t ∈ [0, tf ], (2.1)

with the following notations: T (x, t) is a continuous and almost everywhere differentiable function
that determines the fluid temperature at a point x ∈ (0, L) at a time instant t ∈ [0, tf ]; tf is the
duration of the heating process; ϑ is the steady-state fluid velocity, a constant value at all points;
q(t), t ∈ [0, tf ], is a piecewise continuous control function (law) that determines the temperature of
steam supplied to the heat exchanger; finally, λ is a given coefficient of heat exchange between the
fluid in the heat exchanger and the steam supplied to it.

The temperature of the steam supplied must satisfy the technological conditions

q � q(t) � q̄, t ∈ [0, tf ]. (2.2)

Let the fluid heated in the heat exchanger return from the heating system back to the exchanger
in a given time τ. This time is determined by the length l of the pipeline network under the
assumption that l >> L, i.e., τ = (l + L) /ϑ. (In other words, the pipeline network is much longer
than the tubular heat exchanger.) The flowing fluid cools down due to heat exchange with the
heating medium, and the range of possible temperature losses is known. As a result, the fluid
temperature at the heat exchanger inlet and outlet satisfies the condition

T (0, t) = (1− γ)T (L, t− τ), t ∈ [0, tf ], (2.3)

γ ∈ Γ = [1− δ, 1] . (2.4)

The value δ > 0 determining the range of temperature losses of the fluid passing through the
heated medium is given.

In addition, the distribution of the values γ on the set Γ has a known density ρΓ(γ) such that

ρΓ(γ) � 0,

∫
Γ

ρΓ(γ)dγ = 1.

The fluid temperature before the heating process is constant over time and over the length of
the heat exchanger. It has the following range of possible values:

T (x, t) = ϕ = const ∈ Φ = [Φ0, Φ̄
0], x ∈ [0, L], t � 0, (2.5)

where Φ0 and Φ̄0 are given. Also, the distribution density ρT(ϕ) is known and

ρΦ(ϕ) � 0,

∫
Φ

ρΦ(ϕ) dϕ = 1.

The heating process control problem for the fluid in the heat exchanger is to find an appropriate
control function q(t) (the temperature of the steam supplied to the exchanger) that minimizes the
objective functional

J (q) =

∫
Φ

∫
Γ

tf∫
tb

[T (L, t; q, ϕ, γ)− V ]2ρΓ (γ) ρΦ (ϕ) dt dγ dϕ+ ε‖q (t)− q̃(t) ‖2
L2[0,tf ]

. (2.6)

Here, T (L, t; q, ϕ, γ) is the temperature at the heat exchanger outlet x = L obtained by solving the
initial boundary-value problem (2.1), (2.3), and (2.5) under given values of the steam temperature
q = q(t), t ∈ [0, tf ], the initial fluid temperature ϕ, and the heat loss coefficient γ0.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 6 2023



OPTIMIZING THE PLACEMENT AND NUMBER OF MEASUREMENT POINTS 729

Note that the objective functional (2.6) assesses the quality of the control function q(t), t ∈ [0, tf ],
with a bundle of trajectories T (x, t; q, ϕ, γ) for ϕ ∈ Φ and γ ∈ Γ. Thus, the control problem is to
determine the control law q(t) for which this bundle maximizes the objective functional. In other
words, we seek the control function that is optimal on average over the sets of possible initial
conditions Φ and heat loss coefficients Γ.

The given value V is the desired fluid temperature at the heat exchanger outlet under all possible
values of the initial temperature ϕ ∈ Φ and the heat loss coefficient γ ∈ Γ. It must be maintained
on the time interval [tb, tf ]. The given value tb, 0 � tb � tf , determines the time instant after which
the fluid temperature at the heat exchanger outlet must be in the neighborhood of the desired
temperature V ; ε and q̃(t) are given regularization parameters.

The objective functional (2.6) assesses the behavior of the controlled heating process on average
over all possible values of the initial fluid temperature ϕ ∈ Φ and heat loss coefficient γ ∈ Γ. This
functional assesses the quality of control with the bundle of state-space trajectories defined by the
value sets of the initial conditions Φ and heat loss coefficients.

Suppose that the current temperature values are measured at the points μi ∈ [0, L], i = 1, . . . , N,
of the tubular heat exchanger: in continuous time, i.e.,

Ti(t) = T (μi, t), t ∈ [0, tf ], i = 1, . . . , N, (2.7)

or at given discrete instants tj = jΔt, j = 1, . . . ,M , Δt = tf/M, i.e.,

Tij = T (μi, tj), i = 1, . . . , N, j = 1, . . . ,M. (2.8)

Generally, the measurement points μi, i = 1, . . . , N , μ = (μ1, μ2, . . . , μN ), and their number can be
the optimized parameters. Note that they must satisfy the obvious constraints

0 � μi � L, i = 1, . . . , N. (2.9)

In the continuous-time case (2.7), the current temperature values for the supplied steam are assigned
using the linear feedback law (dependence)

q(t;P) =
N∑
i=1

αi [T (μi, t)− T nom
i ] =

N∑
i=1

[αiT (μi, t)− βi], t ∈ [0, tf ], (2.10)

where

βi = αiT
nom
i , i = 1, . . . , N ;

P = (μ1, α1, β1, . . . , μN , αN , βN ) = (μ, α, β) ∈ R
3N .

The feedback parameter vector P determines the current temperature value of the steam supplied
to the heat exchanger, thereby determining the operation of the entire heating process. By analogy
with control design in lumped parameter systems, the coefficients αi, i = 1, . . . , N , will be called
gains.

The optimized parameters T nom
i , i = 1, . . . , N , determine the nominal temperature values that

must be maintained at the measurement points μi, i = 1, . . . , N , during heating.

In the case of discrete-time measurements (2.8), we use the following piecewise constant depen-
dence for the temperature of steam supplied to the heat exchanger:

q(t;P) =
N∑
i=1

[αiTij − βi], t ∈ [tj−1, tj), j = 1, . . . ,M. (2.11)
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The parameters αi, βi, i = 1, . . . , N, have the same meaning as above. Substituting the control
function (2.6) into Eq. (2.1) gives the loaded differential equation

∂T (x, t)

∂t
+ ϑ

∂T (x, t)

∂x
= λ

⎡⎣ N∑
i=1

αiT (μi, t)− βi

⎤⎦, x ∈ (0, L), t ∈ [0, tf ], (2.12)

where loading points are temperature measurement points; for details, see [6, 8].

Substituting the dependence (2.10) into (2.1), we arrive at the differential equation

∂T (x, t)

∂t
+ ϑ

∂T (x, t)

∂x
= λ

[
N∑
i=1

αiT (μi, tj−1)− βi

]
,

x ∈ (0, L), t ∈ [tj−1, tj], j = 1, . . . ,M,

(2.13)

with the natural condition

T (x, tj + 0) = T (x, tj) , x ∈ [0, L], j = 1, . . . ,M − 1. (2.14)

It expresses the continuous heating process at measurement instants.

For continuous (2.7) and discrete (2.8) measurements, the objective functional (2.6) of control
performance takes the form

J (P) =

∫
Φ

∫
Γ

tf∫
tb

[T (L, t;P, ϕ, γ) − V ] 2ρΓ (γ) ρΦ (ϕ) dt dγ dϕ+ ε
∥∥∥P− P̃

∥∥∥
R3N

. (2.15)

Here, ε and P̃ are the regularization parameters, and T (x, t;P, ϕ, γ) is the solution of the initial
boundary-value problem in the case of continuous measurements (2.7) or the solution of prob-
lem (2.13), (2.3), and (2.5) in the case of discrete measurements (2.9) under given values of the
feedback parameters P, the initial temperature ϕ ∈ Φ, and the temperature loss coefficient γ ∈ Γ.

By assumption, fluid temperature values in the tubular heat exchanger under all possible initial
temperatures (2.5) and temperature loss coefficients γ ∈ Γ belong to a known range:

T � T (x, t) � T , x ∈ (0, L), t ∈ (0, tf ). (2.16)

Obviously, condition (2.16) must hold for all measured values:

T � T (μi, t) � T , x ∈ (0, L), t ∈ (0, tf ), i = 1, . . . , N.

In other words, the N -dimensional vector

�

T (t) = (T (μ1, t), . . . , T (μN , t)), t ∈ (0, tf ),

belongs to the N -dimensional cube
�

T
s
= (

�

T
s

1, . . . ,
�

T
s

N ), s = 1, . . . , 2N , with the vertices T or T̄ , i.e.,

�

T
s

j = T ∧ T , x ∈ (0, L), j = 1, . . . , N, s = 1, . . . , 2N .

In view of the dependence (2.9), the control conditions (2.2) lead to the following constraints on
the feedback parameters:

q �

⎡⎣ N∑
i=1

αiT − βi

⎤⎦ � q̄, q �

⎡⎣ N∑
i=1

αiT − βi

⎤⎦ � q (2.17)

(in both the continuous and discrete cases).

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 6 2023



OPTIMIZING THE PLACEMENT AND NUMBER OF MEASUREMENT POINTS 731

Thus, the original steam temperature control problem with the continuous feedback law (2.7)
for heating the fluid and optimizing the placement of measurement points has been reduced to the
parametric optimal control problem (2.12), (2.3), (2.5), (2.9), (2.16), and (2.17). In the case of the
discrete feedback law (2.8), Eq. (2.12) must be replaced with Eq. (2.13). The optimized feedback
parameter vector P consists of 3N elements, and the linear constraints (2.9) and (2.17) are imposed
on them.

According to the aforesaid, the resulting problem has the following peculiarities: the differential
Eq. (2.1) is loaded, and the objective functional (2.6) assesses the behavior of a bundle of trajectories
under given feedback parameters. Despite the convexity of the objective functional in the control
variable q(t) in the original problem (2.1)–(2.6), the objective functional (2.15) is nonconvex in
the parameters P for both the continuous and discrete feedback laws. (This property follows from
the differential Eqs. (2.12) and (2.13).) Note also the small dimension of the feedback parameter
vector, equal to 3N . In real applications, N does not exceed 5–8, and consequently, the number of
constant feedback parameters does not exceed 20–30. The numerical solution of such parametric
optimal control problems causes no particular difficulties: real-time calculations are not required.

3. NECESSARY OPTIMALITY CONDITIONS
FOR FEEDBACK PARAMETERS

To investigate differentiability and obtain first-order necessary optimality conditions, we prove
the following result using the well-known estimation method for the increment of functionals.

Theorem 1. Consider the solution of the initial boundary-value problem (2.12), (2.3), and (2.5)
with the continuous feedback law (2.7). The objective functional (2.15) on this solution is differen-
tiable with respect to the parameters μi, αi, and βi, i = 1, . . . , N, and the components of its gradient
have the form

gradμi
J(P) =

∫
Φ

⎡⎢⎣ ∫
Γ

⎧⎪⎨⎪⎩−λαi

tf∫
0

⎛⎝ L∫
0

ψ(x, t;P, ϕ, γ)dx

⎞⎠ Tx(μi, t;P, ϕ, γ)dt

+ 2σ(μi − μ̃i)

⎫⎪⎬⎪⎭ ρΓ(γ)dγ

⎤⎥⎦ ρΦ(ϕ) dϕ,

(3.1)

gradαi
J(P) =

∫
Φ

⎡⎢⎣ ∫
Γ

⎧⎪⎨⎪⎩−λ

tf∫
0

(T (μi, t;P, ϕ, γ) − βi)

⎛⎝ L∫
0

ψ(x, t;P, ϕ, γ)dx

⎞⎠dt

+ 2σ(αi − α̃i)

⎫⎪⎬⎪⎭ ρΓ(γ)dγ

⎤⎥⎦ ρΦ(ϕ) dϕ,

(3.2)

gradβi
J(P) =

∫
Φ

⎡⎣ ∫
Γ

⎧⎨⎩λαi

L∫
0

ψ(x, t;P, ϕ, γ)dx + 2σ(βi − β̃i)

⎫⎬⎭ ρΓ(γ)dγ

⎤⎦ ρΦ(ϕ)dϕ, (3.3)

where i = 1, . . . , N .
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Under the given feedback parameters P, initial temperature, and heat loss coefficient ϕ, the
function ψ(x, t;P, ϕ, γ) is the solution of the adjoint boundary-value problem

ψt(x, t) + ϑψx(x, t) = λψ(x, t), (x, t) ∈ Ω, (3.4)

ψ(x, tf ) = 0, x ∈ [0, L], (3.5)

ψ(L, t) = − 2

ϑ
(T (L, t)− V ), t ∈ (tf − τ, tf ], (3.6)

ψ(L, t) = −λ

ϑ
(1− γ)ψ(0, t + τ)− 2

a
(T (L, t)− V ), t ∈ (tb, tf − τ ], (3.7)

ψ(L, t) = −λ

ϑ
(1− γ)ψ(0, t + τ), t ∈ (0, tb], (3.8)

with the conditions

ψ(μ−
i , t) = ψ(μ+

i , t) +
λ

ϑ
αi

L∫
0

ψ(x, t)dx, i = 1, 2, . . . , N, (3.9)

for t ∈ [0, tf ] at the points μi, i = 1, 2, . . . , N, and the conditions

ψ(x, t−b ) = ψ(x, t+b ), x ∈ [0, L], (3.10)

at the time instant tb.

Theorem 2. Consider the solution of the initial boundary-value problem (2.13), (2.3), and (2.5)
with the discrete feedback law (2.8). The objective functional (2.15) on this solution is differentiable
with respect to the feedback parameters and the components of its gradient have the form

gradμi
J(P) =

∫
Φ

⎡⎢⎣∫
Γ

⎧⎪⎨⎪⎩−λαi

M∑
j=1

tj∫
tj−1

⎛⎝ L∫
0

ψ(x, t;P, ϕ, γ)dx

⎞⎠ Tx(μi, t;P, ϕ, γ) dt

+ 2σ(μi − μ̃i)

⎫⎪⎬⎪⎭ ρΓ(γ)dγ

⎤⎥⎦ ρΦ(ϕ) dϕ, tj−1 � t � tj,

(3.11)

gradαi
J(P) =

∫
Φ

⎡⎢⎣∫
Γ

⎧⎪⎨⎪⎩−λ
M∑
j=1

tj∫
tj−1

(T (μi, t;P, ϕ, γ) − βi)

⎛⎝ L∫
0

ψ(x, t;P, ϕ, γ)dx

⎞⎠ dt

+ 2σ(αi − α̃i)

⎫⎬⎭ ρΓ(γ)dγ

⎤⎦ ρΦ(ϕ)dϕ, tj−1 � t � tj,

(3.12)

gradβi
J(P) =

∫
Φ

⎡⎣ ∫
Γ

⎧⎨⎩λμi

L∫
0

ψ(x, t;P, ϕ, γ)dx + 2σ(βi − β̃)i

⎫⎬⎭ ρΓ(γ)dγ

⎤⎦ ρΦ(ϕ)dϕ, (3.13)

where i = 1, . . . , N .
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Under the given values P, ϕ, and γ, the function ψ(x, t;P, ϕ, γ) is the solution of the initial
boundary-value problem

ψt(x, t) + ϑψx(x, t) = λψ(x, t), tj−1 � t � tj, j = 1, . . . ,M, (3.14)

ψ(x, tf ) = 0, x ∈ [0, L], (3.15)

ψ(L, t) = − 2

ϑ
(T (L, t)− V ), t ∈ (tM − τ, tM ], (3.16)

ψ(L, t) = −λ

ϑ
(1− γ)ψ(0, t + τ)− 2

a
(T (L, t)− V ), t ∈ (tb, tM − τ ], (3.17)

ψ(L, t) = −λ

ϑ
(1− γ)ψ(0, t + τ), t ∈ (0, tk], (3.18)

with the conditions

ψ(μ−
i , t) = ψ(μ+

i , t) +
λ

ϑ
αi

L∫
0

ψ(x, t)dx, i = 1, 2, . . . , N, (3.19)

for tj−1 � t � tj , j = 1, . . . ,M, at the points μi, i = 1, 2, . . . , N, and the conditions

ψ(x, t−j ) = ψ(x, t+j ) +
λ

ϑ

N∑
i=1

αiδ(x− μi)

tj∫
tj−1

μi+1∫
μi

ψ(x, t) dx dt, x ∈ [0, L], j = 1, 2, . . . ,M, (3.20)

at the time instants tj , j = 1, . . . ,M.

Now we present necessary optimality conditions in the variational form [25] with respect to the
feedback parameters in both cases (continuous and discrete measurements). As has been mentioned
in Section 2, these conditions consider the nonconvexity of the objective functional (2.15).

Theorem 3. Assume that the 3N -dimensional feedback parameter vector P∗ = (μ∗, α∗, β∗) sat-
isfying conditions (2.9), (2.16), and (2.17) locally minimizes the objective functional (2.15). Then
the inequalities 〈

∂J(P∗)
∂μ

, μ∗−μ

〉
� 0,〈

∂J(P∗)
∂α

, α∗−α

〉
� 0,〈

∂J(P∗)
∂β

, β∗−β

〉
� 0

hold for an arbitrary vector P = (μ, α, β) ∈ R3N satisfying conditions (2.9), (2.16), and (2.17).
Here, 〈 , 〉 stands for the scalar product in the N -dimensional space.

4. A NUMERICAL SOLUTION SCHEME FOR THE DESIGN PROBLEM

According to the previous sections, the optimal values of both continuous (2.7) and discrete (2.8)
feedback parameters can be determined by solving parametric optimal control problems. For this
purpose, we employ first-order optimization methods [25, 26]. In view of the linear constraints (2.16)
and (2.17) on the optimized parameters and the explicit formulas for the gradients of the objective
functionals (Theorems 1 and 2), it is efficient to choose the gradient projection method

P
γ+1 = Pr[Pγ − ηγgrad J(P

γ)]. (4.1)
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734 ABDULLAYEV

Here, Pr[.] denotes the projection operator on the constraints (2.16) and (2.17). Due to their lin-
earity, it has a constructive character [24, 25]. The step ηγ can be found using any one-dimensional
optimization method:

ηγ = argmin
η�0

J(Pγ − η grad J(Pγ)).

Conditions (2.3) for the initial boundary-value problem, as well as conditions (3.7) for the adjoint
one, have a delay. Therefore, the well-known method of steps with the natural step τ [27] can be
applied. In this method, the time interval [0, tf ] is partitioned into subintervals of length τ : [ts, ts+1],
τ = ts+1 − ts, s = 1, . . . ,m, m = [tf/τ ], t0 = 0, tm = tf . (The symbol [a] means the integer part of
a number a; if tf/τ is not an integer, then tm = [tf/τ ] + 1.) The initial boundary-value problem is
sequentially solved from s = 0 to s = m, whereas the adjoint one (3.4)–(3.9) is solved backwards,
from s = m to s = 0. In this case, the boundary conditions of the corresponding boundary-value
problem on each subinterval contain no delay.

Another peculiarity of the problem is the loaded differential Eq. (2.12). Such loaded problems
for different types of differential equations were investigated in [6, 8]. Their numerical solution
methods [8] involve grids and a special representation for the resulting reduced finite-difference
boundary-value problems. This approach can be easily applied to the problems under consideration.

The algorithms proposed in [25, 26] were used to regularize the problem, particularly to select
the regularization parameters ε and P̃ in the objective functional (2.15).

The initial boundary-value problems were solved using the implicit grid method scheme and the
grid steps hx in x and ht in time were selected through numerical experiments.

5. OPTIMIZING THE NUMBER OF MEASUREMENT POINTS

In some cases, the number of measurement points for the controlled process can be not fixed.
Then it is necessary to optimize their number and locations. Therefore, we consider the following
approach to select an optimal number of measurement points. Obviously, the optimal number of
measurement points must satisfy, to some extent, the minimality condition.

We denote by J∗
N = J∗(PN ;N) the minimum value of the objective functional in problem (2.3),

(2.4)–(2.15) given N measurement points and by PN the optimal values of the designed feedback
control parameters. It is clear that J∗

N = J∗(PN ;N) is nonincreasing as a complex function of the
variable N. In other words,

J∗(P∗; ·) � J∗(PN1 ;N1) � J∗(PN2 ;N2), N2 < N1. (5.1)

Here, J∗
N = J∗(PN ;N) is the optimal value of the objective functional in the original problem

(2.1)–(2.6) given N measurement points; J∗ = J∗(P∗; ·) is the optimal value of the objective func-
tional in the problem with the feedback distributed along the entire rod, which corresponds to
measurements at almost all points of the rod, i.e.,

J∗(P∗; · ) = lim
N→∞

J∗(PN ;N).

Due to (5.1), as the number of measurement points increases, the optimal values of the objective
functional can only decrease and approach J∗ infinitely close (Fig. 2). Consequently, for an arbitrary
number δ > 0, it is possible to determine a number Nδ of measurement points such that

J∗(PN ;N) � J∗ + δ for N > Nδ.

In some problems, there may exist a finite number N∗ such that

J∗(PN ;N) = J∗ for N > N∗.
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N0 N*
J*

JN*

Fig. 2. The optimal value of the objective functional depending on the number of measurement points.

We select an optimal number of measurement points as a minimum value N∗ under which one
of the following inequalities holds for the first time:

ΔJ∗(PN∗
;N∗) =

∣∣∣J∗(PN∗+1;N∗ + 1)− J∗(PN∗
;N∗)

∣∣∣ � δ,

ΔJ∗(PN∗
;N∗)

/
J∗(PN∗

;N∗) � δ.
(5.2)

Here, δ is a given positive value determined by the required accuracy of optimizing the number of
measurement points.

Assume that the optimal heating control parameters for the rod with a given number N of
measurement points have been obtained as described above. The number N can be reduced if in
the optimal vector μN , two neighbor measurement points satisfy the inequality

|μN
j+1 − μN

j | � δ1, j = 1, 2, . . . , N − 1, (5.3)

with a given sufficiently small value δ1 > 0. Under condition (3.2), one of the two neighbor measure-
ment points can be eliminated. (In this case, the total number of measurement points is decreased
by 1.) Obviously, reducing the number of measurement points improves the reliability of the control
system as well as cuts the related system costs (design and maintenance).

6. THE RESULTS OF NUMERICAL EXPERIMENTS

Now we present the results of numerical experiments for the original problem (2.1)–(2.6).

The problem was solved under the following initial data: L = 1, ϑ = 1, λ = 0.1, τ = 0.2, tf = 5,
V = 70, Φ = [0, 0.2], q = 55, q̄ = 75, ᾱ1 = ᾱ2 = 8, α1 = α2 = 1, β̄1 = β̄2 = 75, and β

1
= β

2
= 57.

The distribution density ρΓ(γ) was set uniform on [0, 0.2], and the integral over Γ was approximated
using the method of rectangles with a step of 0.05.

Note that the values αi, ᾱi, i = 1, 2, were selected using the results of test calculations under
the technological condition (2.2) with the given values q and q̄.

The numerical experiments were carried out under different initial parameter values (P0)j =
= (α0

1, α
0
2, β

0
1 , β

0
2 , μ

0
1, μ

0
2)

j , j = 1, 2, . . . , 5, used for the iterative optimization procedure (4.1).
Table 1 shows these values and the corresponding values of the objective functional at these points.

Table 1. The initial values of the optimized parameters μ, α, and β
and the corresponding values of the objective functional

no. μ0
1 μ0

2 α0
1 α0

2 β0
1 β0

2 J(P0)

1 0.1 0.8 4 6 61 63 363.210004

2 0.2 0.9 3 5 65 60 357.150011

3 0.4 0.8 1 8 62 63 257.310003

4 0.5 0.7 5 2 63 66 165.150016

5 0.2 0.7 6 4 66 62 205.190007
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Table 2. The resulting values of the optimized parameters and objective functional

no. μ
(6)
1 μ

(6)
2 α

(6)
1 α

(6)
2 β

(6)
1 β

(6)
2 J(P(6))

1 0.2994 0.5994 5.9956 3.9952 66.9945 68.9949 0.3422

2 0.3000 0.6000 5.9977 3.9983 66.9978 68.9954 0.3259

3 0.2971 0.5971 5.9962 3.9988 66.9951 68.9948 0.3538

4 0.3000 0.6000 5.9978 3.9971 66.9991 68.9975 0.3145

5 0.3000 0.6000 5.9991 3.9961 66.9964 68.9973 0.3062

Table 3. The problem solutions under different numbers of measurement points

no. (μ0); (α0); (β0) J(P0) (μ∗); (α∗); (β∗) J(P∗)

3
(0.1; 0.4; 0.7);

(3; 4; 8);
(61; 65; 67)

336.46
(0.300; 0.600; 0.899);
(5.002; 4.201; 4.002);

(66.998; 67.998; 68.998)

0.3456

4
(0.1; 0.5; 0.7; 0.8);

(1; 4; 8; 2);
(60; 63; 66; 67)

323.64
(0.150; 0.300; 0.600; 0.849);
(5.001; 4.102; 4.006; 3.999);

(66.996; 67.999; 68.001; 68.999)

0.3549

5
(0.1; 0.2; 0.5; 0.7; 0.8);

(3; 5; 7; 8; 3);
(61; 63; 64; 66; 67)

368.54
(0.250; 0.300; 0.610; 0.800; 0.896);
(5.101; 4.126; 4.106; 4.012; 3.9982);

(66.987; 67.979; 68.201; 68.571; 68.989)

0.3436

6
(0.1; 0.2; 0.5; 0.6; 0.7; 0.8);

(3; 5; 6; 7; 8; 3);
(58; 61; 64; 65; 66; 68)

408.37
(0.208; 0.305; 0.481; 0.605; 0.805; 0.900);
(5.003; 4.086; 4.015; 4.013; 3.906; 3.999);

(66.997; 67.999; 68.121; 68.571; 68.989; 68.999)

0.3234

7
(0.1; 0.2; 0.3; 0.5; 0.6; 0.7; 0.8);

(3; 4; 5; 6; 7; 8; 3);
(58; 60; 63; 64; 66; 67; 70)

217.23

(0.198; 0.303; 0.307; 0.491; 0.62; 0.791; 0.901);
(0.162; 0.202; 0.198; 0.51; 0.303; 0.363; 0.371);
(5.003; 4.086; 4.015; 4.013; 3.906; 3.912; 3.998);

(66.998; 68.003; 68.323; 68.772; 68.979;
69.002; 69.012)

0.3023

Table 4. The values of the objective functional and the relative deviations from the desired temperature
at the heat exchanger outlet under different noise levels

χ = 0.00 χ = 0.01 χ = 0.03 χ = 0.05

max
t∈[0,1]

|T (L.t)− V |/|V | 0.021941 0.033052 0.038311 0.064574

J∗(P∗) 0.3023 0.3543 0.3762 0.3916

Next, Table 2 combines the values of the parameters (P(6))j = (μ
(6)
1 , μ

(6)
2 , α

(6)
1 , α

(6)
2 , β

(6)
1 , β

(6)
2 )j

and the objective functional J(P6)j obtained at the sixth iteration of the gradient projection
method from the initial points (P0)j , j = 1, 2, . . . , 5 (Table 1).

According to Table 3, for N = 6 and N = 7, the minimum values of the objective functionals
satisfy condition (5.2); for N = 7, the optimal values of the second and third components of the
vector μ satisfy condition (5.3) with δ = δ1 = 0.01. Hence, the optimal number of measurement
points is N∗ = 6.

In the numerical experiments, the exact measurements T (μ1, t), T (μ2, t) (the process states
observed at the measurement points) were corrupted by random noises:

T (μi, t) = T (μi, t) (1 + χ(2θi − 1)) , i = 1, 2,

where θi is a random variable with the uniform distribution on [0, 1] and χ specifies the noise level.
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Table 4 presents the resulting values of the objective functional and the relative deviations from
the desired temperature at the heat exchanger outlet under the noise levels χ = 0 (no noises), 0.01,
0.03, and 0.05 (0%, 1%, 3%, and 5%, respectively).

According to Table 4, the feedback heating process control law for the fluid in the heat exchanger
is stable to measurement errors.

7. CONCLUSIONS

This paper has investigated the temperature control design problem for steam supplied to a
heat exchanger to heat a fluid in a closed heating system. The problem is described by a linear
hyperbolic equation of the first order, and the boundary conditions incorporate a delay due to the
circulation time of the fluid in the system.

The temperature of steam supplied to the heat exchanger has been assigned depending on the
current temperature values at the measurement points. The original control design problem has
been reduced to a parametric optimal control problem with respect to the loaded differential equa-
tion. The finite-dimensional feedback parameter vector, consisting of the coefficients of the above
dependence, has been optimized. Optimality conditions have been established for the feedback
parameters. They contain explicit formulas for the gradient of an objective functional. A test
problem has been solved using these formulas, and the results of numerical experiments have been
presented.

The proposed approach can be applied to design control laws for other distributed parameter
systems.
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APPENDIX

Proof of Theorem 1. Explicit formulas expressing the increment of the objective functional through
the increments of its optimized arguments can be obtained using the well-known method [25].
The linear part of the increment of the functional in each argument is the required component of
its gradient with respect to the corresponding argument.

First of all, note the following. The initial fluid temperature ϕ ⊂ Φ and the heat loss coefficient
γ ∈ Γ are mutually independent and do not depend on the heating process in the heat exchanger.
Hence, from (2.11) and (2.12) it follows that

grad J(P) = grad

∫
Φ

∫
Γ

I(P;ϕ, γ)ρΓ(γ)ρΦ(ϕ)dγdϕ

=

∫
Φ

∫
Γ

grad I(P;ϕ, γ)ρΓ(γ)ρΦ(ϕ)dγdϕ,

(A.1)

where

I(P;ϕ, γ) =

tf∫
tb

[T (L, t;P, ϕ, γ) − V ] 2dt+ ε‖P− P̃‖R3N .
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Therefore, the formula for grad I(P;ϕ, γ) will be derived under arbitrary admissible feedback
parameters P, heat loss coefficient γ ∈ Γ, and initial condition T (x, t) = ϕ, t � 0.

Let T (x, t;P, ϕ, γ) be the solution of the loaded initial boundary-value problem (2.12), (2.3),
and (2.5) under arbitrarily chosen optimized parameter vector P = (μ, α, β)′, initial condition
ϕ ∈ Φ, and heat loss coefficient γ ∈ Γ. For brevity, whenever no confusion occurs, the parame-
ters P, ϕ, γ of the solution T (x, t;P, ϕ, γ) will be omitted.

Consider an admissible increment ΔP = (Δμ,Δα,Δβ)′ of the parameters P = (μ, α, β)′ and
let T̃ (x, t) = T̃ (x, t; P̃, ϕ, γ) = T (x, t) + ΔT (x, t) be the solution of problem (2.12), (2.3), and (2.5)
that corresponds to the incremental argument vector P̃ = P+ΔP.

Substituting the function T̃ (x, t) into conditions (2.12), (2.3), and (2.5) gives the initial boun-
dary-value problem

ΔTt(x, t) + ϑΔTx(x, t) = λ
N∑
i=1

[
αiΔT (μi, t) + αiTx(μi, t)Δμi

+ (T (μi, t)− βi)Δαi − αiΔβi
]
− λΔT (x, t), (x, t) ∈ Ω,

(A.2)

ΔT (x, 0) = 0, x ∈ [0, l], (A.3)

ΔT (0, t) =

⎧⎨⎩0, t � τ,

(1− γ)ΔT (L, t− τ), t � τ,
(A.4)

where the accuracy is within the terms of the first order of smallness with respect to the increment
ΔT (x, t) of the state variable. Formula (A.2) involves the relation

T (μi +Δμi, t) = T (μi, t) + Tx(μi, t)Δμi + o(|Δμi|).

The increment of the functional (2.12) can be easily represented as

ΔI(P;ϕ, γ) = I(P̃;ϕ, γ) − I(P;ϕ, γ) = I(P+ΔP;ϕ, γ) − I(P;ϕ, γ)

= 2

tf∫
tb

[T (L, t ;P, ϕ, γ) − V ] ΔT (L, t)dt+ 2σ
3N∑
i=1

(Pi − P̃i)ΔPi,

3N∑
i=1

(Pi − P̃i)ΔPi =
3N∑
i=1

[
(μi − μ̃i)Δμi + (αi − α̃i)Δαi + (βi − β̃i)Δβi

]
.

Let ψ(x, t;P, ϕ, γ) be an arbitrary (so far) function that is continuous everywhere in Ω except
the points x = μi, i = 1, 2, . . . , N , differentiable with respect to x for x ∈ (μi, μi+1), i = 0, 1, . . . , N ,
μ0 = 0, μN+1 = L, and differentiable with respect to t for t ∈ (0, T ). The arguments P, ϕ, and γ
of the function ψ(x, t;P, ϕ, γ) indicate its possible change when varying the feedback parameter vec-
tor P, the initial temperature ϕ, and the heat loss coefficient γ. Whenever possible, P, ϕ, and γ will
be omitted for the function ψ(x, t;P, ϕ, γ). Under the accepted assumptions and conditions (A.3)
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and (A.4), integrating Eq. (A.2) with the factor ψ(x, t) along the rectangle Ω gives

tf∫
0

L∫
0

ψ(x, t)ΔTt(x, t)dxdt + ϑ
N∑
i=0

μi+1∫
μi

tf∫
0

ψ(x, t)ΔTx(x, t)dtdx

−λ

tf∫
0

L∫
0

ψ(x, t)
N∑
i=1

[
αiΔT (μi, t) + αiTx(μi, t)Δμi

+(T (μi, t)− βi)Δαi − αiΔβi
]
dx dt+ λ

tf∫
0

L∫
0

ψ(x, t)ΔT (x, t)dx dt = 0.

(A.5)

In view of (A.3)–(A.5), we integrate by parts the first and second terms in (A.5) separately to
get

tf∫
0

L∫
0

ψ(x, t)ΔTt(x, t) dx dt =

L∫
0

ψ(x, tf )ΔT (x, tf )dx

+

L∫
0

[
ψ(x, t−b )− ψ(x, t+b )

]
ΔT (x, tb) dx−

tf∫
0

L∫
0

ψt(x, t)ΔT (x, t) dx dt,

(A.6)

ϑ
N∑
i=0

μi+1∫
μi

tf∫
0

ψ(x, t)ΔTx(x, t)dtdx = ϑ

tf∫
0

[ψ(l, t)ΔT (L, t) − ψ(0, t)ΔT (0, t)] dt

+ ϑ
N∑
i=1

tf∫
0

[
ψ(μ−

i , t)− ψ(μ+
i , t)

]
ΔT (μi, t) dt− ϑ

tf∫
0

L∫
0

ψx(x, t)ΔT (x, t)dxdt

= ϑ

tf∫
0

ψ(L, t)ΔT (L, t)dt − ϑ(1− γ)

tf∫
τ

ψ(0, t)ΔT (L, t − τ)dt (A.7)

+ a
N∑
i=1

tf∫
0

[
ψ(μ−

i , t)− ψ(μ+
i , t)

]
ΔT (μi, t) dt− ϑ

tf∫
0

L∫
0

ψx(x, t)ΔT (x, t)dxdt

= ϑ

tf∫
0

ψ(L, t)ΔT (L, t)dt− ϑ(1− γ)

tf−τ∫
0

ψ(0, t + τ)ΔT (L, t)dt

+ ϑ
N∑
i=1

tf∫
0

[
ψ(μ−

i , t)− ψ(μ+
i , t)

]
ΔT (μi, t) dt− ϑ

tf∫
0

L∫
0

ψx(x, t)ΔT (x, t)dxdt.

In these formulas,

ψ(μ−
i , t) = ψ(μi − 0, t), ψ(μ+

i , t) = ψ(μi + 0, t).
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Considering (A.5)–(A.7), the increment of the objective functional takes the form

ΔI =

L∫
0

ψ(x, tf )ΔT (x, tf )dx+

tf∫
tf−τ

[ϑψ(L, t) + 2(T (L, t) − V )]ΔT (L, t)dt

+

tf−τ∫
tk

[ϑψ(L, t) + λ(1− γ)ψ(0, t + τ) + 2(T (L, t)− V )]ΔT (L, t)dt

+

tb∫
0

[ϑψ(L, t) + λ(1− γ)ψ(0, t + τ)]ΔT (L, t)dt

+

tf∫
0

L∫
0

[−ψt(x, t)− ϑψx(x, t) + λψ(x, t)]ΔT (x, t)dxdt (A.8)

+ a
N∑
i=1

tf∫
0

⎡⎣ψ(μ−
i , t)− ψ(μ+

i , t)−
λ

ϑ
αi

L∫
0

ψ(x, t)dx

⎤⎦ ΔT (μi, t) dt

− λ

tf∫
0

L∫
0

ψ(x, t)
N∑
i=1

[αiTx(μi, t)Δμi + (T (μi, t)− βi)Δαi − αiΔβi] dx dt

+ 2σ
N∑
i=1

[
(μi − μ̃i)Δξi + (αi − α̃i)Δαi + (βi − β̃i)Δβi

]
.

Since the function ψ(x, t) is arbitrary, let it be the solution of the initial boundary-value prob-
lem (3.5)–(3.9) almost everywhere.

Recall that the components of the gradient of the functional are determined by the linear part
of its increment with respect to the increments of the corresponding arguments. Consequently,

gradμi
I = −λαi

tf∫
0

⎛⎝ L∫
0

ψ(x, t)dx

⎞⎠Tx(μi, t)dt+ 2σ(μi − μ̃i),

i = 1, 2, . . . , N,

(A.9)

gradαi
I = −λ

tb∫
0

(T (μi, t)− βi)

⎛⎝ L∫
0

ψ(x, t)dx

⎞⎠dt+2σ(αi − α̃i),

i = 1, 2, . . . , N,

(A.10)

gradβi
I = λαi

L∫
0

ψ(x, t)dx + 2σ(βi − β̃i), i = 1, 2, . . . , N. (A.11)

The proof of this theorem is complete.

It remains to obtain the adjoint initial boundary-value problem in the form (3.10) equivalent
to (3.5)–(3.9) but without the jump conditions (3.9). Based on the property of the δ-function, the
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third term in (A.5) can be written as

λ

tf∫
0

L∫
0

ψ(x, t)
N∑
i=1

(αiΔT (μi, t) + αiTx(μi, t)Δμi + (T (μi, t)− βi)Δαi − αiΔβi) dxdt

= λ
N∑
i=1

αi

tf∫
0

L∫
0

L∫
0

ψ(ζ, t) δ(ζ − μi)ΔT (ζ, t)dζdxdt

+ λ

tf∫
0

L∫
0

ψ(x, t)
N∑
i=1

(αiTx(μi, t)Δμi + (T (μi, t)− βi)Δαi − αiΔβi)dxdt.

Now we change the order of integration over ζ and x in the first triple integral and swap the
names of these variables to obtain

tf∫
0

L∫
0

L∫
0

ψ(ζ, t) δ(ζ − μi)ΔT (ζ, t)dζdxdt =

tf∫
0

L∫
0

⎛⎝ L∫
0

ψ(ζ, t)dζ

⎞⎠ δ(x − μi)ΔT (x, t)dxdt. (A.12)

In formula (A.5), we regroup the terms and, using (A.12), finally arrive from (3.5) and (3.8) at
the integro-differential Eq. (3.12) for the adjoint problem.
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