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Abstract—Here we study the problems of probabilistic and quantile optimization of multidi-
mensional controllable jump diffusion. As the main tool we use Chebyshev-type probability
estimates. With them the problems under consideration are reduced to one auxiliary determin-
istic optimal control problem in terms of the moment characteristics of the process. To find its
solution, we use Krotov’s global improvement method.
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1. INTRODUCTION

From the applied and theoretical points of view, the following similar problems of probabilistic
optimization are both well known: to maximize the probability of a controllable dynamical object
getting into a certain area of a given size and to minimize the size of the area that this object hits
with a given probability. Quality functionals in such problems are usually called the probability
functional and the quantile criterion, respectively [1]. Problems of this kind are naturally arise
for the objects that operate under the influence of random external perturbations, the dynamics
of which is described by one or another stochastic equation. In this paper, we consider a class
of dynamical objects described by a continuous in time mathematical model of a centered jump
diffusion. As the target area, we take a neighborhood of the expected (zero) terminal state of the
dynamical system. The control is supposed to be a deterministic function of only one argument —
time (open-loop control).

The problems of optimizing probabilistic criteria have numerous applications in economics and
technology. An extensive review of such applications is given in [1], where the authors also discuss
the possibility of using Chebyshev-type deterministic probability estimates as an analytical tool
for studying these problems. Some solving algorithms are specified in [1] for finite-dimensional
static mathematical models. Discrete-time dynamical models and probabilistic criteria optimiza-
tion problems for them studied in [2–4]. In the infinite-dimensional case, there are well known
sufficient conditions for the optimality of feedback control in diffusion stochastic systems with re-
spect to the probability functional [5]. Similar results for controllable jump diffusions are given
in [6]. As for the quantile criterion, some sufficient conditions in the optimization problem were
obtained in [7] for the diffusion type model. These papers also present various numerical schemes
for finding an approximate solution to the indicated problems of optimizing feedback control. The
general necessary conditions for open-loop control optimality (Stochastic Maximum Principle) with
respect to the probability functional for the jump diffusion model are also well known. Subject to
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710 KHRUSTALEV, TSARKOV

the distribution density existence they are given as a special case, for example, in [8]. However,
very few results are known about constructive algorithms for exact or approximate search for an
optimal control functions in such problems. To some extent, these include an approach based
on approximation to the density by partial sums of semi-invariant series [9].

In [10, 11], there are proposed some constructive algorithms for solving the optimal open-loop
control problems for state-linear diffusion and jump diffusion systems with respect to the linear-
quadratic quality functional. Such a functional can be written explicitly in terms of the moment
characteristics of the controllable process. The problems considered here differ in that the quality
functionals do not have such an explicit expression in the general case. In this regard, the solution
to problems in this paper is proposed to be found approximately, in several steps. First, we write
out estimates of the probabilistic quality functionals explicitly using the moment characteristics
of the controllable random process. Further, based on these estimates, we construct an auxiliary
deterministic optimal control problem. The solution to this problem provides an approximation
to the solution to the original problems. Then we use the iterative global improvement method
sugested by V.F. Krotov [12]. At the last step, the result is analyzed using the mentioned estimates.

The solving scheme formulated above mainly determines the structure of the paper. In the next
two sections, the mathematical statement of the problem is formulated and discussed; in the last
two sections, a number of meaningful theoretical and practical examples are studied.

2. STATEMENT OF THE OPTIMIZATION PROBLEMS

Consider a controllable dynamical system

dξ(t) = A(t, u(t))ξ(t)dt +
ν1∑
l=1

(
Bl(t, u(t))ξ(t) + Cl(t, u(t))

)
dwl(t)

+
ν2∑
r=1

Dr(t, u(t))ξ(t
−)dpr(t), ξ(0) = ξ0, (1)

where t ∈ [0;T ] is time; ξ(t) is n-dimensional vector characterizing the state of the system at time t;
ξ0 is a given centered random vector with finite second moment; u(t) is m-dimensional vector of
the control function at time t, where u(t) ∈ U and U is a compact set in R

m, and t �→ u(t) is
a piecewise continuous function (by U we denote the set of all such control functions); wl(·) are
standard Wiener processes; pr(·) are Poisson processes with controllable inhomogeneous jump in-
tensities λr(t, u(t)); the mappings A, Bl, Cl, Dr and λr are given and continuous on [0;T ]× U , and
λr(t, u) � 0 ∀(t, u) ∈ [0;T ]× U ; hereinafter, we use the notation ξ(t−) := lims→t−0 ξ(s), t ∈ (0;T ],
ξ(0−) := ξ0. Initial point ξ0, Wiener processes wl(·) and Poisson processes pr(·) are assumed to be
mutually independent.

We will simultaneously study the following two problems with respect to classical probabilistic
criteria (see [1, Chapter 2]). Let a vector κ ∈ R

n
+ and a number ϕ > 0 be given. Denote by Πϕ the

closed parallelepiped in R
n with sides 2ϕκi, i = 1, n, and center at zero, i.e.,

Πϕ :=
{
x ∈ R

n : |xi| � ϕκi, i = 1, n
}
.

In the first problem, for a given number ϕ > 0, it is required to choose a control u ∈ U so as to
maximize the probability of the random vector ξ(T ) hitting the set Πϕ. In other words, we solve
the problem of probabilistic optimization

Pϕ(u) := P
{
ξ(T ) ∈ Πϕ

} → sup
u ∈ U

. (2)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 6 2023



SEQUENTIAL IMPROVEMENT METHOD 711

In the second problem, for a given number α ∈ (0; 1), it is required to choose u ∈ U so as to minimize
the size ϕ of the parallelepiped Πϕ that the random vector ξ(T ) hits with a probability no less
than α. In other words, we solve the quantile optimization problem

ϕα(u) := inf
{
ϕ > 0 : P {ξ(T ) ∈ Πϕ} � α

} → inf
u ∈ U

. (3)

3. LINEAR STOCHASTIC SYSTEMS OF DIFFUSION TYPE

Suppose first that in (1) Bl = Dr = 0, i.e., the controllable process is given by the linear Itô
equation

dξ(t) = A(t, u(t))ξ(t)dt + C(t, u(t))dw(t), ξ(0) = ξ0,

where C : [0;T ]× U → R
n×ν1, w(·) is ν1-dimensional standard Wiener process, and suppose, in

addition, that the random vector ξ0 has a normal distribution with zero mean and a positive-
definite covariance matrix N0. As known [13, Theorem 11.7], in this case, for any t ∈ [0;T ], the
vector ξ(t) is also normally distributed, has zero mean and positive-definite covariance matrix N(t).
It is important that the known distribution allows us for any fixed control u ∈ U to explicitely
calculate the value of the probability Pϕ(u). To do this, we can use the distribution density of the
vector ξ(T ) [13, p. 300], so we obtain

Pϕ(u) = (2π)−n/2 (det[N(T )])−1/2
∫
Πϕ

exp

{
−1

2
〈y,N(T )−1y〉

}
dy. (4)

This way is very attractive for studying linear stochastic systems of diffusion type, since it allows
one to solve the extremal problem (2) directly, but it is not suitable for the problems of general
form (1)–(3).

4. ESTIMATES OF PROBABILISTIC CRITERIA

Let u ∈ U be a control function. Then (1) has the unique strong solution [14, p. 517] on
the interval [0;T ] with zero expectation and finite second moment. In particular, the covariance
matrix N(T ) of random vector ξ(T ) is well-defined.

Choose some κ ∈ R
n
+. Assume that all diagonal elements of the matrixN(T ) are strictly positive.

Then the following estimate is valid, first obtained by Olkin and Pratt in [15]:

P

{
max

{
|ξi(T )|

κi

√
Nii(T )

, i = 1, n

}
� 1

}
�

(√
η +

√
(nθ − η)(n − 1)

)2
n2

,

where

η =
n∑

i,j=1

Nij(T )

κiκj

√
Nii(T )

√
Njj(T )

, θ =
n∑

i=1

1

κ2
i

.

Let κi = ϕκi/
√
Nii(T ), then

P

{
max

{ |ξi(T )|
κi

, i = 1, n

}
� ϕ

}
�

(√
η +

√
(nθ − η)(n − 1)

)2
n2

,

η =
1

ϕ2

n∑
i,j=1

Nij(T )

κiκj
, θ =

1

ϕ2

n∑
i=1

Nii(T )

κ2i
.
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712 KHRUSTALEV, TSARKOV

Note that the latter formula is also meaningful in the case when some of the diagonal elements
of N(T ) are zero.

From the obtained formula we can derive the following two estimates for the values of Pϕ(u)
and ϕα(u):

Pϕ(u) � P ∗
ϕ(u) :=

n2 − ϕ−2f(u)

n2
, (5)

ϕα(u) � ϕ∗
α(u) := inf

{
ϕ > 0 : ϕ−2f(u) � n2(1− α)

}
= n−1

√
(1− α)−1f(u), (6)

where

f(u) =

(√
tr [QEQN(T )] +

√
tr [QΛQN(T )]

)2

,

Q = diag(κ−1
1 , . . . , κ−1

n ), E =

⎛⎜⎝ 1 . . . 1
...

. . .
...

1 . . . 1

⎞⎟⎠ ,

Λ =

⎛⎜⎜⎜⎜⎜⎝
(n− 1)2 1− n . . . 1− n

1− n (n − 1)2
. . . 1− n

...
...

. . .
...

1− n 1− n . . . (n− 1)2

⎞⎟⎟⎟⎟⎟⎠ .

Consider now two new optimization problems:

P ∗
ϕ(u) = 1− n−2ϕ−1f(u) → sup

u ∈ U
, ϕ∗

α(u) = n−1
√
(1− α)−1f(u) → inf

u ∈ U
.

Thanks to the estimates (5) and (6), by solving them we can get an approximation to the solution
to the original problems (2) and (3). At the same time, as is easy to see, these two problems are
equivalent to one problem

f(u) =

(√
tr [QEQN(T )] +

√
tr [QΛQN(T )]

)2

→ inf
u ∈ U

,

which lacks ϕ and α parameters, i.e., its solution, if it exists, is an approximation to the solution
to problems (2) and (3) for all ϕ > 0 and α ∈ (0; 1) simultaneously. This is our problem for the
further studying. We will discuss one more possible and rather natural approach after the research
procedure has been outlined.

Remark 1. As is known [15, Theorem 3.7], the equality in Olkin–Pratt estimate can only be
reached in the case of distribution of a very special kind, which the random vector ξ(T ) cannot have.
It follows that the values P ∗

ϕ(u) and ϕ∗
α(u) found as a result of studying the problem f(u) → inf may

be too rough estimates of the desired values of P (u) and ϕα(u). However, it should be kept in mind
that the latter does not directly correlate with the quality of the results obtained by the method
proposed below. The idea of this paper is based on the assumption that the exact values of the
functionals to be optimized and their estimates change simultaneously by changing the argument
u ∈ U . This heuristic hypothesis is tested in the Section 9 with various examples.

5. AUXILIARY DETERMINISTIC OPTIMIZATION PROBLEM

For any u ∈ U the covariance matrix function N(t) of the corresponding random process ξ(t)
can be found as the solution to a Cauchy problem for some ordinary matrix differential equation.
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SEQUENTIAL IMPROVEMENT METHOD 713

This equation can be written explicitly, which is done, for example, in [11, 16]. Together with the
initial condition, it has the form

Ṅ(t) = A(t, u(t))N(t) +N(t)A(t, u(t))T (7)

+
ν1∑
l=1

(
Bl(t, u(t))N(t)Bl(t, u(t))

T + Cl(t, u(t))Cl(t, u(t))
T
)

+
ν2∑
r=1

λr(t, u(t))

(
Dr(t, u(t))N(t) +N(t)Dr(t, u(t))

T

+Dr(t, u(t))N(t)Dr(t, u(t))
T
)
,

N(0) = E[ξ0ξ
T
0 ].

Let us complete it with the problem obtained in the previous section:

J(N(T )) = tr [(QEQ+QΛQ)N(T )] + 2
√
tr [QEQN(T )] tr [QΛQN(T )] → inf

u∈U
. (8)

Note that the problem (7)–(8) is deterministic, given with respect to the terminal (and, generally
speaking, non-convex) control quality functional and a dynamical system (7), which is linear in
state N(t). It allows natural vector representation

ẋ(t) = Ã(t, u(t))x(t) + B̃(t, u(t)), x(0) = x0,

J̃(x(T )) = 〈qe + qλ, x(T )〉+ 2
√
〈qe, x(T )〉〈qλ, x(T )〉 → inf

u∈U
,

where the vectors x and x0 are obtained by symmetric vectorization of the matrices N and N0

(symmetric elements outside the main diagonal are included in the components of the corresponding
vector only once), and the vectors qe and qλ are obtained in a similar way from the matrices QEQ
and QΛQ, but the elements outside the main diagonal are doubled, i.e., for example,

qe = ((QEQ)11, 2(QEQ)12, 2(QEQ)13, . . . , (QEQ)22, 2(QEQ)23, . . . , (QEQ)nn) .

The matrix Ã and the vector B̃ are formed according to the Eq. (7).

To solve such a problem, one can apply V.F. Krotov’s global improvement method [12]. In addi-
tion to the iterative procedure, it contains some necessary optimality conditions. Let us start with
their formulation.

6. NECESSARY CONDITIONS FOR OPTIMALITY

For convenience, we rewrite the problem obtained in the previous sections in more standard
notation. Assume that we are considering a controllable dynamical system

ẋ(t) = A(t, u(t))x(t) +B(t, u(t)), x(0) = x0 ∈ Cq ⊂ R
n, (9)

where A : [0;T ]× U → R
n×n and B : [0;T ]× U → R

n are known continuous mappings, state vector
dimension n ∈ {1, 3, 6, . . . , k(k + 1)/2, . . .}, the initial condition x0 belongs to the set Cq, which
is defined in the following way: an element x ∈ Cq iff the numbers 〈q1, x〉 and 〈q2, x〉 are strictly
positive unless |q1||q2| = 0 or q1 = −q2, where q1, q2 ∈ R

n are known vectors. In the case |q1||q2| = 0
we define Cq = {x ∈ R

n : 〈q1 + q2, x〉 > 0}. The case q1 = −q2 is excluded from the consideration.
In accordance with the problem (7)–(8) it is additionally assumed that the mappings A and B
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714 KHRUSTALEV, TSARKOV

are such that for any u ∈ U and for any t ∈ [0;T ] the vector x(t) belongs to the set Cq. The
optimization problem has the form

J(x(T )) = 〈q1 + q2, x(T )〉+ 2
√
〈q1, x(T )〉〈q2, x(T )〉 → inf

u∈U
. (10)

Remark 2. In fact, based on the relations in the problem (7)–(8), the vector x(t) belongs to some
fixed set, which is the image of the set of all possible covariance matrices under the vectorization
mapping described in the previous section. At the same time, the vectors q1 and q2 are by definition
such that the inequalities 〈q1, x〉 > 0, 〈q2, x〉 � 0 hold, and 〈q2, x〉 = 0 ⇔ q2 = 0 ⇔ n = 1. However,
for what follows, it will be convenient to expand the domain of the function (10), and consider the
vectors qi to be arbitrarily chosen (but not opposite directed to each other).

Thus, by construction, for any q1, q2 ∈ R
n, q1 �= −q2, the function J of the form (10) is well-

defined on the set Cq and takes strictly positive values.

Lemma 1. For any q1 �= −q2 the set Cq is a non-empty open convex cone in R
n, and the function

J : Cq → R+ is differentiable and concave on Cq.

Proof of Lemma 1. The properties of the set Cq are obvious by construction. It also follows from
the definitions and Chain Rule Theorem that the function J is differentiable. Finally, we write the
Weierstrass function for J :

E(x, y) = J(x)− J(y)− 〈J ′(y), x− y〉.
Concavity means that ∀x, y ∈ Cq E(x, y) � 0. By direct calculation we find

E(x, y) = −
(√〈q1, x〉〈q2, y〉+

√〈q1, y〉〈q2, x〉
)2√〈q1, y〉〈q2, y〉

,

if both vectors qi are nonzero, and E(x, y) ≡ 0 if one of them is zero. �
Thanks to this statement, the classical linear implementation of the Krotov method [17, 18] can

be applied to the problem (9)–(10). The method is as follows.

Let ACn([0;T ]) denote the space of absolutely continuous n-dimensional vector functions on the
segment [0;T ] and let û ∈ U be some arbitrary control function, x̂ ∈ ACn([0;T ]) be the correspond-
ing (unique) solution to the linear Cauchy problem

ẋ(t) = A(t, û(t))x(t) +B(t, û(t)), x(0) = x0. (11)

Further, let ψ̂ ∈ ACn([0;T ]) be the solution to the Cauchy problem for the adjoint system

ψ̇(t) = −A(t, û(t))Tψ(t), ψ(T ) = −J ′(x̂(T )). (12)

Consider the functions

R̂(t, x, u) = 〈 ˙̂ψ(t), x〉 + 〈ψ̂(t), A(t, u)x +B(t, u)〉, (13)

Ĝ(x) = 〈ψ̂(T ), x〉 − 〈ψ̂(0), x0〉+ J(x). (14)

Here the notations R̂ and Ĝ are related to the fact that these functions are defined by the element
ψ̂ ∈ ACn([0;T ]), i.e., eventually, by an arbitrarily chosen control û ∈ U .

Lemma 2. Let û∈U , x̂∈ACn([0;T ]) be the solution to (11), ψ̂ ∈ACn([0;T ]) be the solution
to (12). Then

R̂(t, x̂(t), û(t)) = min
x ∈ Rn

R̂(t, x, û(t)) ∀̇t ∈ [0;T ], (15)

Ĝ(x̂(T )) = max
x ∈ Cq

Ĝ(x). (16)
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Proof of Lemma 2. Due to (12) we have

R̂(t, x, û(t)) = 〈ψ̂(t), B(t, û(t))〉 ∀̇t ∈ [0;T ],

so the condition (15) is trivially satisfied, while the condition (16) is equivalent to the relation

E(x, x̂(T )) = J(x)− J(x̂(T ))− 〈J ′(x̂(T )), x− x̂(T )〉 � 0 ∀x ∈ Cq,

which is true for all functions concave on Cq. �

Theorem 1. Let û∈U , x̂∈ACn([0;T ]) be the solution to (11), ψ̂ ∈ACn([0;T ]) be the solution
to (12) and π : [0;T ]× R

n → R
m be an arbitrary mapping satisfying the conditions:

1) R̂(t, x, π(t, x)) = max
v ∈ U

R̂(t, x, v) ∀x ∈ Cq ∀̇t ∈ [0;T ];

2) there exists a solution x̃ ∈ ACn([0;T ]) to the nonlinear Cauchy problem

ẋ(t) = A(t, π(t, x(t)))x(t) +B(t, π(t, x(t))), x(0) = x0;

3) there exists ũ ∈ U such that ũ(t) = π(t, x̃(t)) ∀̇t ∈ [0;T ].

Then J(x̃(T )) � J(x̂(T )).

Proof of Theorem 1. By Newton–Leibniz formula and the definitions (13), (14) we have

J(x̃(T )) = Ĝ(x̃(T ))−
T∫
0

R̂(t, x̃(t), ũ(t))dt = Ĝ(x̃(T ))−
T∫
0

R̂(t, x̃(t), π(t, x̃(t)))dt

due to 2) and 3). Then from condition 1) and relations (15), (16)

J(x̃(T )) � Ĝ(x̃(T ))−
T∫
0

R̂(t, x̃(t), û(t))dt � Ĝ(x̂(T ))−
T∫
0

R̂(t, x̂(t), û(t)) = J(x̂(T )). �

Theorem 1 naturally contains necessary optimality conditions for the problem (9)–(10).

Corollary 1. Let û ∈ U be an optimal control in the problem (10), x̂ ∈ ACn([0;T ]) be the solution
to (11), ψ̂ ∈ ACn([0;T ]) be the solution to (12). Then for any mapping π satisfying conditions 1)–3)
of Theorem 1, and for x̃ ∈ ACn([0;T ]) corresponding to π in the sense of these conditions the
equality J(x̃(T )) = J(x̂(T )) holds.

The following simple statement establishes a connection between the obtained result and Max-
imum Principle.

Corollary 2. Let û, x̂, ψ̂ be taken from Theorem 1. If there exists a mapping π for which
conditions 1)–3) hold for some ũ, and ũ(t) = û(t) for almost all t, then û is a Pontryagin extremal
control.

Remark 3. Non-improvability of a control û ∈ U in terms of the value J with any ũ ∈ U con-
structed by Theorem 1, generally speaking, does not mean that the pair (x̂(·), û(·)) satisfies Maxi-
mum Principle [19]. At the same time, the Pontryagin extremal control can turn out to be improv-
able in the same sense [20].

Remark 4. Under some additional assumptions (for example, when the mapping π and the
trajectory x̃ are defined by conditions 1) and 2) of the theorem uniquely), it can be shown that the
non-improvability of a control û implies that the pair (x̂(·), û(·)) satisfies Maximum Principle. We
will not dwell on this issue in detail here.
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716 KHRUSTALEV, TSARKOV

The authors thank the reviewer of this paper for the following useful remark.

Remark 5. Within the framework of the problem (7)–(8) both vectors qi in (10) are nonzero
if and only if n > 1 (see Remark 2). In accordance with the proof of Lemma 1, in this case
the function J is strictly concave on Cq. This implies that the last inequality in the proof of
Theorem 1 will be strict for x̃(T ) �= x̂(T ). Thus, when we study the problem (7)–(8) in the case
n > 1, conditions 1)–3) of Theorem 1 and the additional requirement x̃(T ) �= x̂(T ) guarantees an
improvement of the control û.

7. ITERATIVE GLOBAL IMPROVEMENT METHOD

For applications, the most important corollary of Theorem 1 is the following method of sequential
global improvement of a control function û ∈ U .

1) Set u(0) = û, k = 0.

2) Find the solution x(k)(t) to the Cauchy problem

ẋ(t) = A(t, u(k)(t))x(t) +B(t, u(k)(t)), x(0) = x0.

3) Find the solution ψ(k)(t) to the Cauchy problem

ψ̇(t) = −A(t, u(k)(t))Tψ(t),

ψ(T ) = −
⎛⎝1 +

√
〈q2, x(k)(T )〉
〈q1, x(k)(T )〉

⎞⎠ q1 −
⎛⎝1 +

√
〈q1, x(k)(T )〉
〈q2, x(k)(T )〉

⎞⎠ q2.

4) Find a feedback control function π(k)(t, x) satisfying for all x ∈ Cq and almost all t ∈ [0;T ]
the equation

〈ψ(k)(t), A(t, π(k)(t, x))x+B(t, π(k)(t, x))〉 = max
v ∈ U

〈ψ(k)(t), A(t, v)x +B(t, v)〉.

5) Find a solution x(k+1)(t) to the nonlinear Cauchy problem

ẋ(t) = A(t, π(k)(t, x(t)))x(t) +B(t, π(k)(t, x(t))), x(0) = x0.

6) Check the improvement condition

J(x(k+1)(T )) < J(x(k)(T ));

if there is no improvement, set ũ = u(k) and finish the calculations.

7) Set u(k+1)(t) = π(k)(t, x(k+1)(t)).

8) Increment k by one and go to step 3.

Integration of the nonlinear differential equation at step 5 can be done numerically, in parallel
with the execution of step 4; in this case, at step 4, each time a finite-dimensional minimization
problem is solved and the values of the vector u(k+1)(t) are directly determined; step 7 is not
required. For practical purposes, it is natural to replace the improvement condition at step 6 with
a stopping condition, for example,

|J(x(k+1)(T ))− J(x(k)(T ))| < ε,

where the number ε > 0 is chosen at step 1.
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SEQUENTIAL IMPROVEMENT METHOD 717

8. ON MINIMIZATION OF THE TERMINAL STATE NORM

Let us go back to the original problems (2)–(3). It is quite natural to assume that a convenient
approximation to the solution to these problems can be obtained by minimizing the functional

J (N(T )) = tr[QN(T )]. (17)

In particular, if Q is identity matrix (i.e., if in problems (2)–(3) the area Πϕ is square), then the
latter means minimizing standard norm of the random vector ξ(T ), because in this case

J (N(T )) = trN(T ) = E[|ξ(T )|2] =: ||ξ(T )||2.

It is clear that the optimization problem for the system (7) with the functional (17) is simpler
than the problem (7)–(8), since the first of them is completely linear in state. For this problem,
the writing and verification of the necessary optimality conditions are correspondingly simplified,
albeit slightly, as well as the iterative procedure of Krotov’s global improvement. The simplifica-
tion is that at step 3 of the improvement method, the dual Cauchy problem is solved with the
condition ψ(T ) = const known in advance. Moreover, the linear structure of the problem allows
us to formulate several alternative iterative global improvement procedures, of dual and “shuttle”
type [20], which, generally speaking, are not equivalent to the direct procedure formulated above
(see examples in [20, 21]).

However, not always a Krotov improvement in terms of the functional (17) is an improvement
in terms of the functional (8). Indeed, consider on the time interval [0; 1] the controllable system

dξ1(t) = 0, dξ2(t) = −u(t)ξ1(t)dt+ u(t)dw(t),

for which geometric constraints on the control are given as 0 � u(t) � ε, where ε ∈ (0; 1). Let the
vector ξ(0) have a normal distribution with zero expectation and covariance matrix

N0 =

(
1 ε
ε 1

)
.

We choose the target area Πϕ to be square, i.e., set κ = (1, 1).

In terms of the auxiliary problem (9)–(10) we have the following data: t ∈ [0; 1], x(t) ∈ R
3,

u(t) ∈ [0; ε] ⊂ R,

A(t, u) =

⎛⎜⎝ 0 0 0
−u 0 0
0 −2u 0

⎞⎟⎠ , B(t, u) =

⎛⎜⎝ 0
0
u2

⎞⎟⎠ , x0 =

⎛⎜⎝1
ε
1

⎞⎟⎠ ,

vectors qi are given as q1 = (1, 2, 1), q2 = (1,−2, 1).

Let the control û(t) ≡ 0 be given. Now we use the Krotov method to improve this control with
respect to the functional J (x(1)) = x1(1) + x3(1). To do this, in the formula (14) we replace J
with J and use the constructions from Theorem 1. First of all, we have

x̂1(t) = x̂3(t) ≡ 1, x̂2(t) ≡ ε,

therefore,
J (x̂(1)) = 2.

Further, since in this case ψ̂(1) = (−1, 0,−1), then

ψ̂1(t) = ψ̂3(t) ≡ −1, ψ̂2(t) ≡ 0,

〈ψ̂(t), A(t, v)x +B(t, v)〉 = −v2 + 2x2v.
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Let us apply Theorem 1. From condition 1) we find

π(t, x) =

⎧⎪⎨⎪⎩
0, x2 � 0
x2, 0 < x2 � ε
ε, x2 > ε,

from condition 2)

x̃1(t) ≡ 1, x̃2(t) = εe−t, x̃3(t) =
ε2

2

(
e−2t − 1

)
+ 1,

from condition 3)
ũ(t) = π(t, x̃(t)) = x̃2(t) = εe−t.

Accordingly,

J (x̃(1)) = 2− ε2

2

(
1− e−2

)
.

At the same time

J(x̂(1)) = 2J (x̂(1)) + 2
√
J (x̂(1))2 − 4x̂2(1)2 = 4 + 4

√
1− ε2,

J(x̃(1)) = 2− ε2
(
1− e−2

)
+ 2

√(
2− ε2

2
(1− e−2)

)2

− 4ε2e−2.

Note that for any ε ∈ (0; 1), the pair of inequalities

J (x̂(1)) > J (x̃(1)), J(x̂(1)) < J(x̃(1))

holds. In particular, this is true for values of ε close to 1. Moreover, for such values of the
parameter ε, numerical experiments show that both inequalities remain valid for an arbitrarily
large number of repeated iterations.

Observe that the stochastic system under consideration is linear, so the random vectors ξ̂(1)
and ξ̃(1) corresponding to the controls û and ũ have a normal distribution together with ξ(0), and
their covariance matrices are, respectively,

N̂(1) =

(
x̂1(1) x̂2(1)

x̂2(1) x̂3(1)

)
, Ñ(1) =

(
x̃1(1) x̃2(1)

x̃2(1) x̃3(1)

)
.

For ε = 0.9999 using the formula (4) we find P1(û) ≈ 0.68 and P1(ũ) ≈ 0.58. So, despite the fact of
decreasing of the terminal state norm, the probability of hitting the target area is also decreased
by as much as 10%.

Thus, there are problems for which a Krotov improvement of a control function in terms of the
terminal state norm is a disimprovement not only in terms of estimates (5)–(6), but also in terms
of solving the original problems (2)–(3). At the same time, the approach proposed in this paper
works correctly in such situation: estimates (5)–(6) cannot be worsened. Nevertheless, when it is
used in the general case, the quality of control can also be decreased with respect to the desired
probability. But due to estimates (5)–(6) we can expect that if this happens, the disimprovement
will not be so significant (see Example 2 below).

9. EXAMPLES

Example 1. On the time interval [0;T ] consider the system

dξ1(t) = (u(t)ξ1(t)− ξ2(t))dt + (ξ2(t)− ξ1(t))dw(t), ξ1(0) ∼ N (0, 1),

dξ2(t) = (ξ1(t) + u(t)ξ2(t))dt + (ξ1(t) + ξ2(t))dw(t), ξ2(0) ∼ N (0, 1),
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the random variables ξ1(0) and ξ2(0) are independent. The geometric constraints on the control
are given as |u(t)| � umax. We choose the target area Πϕ to be square, i.e., set κ = (1, 1).

In terms of the auxiliary problem (9)–(10) we have the following data: t ∈ [0;T ], x(t) ∈ R
3,

u(t) ∈ [−umax;umax] ⊂ R, B(t, u) ≡ 0,

A(t, u) =

⎛⎜⎝ 2u+ 1 −4 1
0 2u 0
1 4 2u+ 1

⎞⎟⎠ , x0 =

⎛⎜⎝ 1
0
1

⎞⎟⎠ ,

vectors qi are given as q1 = (1, 2, 1), q2 = (1,−2, 1).

We note at once that, by virtue of the Eq. (9), for any u ∈ U the second component of the
vector x(t) (the mixed covariance of the components of the vector ξ(t)) is identically equal to zero.
Hence it follows that

〈q1, x(T )〉 = 〈q2, x(T )〉 = 〈q0, x(T )〉, q0 = (1, 0, 1),

that is
J(x(T )) = 4〈q0, x(T )〉 = 4J (x(T ))

and the problem (9)–(10) is completely equivalent to the problem (9), (17) of minimizing the norm
of the random vector ξ(T ). For convenience, we will further work with the functional J .

Let the control û(t) ≡ 0 be given. We have

x̂1(t) = x̂3(t) = e2t, x̂2(t) ≡ 0 ⇒ J (x̂(T )) = 2e2T .

Since the functional J is linear and ψ̂(T ) = −q0, we have

ψ̂1(t) = ψ̂3(t) = −e2(T−t), ψ̂2(t) ≡ 0,

〈ψ̂(t), A(t, v)x +B(t, v)〉 = −2e2(T−t)(v + 1)(x1 + x3), x1 + x3 = 〈q0, x〉 > 0.

Therefore, from condition 1) of Theorem 1 π(t, x) ≡ −umax. In fact, as it is easy to check, in the
problem under consideration for any u ∈ U

J (x(T )) = 2e2T exp

⎧⎨⎩2

T∫
0

u(t)dt

⎫⎬⎭ ,

therefore ũ(t) ≡ −umax delivers an absolute optimum to the functional J . We have shown that
this optimum is found by Krotov global improvement method in exactly one iteration.

Let, for definiteness, umax = 1, T = 1, then ũ(t) ≡ −1 and J(x̃(T )) = 4J (x̃(T )) = 8. Substitut-
ing this value instead of f(u) into the formulas (5)–(6) for n = 2, we find the following estimates
for the values of the functionals (2) and (3):

Pϕ(ũ) � 1− 2ϕ−2, ϕα(ũ) �
√
2(1− α)−1.

Example 2. Let us now complete the study of the special example constructed in the previous
section. Recall the statement of the problem: on the time interval [0; 1] the controllable system is
given as

dξ1(t) = 0, dξ2(t) = −u(t)ξ1(t)dt+ u(t)dw(t),

ξ(0) ∼ N (0, N0), N0 =

(
1 ε
ε 1

)
,
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geometric control constraints are 0 � u(t) � ε, ε ∈ (0; 1), target area Πϕ is square, κ = (1, 1). Data
for the auxiliary problem (9)–(10): t ∈ [0; 1], x(t) ∈ R

3, u(t) ∈ [0; ε] ⊂ R,

A(t, u) =

⎛⎜⎝ 0 0 0
−u 0 0
0 −2u 0

⎞⎟⎠ , B(t, u) =

⎛⎜⎝ 0
0
u2

⎞⎟⎠ , x0 =

⎛⎜⎝ 1
ε
1

⎞⎟⎠ ,

the vectors qi are the same as in Example 1.

Let the control û(t) ≡ 0 be given. We have

x̂1(t) = x̂3(t) ≡ 1, x̂2(t) ≡ ε ⇒ J(x̂(1)) = 4 + 4
√
1− ε2.

By virtue of

ψ̂(1) = −J ′(x̂(T )) = −
(
1 +

√
〈q2, x̂(T )〉
〈q1, x̂(T )〉

)
q1 −

(
1 +

√
〈q1, x̂(T )〉
〈q2, x̂(T )〉

)
q2,

we get

ψ̂1(t) = ψ̂3(t) ≡ −β1, ψ̂2(t) ≡ −β2,

〈ψ̂(t), A(t, v)x +B(t, v)〉 = −β1v
2 + (β2x1 + 2β1x2)v,

where

β1 = 2

(
1 +

1√
1− ε2

)
, β2 = − 4ε√

1− ε2
.

From condition 1) of Theorem 1 we find

π(t, x) =

⎧⎪⎪⎨⎪⎪⎩
0, β2x1 + 2β1x2 � 0

β2x1 + 2β1x2, 0 < β2x1 + 2β1x2 � ε

ε, β2x1 + 2β1x2 > ε.

Since for any ε ∈ (0; 1)
π(0, x0) = β2 + 2β1ε = 4ε > ε

and
β2 + 2β1ε(1− t∗) = ε

for

t∗ =
3

4

(
1 +

1√
1− ε2

)−1

∈ (0; 1),

the new control ũ will have switches starting at time t∗.
Let ε = 0.9999. Then J(x̂(1)) ≈ 4.057, and for the new control ũ and the corresponding trajec-

tory x̃, based on the numerical calculation, we find J(x̃(1)) ≈ 4.041. Due to the estimate (5), this
only means that Pϕ(ũ) � P ∗

ϕ(ũ) ≈ 1− ϕ−1, so P1(ũ) � 0. But in reality, the covariance matrix for
the new solution has the form

Ñ(1) =

(
x̃1(1) x̃2(1)

x̃2(1) x̃3(1)

)
≈

(
1 0.991

0.991 0.983

)
,

whence, thanks to the formula (4),

P1(ũ) ≈ 0.681 > 0.68 ≈ P1(û).
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Fig. 1. Function ũ1(t) in Example 3.
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Fig. 2. Function ũ2(t) in Example 3.

Thus, the Krotov method, built on the basis of estimates (5)–(6), allows even in such a spe-
cially selected “bad” example to increase, albeit slightly, the probability of hitting the target area,
with that the estimates themselves do not contain any useful information. The effect of repeated
iterations on the result turns out to be insignificant here.

Example 3. On the time interval [0; 1] consider the system

dξ1(t) = ξ2(t)dt+ ξ2(t
−)dp(t), ξ1(0) ∼ N (0, 1),

dξ2(t) = u1(t)ξ1(t)dt, ξ2(0) = 0,

where the Poisson process p(·) has intensity λ(t, u(t)) = u2(t). Geometric control constraints are
given as |u1(t)| � 1, 0 � u2(t) � 1. Target area Πϕ is square, κ = (1, 1).

In terms of the auxiliary problem (9)–(10) we have the following data: t ∈ [0; 1], x(t) ∈ R
3,

u(t) ∈ [−1; 1] × [0; 1] ⊂ R
2, B(t, u) ≡ 0,

A(t, u) =

⎛⎜⎝ 0 2 + 2u2 u2
u1 0 1 + u2
0 2u1 0

⎞⎟⎠ , x0 =

⎛⎜⎝ 1
0
0

⎞⎟⎠ .

The vectors qi are the same as in Examples 1 and 2.

Let the control û1(t) = û2(t) ≡ 0 be given. The value of the auxiliary quality functional (10) on
it is 4. Let us perform further calculations numerically, following the iterative procedure described
in Section 7. As a result, after ten iterations, a new control ũ(t) will be found (see Figs. 1 and 2), on
which the functional is approximately equal to 1.28. Now, using the estimates (5) and (6), we can
state that with the control ũ(t) the probability of the random vector ξ̃(T ) hitting the square Π1 is
not less than 68%, and if it is required to guarantee the probability of hitting the given square area
not less than α = 0.85, then the square Π1 should be increased in size by at least ϕ = 1.46 times. If
we replace the functional (10) with a functional (17) and apply the method, then another control
program u∗(t) will be found, only slightly different (upward) from ũ(t) by value (10). At the same
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Fig. 3. Comparison of the first components of the vector function ũ(t) in Examples 3 and 4.

time, at each iteration, along with the decrease in the values (17), the values (10) are also decrease.
In order to more accurately analyze the quality of the programs found, we numerically simulate
a certain number of implementations of the random process ξ(t) and estimate the frequency of
ξ(1) hits the target area Πϕ for its different sizes. The results are presented in the table. For
comparison, the second column shows the exact values of Pϕ(û), calculated by the formula (4).

Statistics of hits in the Πϕ region based on simulation results

ϕ Pϕ(û) û(t) ≡ 0 u(t) = ũ(t) u(t) = u∗(t)
1 0.68 74 out of 100 90 out of 100 95 out of 100
1.5 0.87 90 out of 100 99 out of 100 100 out of 100
2.6 0.99 99 out of 100 100 out of 100 100 out of 100

Thus, within the framework of the considered example (as well as in the case of Example 1), the
problem (9)–(10) can be changed to the simpler linear problem (9), (17) without losing the quality
of the solution to the original pair of problems (1)–(3).

Example 4. Suppose that the control u1(t) in the system from the previous example is imple-
mented with a multiplicative type error. To do this, on the time interval [0; 1] consider the system

dξ1(t) = ξ2(t)dt+ ξ2(t
−)dp(t), ξ1(0) ∼ N (0, 1),

dξ2(t) = u1(t)ξ1(t)dt+ εu1(t)ξ1(t)dw(t), ξ2(0) = 0,

where the Poisson process p(·) has the same intensity λ(t, u(t)) = u2(t). The geometric constraints
are not changed and are given as |u1(t)| � 1, 0 � u2(t) � 1. The target area Πϕ is square, κ = (1, 1).
The data for the auxiliary problem (9)–(10) differ from Example 3 only by one element of the matrix
A(t, u), namely, A31(t, u) = ε2u21, where we take ε equal to 0.1.

Repeating the calculations of Example 3 for the same initial approximation û1(t) = û2(t) ≡ 0,
at the tenth iteration we obtain a new control ũ(t), the first component of which, in contrast to
that shown in Fig. 1, becomes continuous, and the second does not differ from that shown in Fig. 2.
At the same time, substituting the control ũ from Example 3 into the perturbed system considered
here gives the value of the estimated functional (10) approximately 1.4, while on the new ũ it has a
smaller value 1.39. The comparison of the ũ1(t) functions obtained in this and previous examples
is shown in Fig. 3.

Example 5. Consider the problem of stabilizing the height of an aircraft from [22]: on the
interval [0;T ] we have the system

dH(t) = V (t)dt,

dV (t) = (u1(t)H(t) + u2(t)V (t)) dt+ ε (u1(t)H(t) + u2(t)V (t)) dw1(t) + cdw2(t)
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Fig. 5. Comparison of the second components of found controls in Example 5.

with initial conditions

H(0) ∼ N (0, 1), V (0) = 0,

where H and V are deviations of height and vertical speed from the given values, ε is an error
factor of control implementation, c is the parameter of wind force. The geometric constraints on
the control characterize the technical possibilities for amplification in the linear feedback controller
and are given in form |ui(t)| � umax. At the terminal time T , it is required to maximize the
probability of finding deviations in height and vertical speed within the specified errors. We will
assume that the exact speed is twice as important as the exact height. In other words, we solve the
problem of getting into the rectangular target area Πϕ for κ = (2, 1) with the highest probability.
Problems of this kind naturally arise in practice, for example, when refueling aircraft in the air or
when docking spacecraft.

In terms of the auxiliary problem (9)–(10) we have the following data: t ∈ [0;T ], x(t) ∈ R
3,

u(t) ∈ [−umax;umax]
2 ⊂ R

2,

A(t, u) =

⎛⎜⎝ 0 2 0
u1 u2 1

ε2u21 2u1 + 2ε2u1u2 2u2 + ε2u22

⎞⎟⎠ , B(t, u) =

⎛⎜⎝ 0
0

c2

⎞⎟⎠ , x0 =

⎛⎜⎝ 1
0
0

⎞⎟⎠ ,

vectors qi are given as q1 = (0.25, 1, 1), q2 = (0.25,−1, 1). For definiteness, we set ε = 0.1, c = 1,
umax = 5, T = 2.

Let the control û1(t) = û2(t) ≡ 0 be given. The value of the auxiliary quality functional (10) on
it is approximately equal to 10. Using the global improvement method numerically, we construct a
new control ũ with the value of the functional (10) approximately 0.43. As before, for comparison,
we construct another control u∗ by applying the method to the functional (17). The value of
the functional (10) on it is approximately the same. Plots of both components are presented for
comparison in Figs. 4 and 5 (correspondence of plots to variants is not essential).

As last thing, we note that in the analyzed examples the Krotov method already in one iteration
finds a control funtion with a value of the functional J that is significantly less than the initial
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one, further iterations make only minor adjustments. A similar situation was noted earlier in fully
linear-in-state optimal control problems [12, 17, 18].

10. CONCLUSION

Thus, the problems of probabilistic and quantile optimization of multidimensional controlled
jump diffusion were studied. Thanks to Chebyshev-type multidimensional estimates, the considered
problems were reduced to one auxiliary deterministic optimal contol problem in terms of the moment
characteristics of the random process. To solve this problem, the method of successive global
improvements by V.F. Krotov was applied. The effectiveness of the approach was demonstrated
on a number of examples.

FUNDING

Sections 4, 6 and 8 were written by K.A. Tsarkov at the expense of Russian Science Foundation
project no. 22-11-00042 https://rscf.ru/project/22-11-00042 at ICS RAS.

REFERENCES

1. Kibzun, A.I. and Kan, Yu.S., Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kri-
teriyami (Problems of Stochastic Programming with Probabilistic Criteria), Moscow: Fizmatlit, 2009.

2. Malyshev, V.V. and Kibzun A.I., Analiz i sintez vysokotochnogo upravleniya letatel’nymi apparatami
(Analysis and Synthesis of High-precision Aircraft Control), Moscow: Mashinostroenie, 1987.

3. Azanov, V.M. and Kan Yu.S., Design of Optimal Strategies in the Problems of Discrete System Control
by the Probabilistic Criterion, Autom. Remote Control , 2017, vol. 78, no. 6, pp. 1006–1027.

4. Kibzun, A.I. and Ignatov, A.N., On the Existence of Optimal Strategies in the Control Problem for a
Stochastic Discrete Time System with Respect to the Probability Criterion, Autom. Remote Control ,
2017, vol. 78, no. 10, pp. 1845–1856.

5. Afanas’ev, V.N., Kolmanovskii, V.B., and Nosov, V.R., Matematicheskaya teoriya konstruirovaniya
sistem upravleniya (Mathematical Theory of Designing Control Systems), Moscow: Vysshaya Shkola,
1998.

6. Hanson, F.B., Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis and
Computation, Philadelphia, USA: SIAM Books, 2007.

7. Kan, Yu.S., Control Optimization by the Quantile Criterion, Autom. Remote Control , 2001, vol. 62,
no. 5, pp. 746–757.

8. Paraev, Yu.I., Vvedenie v statisticheskuyu dinamiku processov upravleniya i fil’tracii (Introduction to
the Statistical Dynamics of Control and Filtering Processes), Moscow: Sovetskoe Radio, 1976.

9. Rodnishchev, N.E., Approximate Analysis of the Accuracy of Discrete Optimal Control of Nonlin-
ear Stochastic Systems by the Method of Semi-invariants, Izv. Vyssh. Uchebn. Zaved., Aviatsionnaya
Tekhnika, 1987, no. 1, pp. 63–69.

10. Khrustalev, M.M., Rumyantsev, D.S., and Tsarkov, K.A., Optimization of Quasilinear Stochastic
Control-Nonlinear Diffusion Systems, Autom. Remote Control , 2017, vol. 78, no. 6, pp. 1028–1045.

11. Khrustalev, M.M. and Tsarkov K.A., Optimization of Stochastic Jump Diffusion Systems Nonlinear in
the Control, Autom. Remote Control , 2022, vol. 83, no. 9, pp. 1433–1451.

12. Konnov, A.I. and Krotov, V.F., On Global Methods for the Successive Improvement of Control Processes,
Autom. Remote Control , 1999, vol. 60, no. 10, pp. 1427–1436.

13. Miller, B.M. and Pankov, A.R., Teoriya sluchainykh processov v primerakh i zadachakh (Theory of
Random Processes in Examples and Problems), Moscow: Fizmatlit, 2002.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 6 2023



SEQUENTIAL IMPROVEMENT METHOD 725

14. Korolyuk, V.S., Portenko, N.I., Skorokhod, A.V., and Turbin, A.F., Spravochnik po teorii veroyatnostei
i matematicheskoi statistike (Handbook on Probability Theory and Mathematical Statistics), Moscow:
Nauka, 1985.

15. Olkin, I. and Pratt, J.W., A Multivariate Tchebycheff Inequality, Annals Math. Stat., 1958, vol. 29,
no. 1, pp. 226–234.

16. Khrustalev, M.M. and Tsarkov, K.A., Sufficient Relative Minimum Conditions in the Optimal Control
Problem for Quasilinear Stochastic Systems, Autom. Remote Control , 2018, vol. 79, no. 12, pp. 2169–
2185.

17. Krotov, V.F., Bulatov, A.V., and Baturina, O.V., Optimization of Linear Systems with Controllable
Coefficients, Autom. Remote Control , 2011, vol. 72, no. 6, pp. 1199–1212.

18. Trushkova, E.A., Global Control Improvement Algorithms, Autom. Remote Control , 2011, vol. 72, no. 6,
pp. 1282–1290.

19. Arguchincev, A.V., Dykhta, V.A., and Srochko, V.A., Optimal Control: Non-local Conditions, Com-
putational Methods and the Variational Maximum Principle, Izv. Vyssh. Uchebn. Zaved., Matematika,
2009, no. 1, pp. 3–43.

20. Dykhta, V.A., Nonstandard Duality and Nonlocal Necessary Optimality Conditions in Nonconvex Op-
timal Control Problems, Autom. Remote Control , 2014, vol. 75, no. 11, pp. 1906–1921.

21. Khrustalev, M. and Tsarkov, K., Global Improvement Methods for State-Linear Controllable Dynam-
ical Systems, in Proc. the 16th Int. Conf. “Stability and Oscillations of Nonlinear Control Systems”
(Pyatnitskiy’s Conference) (STAB-2022, Moscow). Moscow: IEEE, 2022.

22. Agapova, A.S. and Khrustalev, M.M., Investigation of the Nash Equilibrium Problem in Quasi-Linear
Stationary Stochastic Dynamic Systems Functioning on an Unlimited Time Interval, J. Comput. Syst.
Sci. Int., 2021, vol. 60, no. 6, pp. 875–882.

This paper was recommended for publication by A.I. Kibzun, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 6 2023


