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Abstract—In modern smart manufacturing, robots are often connected via a network, and
their task can change according to a predetermined program. Iterative learning control (ILC)
is widely used for robots executing high-precision operations. Under network conditions, the
efficiency of ILC algorithms may decrease if the program is restructured. In particular, the
learning error may temporarily increase to an unacceptable value when changing the reference
trajectory. This paper considers a networked system with the following features: the reference
trajectory and parameters change between passes according to a known program, agents are
subjected to random disturbances, and measurements are carried out with noise. In addition,
the network topology changes due to the disconnection of some agents from the network and
the connection of new agents to the network according to a given program. A distributed
ILC design method is proposed based on vector Lyapunov functions for repetitive processes in
combination with Kalman filtering. This method ensures the convergence of the learning error
and reduces its increase caused by changes in the reference trajectory and network topology.
The effectiveness of the proposed method is confirmed by an example.

Keywords : iterative learning control, multi-agent system, variable topology, random distur-
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1. INTRODUCTION

Smart manufacturing (SM) is a new paradigm of modern industry, often referred to as the
Fourth Industrial Revolution (Industry 4.0). SM systems integrate the physical components of pro-
duction with cyberspace. These systems have emerged through developing and using information
technologies such as the Industrial Internet-of-Things (IIoT), artificial intelligence (AI), and cloud
computing, combined with the significantly increased performance of modern computers. The cre-
ation of intelligent industrial processes has been a powerful driver in the development of machine
learning (ML) and networked multi-agent systems. ML and networked structures provide flexible
adaptation to today’s markets, which are characterized by short lead times, tight tolerances on
product parameters, cost constraints, frequent changes in demand, and permanent improvements
in technology; see [1, 2] and references therein.

For dynamical systems in engineering, the concept of ML was introduced by Ya.Z. Tsypkin [3]
back in the early 1960s as the process of developing in a certain system one or another response to
external signals through multiple impacts on the system and external corrections. Iterative learning
control (ILC) perfectly fits into this concept: being intended for repetitive processes, it is corrected
on each repetition (also termed trial or pass) based on information from previous repetitions. This
approach allows consistently improving quality indicators, e.g., the tracking accuracy of a reference
trajectory. Since the pioneering study [4], ILC has become an actively evolving area of research with
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numerous applications, primarily in robotics. The surveys [5, 6] can be recommended as starting
points for the literature.

In the standard statement of the ILC problem, the reference trajectory does not change between
passes and the system always returns to the same initial state after each pass. These assump-
tions restrict the capabilities of ILC in many SM applications. In modern SM systems, reference
trajectories and control objectives can change by certain rules, so control should be appropriately
reconfigured. Changing the reference trajectory generates a transient error that often reduces the
accuracy below an acceptable level for several passes. Therefore, it is necessary to develop new ILC
algorithms to compensate the transient error. The paper [2] considered a control reconfiguration
scenario under a preset change in the reference trajectory between passes. A stochastic version of
the same scenario was studied in [7, 8]. In the cited works, the transient error was compensated by
ILC algorithms based on appropriate switching rules.

Since the publication of [9], distributed (networked) ILC laws have been considered by several
authors; see [10–15] and references therein. Good surveys can be found in [16] and [15, 17, 18].
An analysis of the problem’s state-of-the-art shows the following: the vast majority of studies on
distributed ILC for linear systems involved the Arimoto algorithm or its discrete counterpart and
the supervector method [19] as the mathematical apparatus. For nonlinear systems, the same
Arimoto algorithm was combined with a priori estimation techniques, which gave conservative
results. As a rule, the degree of conservatism of the results cited above cannot be estimated: the
purely illustrative examples do not reflect possible applications.

The work [20] was one of the first where the effectiveness of the proposed networked ILC al-
gorithms was confirmed by both simulations and experiments with a group of quadrotors. The
results of [20] were further developed in [16]. In [21], the effectiveness of the proposed network ILC
algorithms was also confirmed by simulations and experiments with a group of mobile robots. Note
that discrete-time models with discrete versions of Arimoto algorithms were used there.

An ILC design for multi-agent systems based on 2D discrete models (linear repetitive processes)
was proposed in [17]. The computational complexity of the design procedure was reduced by
establishing a 2D counterpart of the Fax–Murray theorem, well known in the theory of networked
systems. The approach of [17] was extended in [18] to stochastic multi-agent systems. The accuracy
and the rate of convergence of the tracking error were significantly improved compared to known
algorithms; the theoretical results were clearly confirmed by examples. The paper [22] considered
an ILC design problem for uncertain multi-agent systems in the deterministic statement with a
variable network topology. A special ILC switching law was developed to reduce the transient error
due to a topology change. In [23], an ILC design problem was proposed for stochastic multi-agent
systems with a variable reference trajectory and a fixed network topology.

This paper differs from the known works: for the first time in the literature, a distributed ILC
law is designed for a networked multi-agent system in the stochastic statement where the reference
trajectory and the network topology change on a given finite interval along the passes according to
a known program.

2. PROBLEM STATEMENT

Consider a networked system of N linear dynamical subsystems (agents) that operate in a
repeated mode (i.e., execute the same operation over and over again). The network topology may
change over time. The dynamics of agent i on pass (iteration or trial) k are described by the
discrete state-space model

xi (k, p+ 1) = Aσi(k)xi (k, p) +Bσi(k)ui (k, p) +Dσi(k)ωi (k, p) , (2.1)

yi (k, p) = Cxi (k, p) , (2.2)

yνi (k, p) = yi (k, p) +Gσi(k)νi (k, p) , i ∈ I, k � 0, 0 � p � T − 1, (2.3)
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with the following notations: p is the discrete time on pass k, T is the same pass length for
all k, and I = {1, 2, . . . , N} is the set of all agents; at a time instant p on pass k, xi (k, p) ∈ R

nx

is the state vector, ui (k, p) ∈ R
1 is the scalar control action, and ωi (k, p) ∈ R

nω is the vector of
external disturbances affecting agent i ∈ I = {1, 2, . . . , N} (plant); in addition, yi (k, p) ∈ R

1 is the
unobserved scalar output (pass profile), yνi (k, p) ∈ R

1 is the observed (measured) output, and
νi (k, p) ∈ R

1 is the measurement noise. The initial conditions xi(k, 0) and ui (0, p) are identical for
all agents.

By assumption, the disturbances ωi (k, p) and the measurement noises νi (k, p) are independent
Gaussian white noises with zero mean and the covariances

Siω = E
[
ωi (k, p)ω

	
i (k, p)

]
,

Siν = E
[
νi (k, p)

2
]
,

where E denotes the expectation operator. Suppose also that ωi(k, p) is independent of the initial
state vector.

The mode-switching signal σi (k) for agent i is a piecewise constant function that maps Z+ into
{1, . . . ,m} , where m is the number of possible modes. The discontinuity points of this function will

be called mode switch instants. Each mode has a particular reference trajectory (output) yrefσi(k)
(p)

and particular matrices Aσi(k) ∈ {A1, . . . , Am}, Bσi(k) ∈ {B1, . . . , Bm}, Dσi(k) ∈ {D1, . . . ,Dm}, and
Gσi(k) ∈ {G1, . . . , Gm} of compatible dimensions. The triples

(
Aσi(k), Bσi(k), C

)
are completely

controllable and observable, and CBσi(k) �= 0.

The topology-switching signal ρ (k) for the network is a piecewise constant function that maps Z+

into {1, . . . , c} , where c is the number of possible topologies. The discontinuity points of this func-
tion will be called topology switch instants. Each topology is defined by the set of operating agents

Iρ(k) = {in}Nρ(k)

n=1 ⊆ I, whereNρ(k) � N is the number of operating agents in a topology ρ(k), and by

their connections represented as a directed graph Gρ(k) =
(
Iρ(k), Eρ(k)

)
, where Eρ(k) ⊆ Iρ(k) × Iρ(k)

are graph edges. The ability of agent i to receive information from agent j (i, j ∈ Iρ(k)) is deter-
mined by a directed edge from vertex j to vertex i and denoted by an ordered pair (j, i) ∈ Eρ(k).
The elements of the adjacency matrix

Sρ (Gρ) =

⎡⎢⎢⎢⎢⎣
si1i1 si1i2 · · · si1iNρ

si2i1 si2i2 · · · si2iNρ

...
...

. . .
...

siNρi1 siNρ i2 . . . siNρ iNρ

⎤⎥⎥⎥⎥⎦ , ρ = ρ (k) ,

are defined as follows: sij > 0 for (j, i) ∈ Eρ(k), and sij = 0 otherwise (sii = 0). The Laplacian
matrix of the graph Gρ(k) is given by

Lρ (Gρ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j∈Iρ

si1j −si1i2 · · · −si1iNρ

−si2i1
∑
j∈Iρ

si2j · · · −si2iNρ

...
...

. . .
...

−siNρi1 −siNρ i2 · · ·
∑
j∈Iρ

siNρj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ρ = ρ (k) .

Assume that the reference trajectory yrefσi(k)
(p) is available only for some non-empty subset of agents

that can change depending on the network topology. The ability of agents to obtain information
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about the reference trajectory is specified by the matrix Rρ(k) = diag[rin ]
Nρ(k)

n=1 , where ri = 1 if

yrefσi(k)
(p) is available to agent i, and ri = 0 otherwise.

The agents with ri = 1 will be called global leaders. The remaining agents can receive information
from either global leaders or any other agents. Agent i such that ri = 0 and ∃j : sij > 0 will be
called a follower , where agent j is one of the agents transmitting information to agent i; these
agents will be called local leaders for follower i. Each follower cannot transmit information to its
local leaders.

Assume that the total number of mode switchings and topology switchings is finite: Nσρ < ∞.
Such a scenario arises for gantry robots operating by a preset program in a smart manufacturing
system.

The learning error

ei (k, p) = yrefσi(k)
(p)− yi (k, p)

is unavailable for measurement and control design. Therefore, consider

êi (k, p) = yrefσi(k)
(p)− ŷi (k, p) , (2.4)

where ŷi (k, p) = Cx̂i (k, p) and x̂i (k, p) is the state estimate of agent i given by the Kalman filter

x̂i(k, p + 1) = Aσi(k)x̂i(k, p) +Bσi(k)ui(k, p) + Fiσi(k)(yνi(k, p)− Cx̂i(k, p)) (2.5)

with the initial condition x̂i (k, 0) = Fiσi(k)yνi (k, 0), i ∈ Iρ(k), where Fiσi(k) = Aσi(k)Siσi(k)C
	×[

CSiσi(k)C
	 +Gσi(k)SiνG

	
σi(k)

]−1
and Siσi(k) is the solution of the algebraic Riccati equation

Siσi(k) = Aσi(k)Siσi(k)A
	
σi(k)

−Aσi(k)Siσi(k)C
	 [

CSiσi(k)C
	 +Gσi(k)SiνG

	
σi(k)

]−1
CSiσi(k)A

	
σi(k)

+Dσi(k)SiωD
	
σi(k)

, i ∈ Iρ(k).

Then the ILC design problem is to find a distributed control law (protocol) ui (k, p) to reach a
consensus in the following sense:

E
[
|êi (k, p) |2

]
� κ�k + δ, κ > 0, 0 < � < 1, δ > 0, (2.6)

lim
k→∞

E
[
|ui (k, p) |2

]
= E

[
|ui(∞, p)|2

]
< ∞, i ∈ I, 0 � p � T − 1. (2.7)

The limit value ui (∞, p) is often called the learned control.

3. BUILDING A 2D MODEL IN INCREMENTAL VARIABLES

3.1. A Fixed Operating Mode of Agents and a Fixed Network Topology

The analysis begins with the case where the operating mode of agents and the network topology
are fixed. In other words, consider an interval along the passes on which the signals σi (k) and ρ (k)
have no discontinuity points and their values are equal for all i and k. When solving the problem
in such cases, the simplified notations σ = σi (k) and ρ = ρ (k) will be adopted. Following [18, 22],
let the ILC law be

ui (k + 1, p − 1) = ui (k, p− 1) + Δui (k + 1, p − 1) (3.1)
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with a correction (update) law Δui (k + 1, p − 1) of the form

Δui (k + 1, p − 1) = K1σρ (x̂i (k + 1, p− 1)− x̂i (k, p− 1))

+K2σρ

⎛⎝ ∑
j∈Nρi

sij (ŷj(k, p) − ŷi(k, p)) + ri
(
yrefσ (p)− ŷi(k, p)

)⎞⎠ ,
(3.2)

where K1σρ and K2σρ are the protocol matrices in mode σ and topology ρ, Nρi =
{
j ∈ Iρ |

(j, i) ∈ Eρ
}
denotes the set of neighbors available for agent i in topology ρ, and sij and ri are

the elements of the matrices Sρ and Rρ, respectively.

With the increment vector

η̂i (k + 1, p + 1) = x̂i (k + 1, p)− x̂i (k, p)

of the state estimate, the estimation error x̃i (k, p) = xi (k, p) − x̂i (k, p), and the increment of the
estimation error

η̃i (k + 1, p + 1) = x̃i (k + 1, p)− x̃i (k, p) ,

system (2.1)–(2.3) can be written in terms of the increments and the learning error estimate (2.4)
as

η̂i (k + 1, p + 1) = Aση̂i (k + 1, p) + FiσCη̃i (k + 1, p)

+BσΔui (k + 1, p − 1) + FiσGσΔνi (k + 1, p − 1) ,
(3.3)

η̃i (k + 1, p + 1) = (Aσ − FiσC) η̃i (k + 1, p)

+DσΔωi (k + 1, p − 1)− FiσGσΔνi (k + 1, p − 1) ,
(3.4)

êi (k + 1, p) = −CAση̂i (k + 1, p)− CFiσCη̃i (k + 1, p) + êi (k, p)

− CBσΔui (k + 1, p − 1)−CFiσGσΔνi (k + 1, p − 1) ,
(3.5)

where Δνi(k + 1, p − 1) = νi(k + 1, p− 1)− νi(k, p − 1) and Δωi(k + 1, p− 1) = ωi(k + 1, p − 1)−
ωi (k, p− 1). The second equation in (3.3)–(3.5) does not depend on the others. Hence, the well-
known separation principle holds here: the filter and the controller can be designed independently.
Therefore, η̃i can be treated as a bounded external variable, and the ILC design procedure will
involve the system

η̂i (k + 1, p + 1) = Aση̂i (k + 1, p) +BσΔui (k + 1, p − 1) + FiσGσΔνi (k + 1, p − 1) , (3.6)

êi(k+1, p) =−CAση̂i(k+1, p)+ êi(k, p)−CBσΔui(k+1, p−1)−CFiσGσΔνi(k+1, p−1). (3.7)

Introducing the extended vectors

x̂ (k, p) =
[
x̂	i1 (k, p) . . . x̂	iNρ

(k, p)
]	

,

η̂ (k, p) =
[
η̂	i1 (k, p) . . . η̂	iNρ

(k, p)
]	

,

ê (k, p) =
[
êi1 (k, p) . . . êiNρ

(k, p)
]	

,

Δν (k, p) =
[
Δνi1 (k, p) . . . ΔνiNρ

(k, p)
]	
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and using (3.2) allow writing the extended system (3.6)–(3.7) as

η̂ (k + 1, p + 1) =
(
Ā11σρ + B̄1σρK̄1σρH̄1ρ

)
η̂ (k + 1, p)

+
(
Ā12σρ + B̄1σρK̄2σρH̄2ρ

)
ê (k, p) + F̄1σρΔν (k + 1, p − 1) ,

(3.8)

ê (k + 1, p) =
(
Ā21σρ + B̄2σρK̄1σρH̄1ρ

)
η̂ (k + 1, p)

+
(
Ā22σρ + B̄2σρK̄2σρH̄2ρ

)
ê (k, p) + F̄2σρΔν (k + 1, p − 1) ,

(3.9)

where

Ā11σρ = INρ ⊗Aσ, Ā12σρ = 0, Ā21σρ = INρ ⊗ (−CAσ) , Ā22σρ = INρ ,

B̄1σρ = INρ ⊗Bσ, B̄2σρ = INρ ⊗ (−CBσ) ,

K̄1σρ = INρ ⊗K1σρ, K̄2σρ = INρ ⊗K2σρ,

H̄1ρ = INρ ⊗H1, H1 = Inx , H̄2ρ = (Lρ +Rρ)⊗H2, H2 = 1,

F̄1σρ = diag[FinσGσ]
Nρ

n=1, F̄2σρ = diag[−CFinσGσ]
Nρ

n=1,

and ⊗ stands for the Kronecker product.

The incremental system (3.8)–(3.9) has the standard repetitive process form. Further conver-
gence analysis will employ the stability theory for switched stochastic repetitive processes [24].

3.2. Operating Mode Switching and Topology Switching

Consider the case of operating mode switching. The operating mode of agents may change under
a fixed topology. For brevity, the topology-switching signal will be denoted by ρ (i.e., the same
on all passes under consideration). Let (k + 1) be a switch instant of the global leader i. The
controlled dynamics of the global leader are described by

x̂i (k + 1, p) = Aσi(k+1)x̂i (k + 1, p − 1) + Fiσi(k+1)Cx̃i (k + 1, p − 1)

+Bσi(k+1)ui (k + 1, p − 1) + Fiσi(k+1)Gσi(k+1)νi (k + 1, p− 1) ,
(3.10)

x̃i (k + 1, p) =
(
Aσi(k+1) − Fiσi(k+1)C

)
x̃i (k + 1, p − 1)

+Dσi(k+1)ωi (k + 1, p − 1)− Fiσi(k+1)Gσi(k+1)νi (k + 1, p− 1) ,
(3.11)

êi (k + 1, p) = −C
(
Aσi(k+1)x̂i (k + 1, p − 1)−Aσi(k)x̂i (k, p− 1)

)
− C

(
Fiσi(k+1)Cx̃i (k + 1, p − 1)− Fiσi(k)Cx̃i (k, p− 1)

)
+ êi (k, p)

− C
(
Bσi(k+1) −Bσi(k)

)
ui (k, p − 1)− CBσi(k+1)Δui (k + 1, p − 1)

− C
(
Fiσi(k+1)Gσi(k+1)νi (k + 1, p − 1)− Fiσi(k)Gσi(k)νi (k, p− 1)

)
+

(
yrefσi(k+1) (p)− yrefσi(k)

(p)
)
.

(3.12)

The variable x̃i (k + 1, p) does not depend on the others and is unavailable for measurement; see
the previous section. Therefore, it will be excluded from (3.10) and (3.12) for control design.

In contrast to Section 3.1, the perturbation
(
yrefσi(k+1) (p)− yrefσi(k)

(p)
)
appears in the last equation

of (3.12) at the switch instant. This perturbation generates a transient that can significantly
increase the learning error, which is an undesirable effect. Hence, at this instant, it is reasonable to
construct a control law minimizing the perturbation effect and then return to the original control
law ensuring convergence. Such a control law can be obtained by minimizing the deviation of the
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agent’s output from the available reference trajectory. A similar situation occurs when switching
modes for followers and when changing the topology. The control design procedure in all these
cases will be described below.

4. THE CONVERGENCE THEOREM

Convergence conditions are based on the results of [24]. In contrast to the cited study, the
problem under consideration has finitely many switchings and there is no need to estimate the
average dwell time. In accordance with [24], these conditions will be obtained by using a vector
Lyapunov function

Vσρ (ξ, ε) =

[
V1σρ (ξ)

V2σρ (ε)

]
, (4.1)

where V1σρ (ξ) > 0 for ξ �= 0, V2σρ (ε) > 0 for ε �= 0, and V1σρ (0) = 0 and V2σρ (0) = 0. The discrete
counterpart of the divergence of (4.1) along the trajectories of system (3.8)–(3.9) is defined as

DVσρ (ξ, ε) = E [V1σρ (η̂ (k + 1, p + 1)) |η̂ (k + 1, p) = ξ, ê (k, p) = ε]

− V1σρ (ξ) + E [V2σρ (ê (k + 1, p)) |η̂ (k + 1, p) = ξ, ê (k, p) = ε]− V2σρ (ε) .

Theorem 1. Assume that there exist a vector Lyapunov function of the form (4.1) and positive
scalars c1, c2, c3, and γ such that

c1‖ξ‖2 � V1σρ (ξ) � c2‖ξ‖2,
c1|ε|2 � V2σρ (ε) � c2|ε|2,

DVσρ (ξ, ε) � γ − c3
(
‖ξ‖2 + |ε|2

)
along the trajectories of system (3.8)–(3.9) for all pairs σρ. Then the ILC law (3.1) with the update
law (3.2) ensures the convergence conditions (2.6).

Proof. Calculating DVσρ (ξ, ε) along the trajectories of system (3.8)–(3.9) and following the
proof of [24, Theorem 1] give the estimate

E
[
|ê(k, p − 1)|2

]
� μNσρ+1

⎡⎣λk
p−1∑
q=0

λp−1−q|ê(0, q)|2
⎤⎦+

γ

c1(1− λ)2
, 0 < λ < 1, (4.2)

where μ = c2/c1 � 1, for all k and p. This inequality implies (2.6) with � = λ, κ = μNσρ+1|ē|2
1−λ ,

|ē|2 = max
q

|e(0, q)|2, and δ = γ
c1(1−λ)2 . The parameter λ (hence, �) depends on c2 and c3 and

determines the rate of convergence for the learning error; the parameter μ depends on c1 and c2
and determines the initial estimate. The proof of Theorem 1 is complete.

In view of (4.2), from (2.4) it follows that

E
[
|Cx̂i(k, p)|2

]
= E

[
|ŷi(k, p)|2

]
� 2|yrefσ (p)|2 + 2E

[
|êi(k, p)|2

]
< ∞ (4.3)

for any σ. This upper bound will serve for proving condition (2.7).
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5. CONTROL DESIGN

5.1. Control under a Fixed Operating Mode of Agents and a Fixed Network Topology

Let the entries of the vector Lyapunov function be the quadratic forms

V1σρ (ξ) = ξ	P̄1σρξ,

V2σρ (ε) = ε	P̄2σρε,

where P̄1σρ = INρ ⊗ P1σρ and P̄2σρ = INρ ⊗ P2σρ, that satisfy the inequality

DVσρ (ξ, ε) � γ −
(
ξ	Q̄1ρξ

	 + ε	Q̄2ρε+Δu	R̄ρΔu
)
, (5.1)

where Q̄1ρ� 0, Q̄2ρ� 0, R̄ρ � 0, Q̄1ρ = INρ ⊗Q1ρ, Q̄2ρ = INρ ⊗Q2ρ, R̄ρ = INρ ⊗Rρ, and
Δu = K̄1σρH̄1ρξ + K̄2σρH̄2ρε.

Then calculating the discrete counterpart of the divergence of the vector Lyapunov function
yields

DVσρ (ξ, ε) =

[
ξ
ε

]	((
Āσρ + B̄σρK̄σρH̄ρ

)	
P̄σρ

(
Āσρ + B̄σρK̄σρH̄ρ

)− P̄σρ

+ Q̄ρ +
(
K̄σρH̄ρ

)	R̄ρK̄σρH̄ρ

) [
ξ
ε

]
+ 2

(
tr

[
P̄1σρS1σ

]
+ tr

[
P̄2σρS2σ

])
,

where

Āσρ =

[
Ā11σρ Ā12σρ

Ā21σρ Ā22σρ

]
, B̄σρ =

[
B̄1σρ

B̄2σρ

]
, K̄σρ =

[
K̄1σρ K̄2σρ

]
,

Q̄ρ = diag
[
Q̄1ρ Q̄2ρ

]
, H̄ρ = diag

[
H̄1ρ H̄2ρ

]
, P̄σρ = diag

[
P̄1σρ P̄2σρ

]
,

S1σ = diag[S1inσ]
Nρ

n=1, S2σ = diag[S2inσ]
Nρ

n=1,

S1iσ = FiσGσSiνG
	
σ F

	
iσ , S2iσ = CFiσGσSiνG

	
σ F

	
iσC

	.

The conditions of Theorem 1 will hold with γ = 2
(
tr

[
P̄1σρS1σ

]
+ tr

[
P̄2σρS2σ

])
if the inequality[

ξ
ε

]	((
Āσρ+ B̄σρK̄σρH̄ρ

)	
P̄σρ

(
Āσρ+ B̄σρK̄σρH̄ρ

)− P̄σρ+ Q̄ρ+
(
K̄σρH̄ρ

)	 R̄ρK̄σρH̄ρ

)[ ξ
ε

]
� 0

is solvable in a positive definite matrix P̄σρ. This inequality is tantamount to the matrix inequality(
Āσρ + B̄σρK̄σρH̄ρ

)	
P̄σρ

(
Āσρ + B̄σρK̄σρH̄ρ

)− P̄σρ + Q̄ρ +
(
K̄σρH̄ρ

)	
R̄ρK̄σρH̄ρ � 0. (5.2)

Consider the variables

X̄σρ = diag
[
X̄1σρ X̄2σρ

]
= P̄−1

σρ , X̄1σρ = INρ ⊗X1σρ, X̄2σρ = INρ ⊗X2σρ,

Z̄σρ = diag
[
Z̄1σρ Z̄2σρ

]
, Z̄1σρ = INρ ⊗ Z1σρ, Z̄2σρ = INρ ⊗ Z2σρ,

Ȳσρ =
[
Ȳ1σρ Ȳ2σρ

]
= K̄σρZ̄σρ, Ȳ1σρ = INρ ⊗ Y1σρ, Ȳ2σρ = INρ ⊗ Y2σρ,

where Z̄σρ is the solution of the equation

Z̄σρH̄ρ = H̄ρX̄σρ.
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Multiplying (5.2) on both sides by P̄−1
σρ and applying Schur’s complement lemma give the following

system of matrix equations and inequalities:⎡⎢⎢⎢⎢⎢⎣
X̄σρ

(
ĀσρX̄σρ + B̄σρȲσρH̄ρ

)	
X̄σρ

(
ȲσρH̄ρ

)	
ĀσρX̄σρ + B̄σρȲσρH̄ρ X̄σρ 0 0

X̄σρ 0 Q̄−1
ρ 0

ȲσρH̄ρ 0 0 R̄−1
ρ

⎤⎥⎥⎥⎥⎥⎦ � 0,

Z̄σρH̄ρ = H̄ρX̄σρ, X̄σρ � 0. (5.3)

Thus, the ILC law (3.1) with the update law (3.2) and the protocol matrices

K1σρ = Y1σρZ
−1
1σρ, K2σρ = Y2σρZ

−1
2σρ,

where Z1σρ, Z2σρ, Y1σρ, and Y2σρ are found by solving (5.3), ensures the convergence conditions (2.6)
in the case under consideration. Here, the matrices Q̄ρ and R̄ρ play the same role as weight matrices
in linear quadratic control design. By varying these matrices, it is possible to tune the control signal
and achieve desired performance characteristics.

5.2. Control under Operating Mode Switching

As has been noted, mode switching causes a perturbation generating a transient. This transient
increases the achieved value of the learning error for several passes and slows down convergence.
Therefore, at the switch instant, the update law will be constructed by minimizing the error. In the
case of a global leader, the update law will be found by minimizing the objective functional

Jml = E
[
|êi (k + 1, p) |2|(∗)

]
subject to the constraint arising from (3.10) and (3.12):

êi (k + 1, p) = −C
(
Aσi(k+1)x̂i (k + 1, p − 1)−Aσi(k)x̂i (k, p − 1)

)
+ êi (k, p)

− C
(
Bσi(k+1) −Bσi(k)

)
ui (k, p− 1)− CBσi(k+1)Δui (k + 1, p− 1)

− C
(
Fiσi(k+1)Gσi(k+1)νi (k + 1, p − 1)− Fiσi(k)Gσi(k)νi (k, p− 1)

) (5.4)

+
(
yrefσi(k+1) (p)− yrefσi(k)

(p)
)
.

Here, (∗) means that the expectation is taken under fixed values of the state and control variables
in the right-hand side of (5.4). The resulting update law has the form

Δui (k + 1, p − 1) =
(
CBσi(k+1)

)−1
êi (k, p)

−
(
CBσi(k+1)

)−1
C
(
Aσi(k+1)x̂i (k + 1, p − 1)−Aσi(k)x̂i (k, p− 1)

)
−

(
CBσi(k+1)

)−1
C

(
Bσi(k+1) −Bσi(k)

)
ui (k, p− 1)

+
(
CBσi(k+1)

)−1 (
yrefσi(k+1) (p)− yrefσi(k)

(p)
)

(5.5)

for the ILC law (3.1).

The update law for a follower is calculated by analogy. However, such agents have no direct
access to information about the reference trajectory, and the weighted sum of the output estimates
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of the corresponding local leaders from the previous pass is used instead. In this regard, (2.4) is
replaced by the deviation of the follower’s output estimate from those of its local leaders:

ε̂i (k + 1, p) =
∑

j∈Nρi

sij (ŷj (k, p)− ŷi (k + 1, p)),

where sij is the element of the matrix Sρ. Accordingly, the update law will be found by minimizing
the objective functional

Jmf = E
[
|ε̂i (k + 1, p) |2|(∗∗)

]
subject to the constraint

ε̂i (k + 1, p) = −�iiC
(
Aσi(k+1)x̂i (k + 1, p − 1)−Aσi(k)x̂i (k, p− 1)

)
− �iiC

(
Bσi(k+1) −Bσi(k)

)
ui (k, p− 1)− �iiCBσi(k+1)Δui (k + 1, p − 1)

+
∑

j∈Nρi

sij (ŷj (k, p)− ŷi (k, p))− �iiC
(
Fiσi(k+1)Gσi(k+1)νi (k + 1, p − 1)

− Fiσi(k)Gσi(k)νi (k, p − 1)
)
,

(5.6)

where �ii is the element of the matrix Lρ and (∗∗) means that the expectation is taken under fixed
values of the state estimate and control in the right-hand side of (5.6). As a result, the update law
is given by

Δui (k + 1, p − 1) = �−1
ii

(
CBσi(k+1)

)−1 ∑
j∈Nρi

sij (ŷj (k, p)− ŷi (k, p))

−
(
CBσi(k+1)

)−1
C

(
Aσi(k+1)x̂i (k + 1, p− 1)−Aσi(k)x̂i (k, p − 1)

)
−

(
CBσi(k+1)

)−1
C

(
Bσi(k+1) −Bσi(k)

)
ui (k, p− 1) .

(5.7)

Recall that local leaders transmit the data received on the previous pass. Consequently, the
switching of a follower must be delayed relative to the switching of its local leader in the system
so that the information about the reference trajectory corresponds to the new mode. Similar to
the signal σi (k), now called the local mode-switching signal , consider the global signal σ (k), which
triggers the mode-switching process for the agents. The switch instants σi (k) of the global leaders
coincide with the switch instants σ (k), i.e., σi (k) = σ (k) ∀i : ri = 1. For followers, the local signal
will be delayed relative to the global signal: σi (k) = σj (k − 1) ∀i, j : ri = 0, j ∈ Nρi.

Thus, at the mode switch instant, the ILC law (3.1) is used with the update laws (5.5) and (5.7)
for the global leaders and followers, respectively. This rule applies to mode switching.

5.3. Control under Network Topology Switching

In the case where the network topology is switched, all agents operate in the same mode on all
passes under study. Therefore, for brevity, the mode-switching signal will be denoted by σ.

At a topology switch instant, an agent may perform one of the following actions: connect to
the network through operating agents, disconnect from the network, or change local leaders. In
the second and third scenarios, the agents are controlled using the ILC law (3.1) with the update
law (3.2) with the protocol matrices corresponding to the new topology. In the first scenario, the
error of the connected agent using the same law may significantly differ from that achieved by other
agents over several passes after the connection.
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Let (k + 1) be the topology switch instant due to connecting agent i. The same approach as in
the previous subsection can be used to find an appropriate ILC update law that will reduce the
agent’s error caused by the connection. In this case, however, it is easier to find the ILC law (rather
than its update law) using the objective functional

Jc = E
[
|ε̂i (k + 1, p) |2|(∗ ∗ ∗)

]
and construct the control law for the connected agent by minimizing this functional subject to the
constraint

ε̂i (k + 1, p) =
∑

j∈Nρ(k+1)i

sij ŷj (k, p)− �iiCAσi(k+1)x̂i (k + 1, p − 1)

− �iiCBσi(k+1)ui (k + 1, p − 1)− �iiCFiσi(k+1)Gσi(k+1)νi (k + 1, p − 1) .

(5.8)

Here, sij and �ii are the elements of the matrices Sρ(k+1) and Lρ(k+1), respectively; (∗ ∗ ∗) means
that the expectation is taken under fixed values of the state estimate and control in the right-hand
side of (5.8). The resulting ILC law for the connected subsystem has the form

ui (k + 1, p− 1) = �−1
ii

(
CBσi(k+1)

)−1 ∑
j∈Nρ(k+1)i

sij ŷj (k, p)

−
(
CBσi(k+1)

)−1
CAσi(k+1)x̂i (k + 1, p− 1) .

(5.9)

5.4. General Control Law

The general control law is based on the following switching rules for the operating mode of
agents, the network topology, and the ILC law.

Switching is launched by the signals σ (k) and ρ (k). The signal σ (k), referred to as the global
mode-switching signal, triggers the switching process for the operating mode of agents. The oper-
ating mode of the global leaders is switched when launching the switching process by the global
signal, i.e., σi (k) = σ (k) ∀i : ri = 1. The operating mode of the other agents is switched with a
one-pass delay after switching of their local leaders, i.e., σi (k) = σj (k − 1) ∀i, j : ri = 0, j ∈ Nρ(k)i.
The signal ρ (k) switches the network topology.

The ILC signal on pass (k + 1) has the form (3.1) with different update laws as follows: the
update law (3.2) whose protocol matrices are obtained by solving system (5.3) if σi (k + 1) = σi (k)
and i ∈ Iρ(k); the update law (5.5) if ri = 1, σi (k + 1) �= σi (k), and i ∈ Iρ(k); the update law (5.7)
if ri = 0, σi (k + 1) �= σi (k), and i ∈ Iρ(k), where ri is the element of the matrixRρ(k+1). If i /∈ Iρ(k),
then the ILC signal on pass (k + 1) has the form (5.9).

It remains to prove the mean-squared boundedness of the ILC law; see condition (2.7). Consider
the interval along passes before the first switching. From (2.5) it follows that

ui(k, p − 1) = (CBσ)
−1

⎡⎣Cx̂i(k, p)− CAp
σx̂i(k, 0)

−
p−2∑
q=0

CAp−1−q
σ Bσui(k, p)−

p−1∑
q=0

CAp−1−q
σ (FσCx̃i(k, q) + FσGσνi(k, p))

⎤⎦ . (5.10)
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Particularly for p = 2,

ui(k, 1) = (CBσ)
−1

⎡⎣Cx̂i(k, 2) − CA2
σx̂i(k, 0) − CAσBσui(k, 0)

−
1∑

q=0

CAp−1−q
σ (FσCx̃i(k, q) + FσGσνi(k, p))

⎤⎦ .

Raising both sides of the last equality to the square, let us estimate the right-hand side using the

well-known algebraic inequality
(
(
∑n

i=1 ai)
2 � n

∑n
i=1 a

2
i

)
. Due to (4.3), E[|Cx̂i(k, 2)|2] < ∞, and

the values ||x̂i(k, 0)||2, |ui(k, 0)|2, ||x̃i(k, q)||2, and |νi(k, q)|2 have finite means; therefore, applying
the expectation operator to the resulting inequality gives E[|ui(k, 1)|2] < ∞. The sequential vari-
ation of p between 3 and T in (5.10) gives E[|ui(k, p)|2] < ∞ for all k up to the first switching.
According to the control choice approach, (4.3) holds at the switch instants at the beginning of
each interval between switchings. Hence, considering the intervals between switchings sequentially
shows that E[|ui(k, p)|2] < ∞ for all k until the last switching on pass kf . Repeating the same
procedure for k � kf and letting k → ∞ finally give (2.7). Thus, the ILC law ensures consensus in
the sense of conditions (2.6) and (2.7).

6. AN EXAMPLE

Consider a networked system of identical gantry robots (agents) with a flexible rotating link
that moves in the horizontal plane with a constant repetition period. The problem is to design an
ILC law for this system as proposed above. The dynamics of each agent on pass k are described
by the state-space model

ẋi (k, t) = Acont
σi(k)

xi (k, t) +Bcont (ui (k, t) + μi (k, t)) , (6.1)

yi (k, t) = Cxi (k, t) + ρi (k, t) (6.2)

with the following notations: x =
[
θ α θ̇ α̇

]	
, θ is the servo angle, and α is the flexible link

angle; u = τ is the load gear torque applied to the link; μ and ρ are independent continuous
Gaussian white noises of the plant and measurement, respectively, with constant intensities Qn

and Rn. The system matrices have the form

Acont
σ =

⎡⎢⎢⎢⎢⎣
0 0 1 0

0 0 0 1

0 Ks/Jeq −Beq/Jeq 0

0 −Ks (Jl (σ) + Jeq)/JeqJl (σ) Beq/Jeq 0

⎤⎥⎥⎥⎥⎦ ,

Bcont =
[
0 0 1/Jeq −1/Jeq

]	
, C =

[
1 0 0 0

]
,

where Ks is the stiffness of the flexible link, Jeq is the moment of inertia of the servo, Beq is the
viscous friction coefficient of the servo, and Jl (σ) is the moment of inertia of the flexible link relative
to center of mass, σ = σi (k).

The results demonstrated below correspond to the following parameter values:

Ks = 1.3 N×m/rad, Jeq = 2.08 × 10−3 kg×m2, Beq = 0.004 N×m/(rad/s) [25],

Qn = 5× 10−5, and Rn = 10−6.
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The agents have two operating modes (pick-and-place operations) with particular reference
trajectories of the output:

yrefσi(k)
(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π

(
t2

6
− t3

27

)
, σi (k) = 1,

π

2
sin

πt

6
, σi (k) = 2.

In addition, the modes differ by the moment of inertia of the flexible link:

Jl (σi (k)) =

{
0.0038 kg×m2, σi (k) = 1,

0.008 kg×m2, σi (k) = 2.

The repetition period is 3 s. The time discretization of the differential dynamics (6.1)–(6.2) gives
the state-space model (2.1)–(2.3) for the ILC design with the matrices

Aσi(k) = expAcont
σi(k)

Ts , Bσi(k) =

Ts∫
0

exp
(
Acont

σi(k)
τ
)
Bcontdτ,

Dσi(k) =

⎡⎣ Ts∫
o

exp
(
Acont

σi(k)
τ
)
BcontQn

(
Bcont

)	(
exp

(
Acont

σi(k)
τ
))	

dτ

⎤⎦
1
2

,

Gσi(k) =

(
Rn

Ts

) 1
2

,

where Ts is a sampling period (0.01 s) and the noises ωi (k, p) and νi (k, p) have the unit covariances
Siω = Inx and Siν = 1, respectively.

Consider the networked system with three gantry robots and the following scenario: first, one
global leader operates, then the first follower connects to the global leader, and subsequently the
second follower connects to the first follower. This scenario corresponds to an SM system with
variable production volume: new agents are connected to the network if the volume increases
and are disconnected otherwise (when they become superfluous). The variable network topology
corresponding to this program is described by

Iρ(k) = {1} , Lρ(k) = 0, and Rρ(k) = 1 for ρ(k) = 1,

Iρ(k) = {1, 2} , Lρ(k) =

[
0 0
−1 1

]
, and Rρ(k) =

[
1 0
0 0

]
for ρ(k) = 2,

Iρ(k) = {1, 2, 3} , Lρ(k) =

⎡⎢⎣ 0 0 0
−1 1 0
0 −1 1

⎤⎥⎦ , and Rρ(k) =

⎡⎢⎣ 1 0 0
0 0 0
0 0 0

⎤⎥⎦ for ρ(k) = 3.

Computing the gain matrices for the Kalman filter yields

Fiσi(k) =
[
0.7106 −0.5711 16.0723 −12.8866

]	
for σi(k) = 1,

Fiσi(k) =
[
0.7038 −0.6084 15.5888 −13.9268

]	
for σi(k) = 2.
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Fig. 1. Root mean square errors for different agents without control switching.
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Fig. 2. Root mean square errors for different agents with control switching.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 6 2023



706 KOPOSOV, PAKSHIN

Solving (5.3) with the weight matrices

Q1ρ(k) =

{
10Inx , ρ (k) = 1,

10−4Inx , ρ (k) �= 1,

Q2ρ(k) = 105, Rρ(k) = 10−3

gives the following protocol matrices for (3.2):

K1σρ =
[
−25.3429 −1.2471 −0.3469 −0.0181

]
and K2σρ = 9.2965 for σ = 1 and ρ = 1.

K1σρ =
[
−41.8954 −1.2959 −0.416 −0.0044

]
and K2σρ = 16.2678 for σ = 1 and ρ = 2.

K1σρ =
[
−41.9283 −1.296 −0.4161 −0.0044

]
and K2σρ = 14.3248 for σ = 1 and ρ = 3.

K1σρ =
[
−25.3841 −1.2813 −0.3428 −0.0139

]
and K2σρ = 9.2971 for σ = 2 and ρ = 1.

K1σρ =
[
−41.889 −1.2981 −0.4159 −0.0044

]
and K2σρ = 16.4272 for σ = 2 and ρ = 2.

K1σρ =
[
−41.9326 −1.2982 −0.4161 −0.0044

]
and K2σρ = 14.2538 for σ = 2 and ρ = 3,

where σ = σi(k) and ρ = ρ(k). Let the switching signals be

σ (k) =

⎧⎪⎪⎨⎪⎪⎩
1, k < 40,

2, 40 � k < 80,

1, k � 80,

ρ (k) =

⎧⎪⎪⎨⎪⎪⎩
1, k < 20,

2, 20 � k < 60,

3, k � 60.

The performance of this ILC law can be evaluated using the root mean square error (RMSE)
for each trial:

Ei (k) =

√√√√ 1

T

T−1∑
p=0

|ei (k, p) |2.

Figure 1 shows the RMSE progression for different agents without control switching when changing
the operating mode and network topology, i.e., the ILC law (3.1) with the update law (3.2) is
applied throughout the system operation. Figure 2 presents the corresponding graphs for different
agents with control switching. According to these results, the ILC law designed in this paper allows
reducing the transient error at the switch instants.

7. CONCLUSIONS

The ILC algorithm proposed above reduces the transient error at the instants of mode switching
and connecting new agents to the network. However, it imposes some restrictions on the network
topology. First, mutual information exchange between agents is impossible. Indeed, in order to
switch the operating mode of a follower, the mode of its local leaders on the previous pass must
correspond to the desired one. For this reason, mutually exchanging their information, the agents
will wait for each other’s mode to change, and eventually, it will not happen for any of them.
In the illustrative example, this situation would arise if the first follower transmitted its output to
the second one and the latter to the former. In this case, the first follower would not be able to
switch because of waiting for the second one to do it; the second follower, because of waiting for
the first one. Also, for this reason, it is impossible to implement a closed information exchange
chain. Second, if this algorithm is applied to a system with serially connected agents, the process
of switching the entire network system to a new operating mode may take an unacceptably long
time due to switching delays of followers.
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