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Abstract—The paper is devoted to the problem of deriving synchronizing and homing experi-
ments for nondeterministic Input/Output automata; corresponding input sequences are widely
used in testing (non-initialized) discrete event systems. In active testing, there is an opportunity
to set a system under test into a known initial state; in passive testing, a known current state
allows to reduce the number of properties to be checked. In the paper, we note that such exper-
iments for Input/Output automata are different from so-called “gedanken” experiments with
classical Finite State Machines; the existence check conditions of such experiments are estab-
lished for a predefined discipline of applying inputs and a method for its derivation is proposed
when such an experiment exists. The obtained results allow to reduce the problem of deriv-
ing synchronizing and homing experiments for Input/Output automata to the well developed
problem of deriving such experiments for appropriate classes of Finite State Machines.

Keywords : finite input/output automaton, homing sequence, synchronizing sequence

DOI: 10.25728/arcRAS.2023.34.55.001

1. INTRODUCTION

The state identification problem for Finite State Machines (FSMs) and Automata is actively
studied nowadays. It is widely used in various applications, and in particular, for minimizing
the verification efforts in active and passive testing [1, 4, 5]. In the active testing mode, state
identification sequences allow to reduce length of a test suite. In [5], the authors demonstrate how
homing and synchronizing sequences can accelerate/optimize passive testing of telecommunication
components. The state identification usually is based on so-called gedanken experiments with FSMs
[1] and has the following steps: the input sequence application to an FSM under test, the output
response observation and the conclusion drawing about an initial or a current state of the FSM.
Homing and synchronizing experiments allow determining the final/current FSM state, i.e., the
state after the experiment. When performing a synchronizing experiment there is no need to
observe output responses of an FSM under test, while in the homing experiment the current state
is uniquely determined based on the FSM output response. If an applied input sequence is fixed
in advance and is not modified during the experiment then the experiment is called preset . In this
case, it is possible to consider corresponding homing and synchronizing sequences and there are
many papers in which such sequences are studied for deterministic and nondeterministic FSMs,
complete and partial FSMs (see, for example, [2, 7]).
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At the same time, it should be noticed that the FSMs have limited expressivity when it comes
to describing properties of telecommunication components. Intead, Input/Output automata [3, 8]
are more generic, and are also widely used for test derivation. In an Input/Output Automaton,
transitions between states are labeled not by a pair <input, output> but by an action, which can
be an input or an output. In [6], the Input/Output automaton state identification has been studied
for a special class of such automata, namely for the case when at every state only inputs or outputs
are allowed. In this paper, the approach is extended to automata with states where both, inputs
and outputs are allowed to be accepted and/or produced. The main differences are the following:
the class of considered automata is much widely and correspondingly a preset experiment is defined
over automata traces rather than over input sequences. Moreover, a special class of so called stable
homing sequences is considered. These sequences are of use in active testing and correspond to
complete traces, i.e., traces which take an automaton to a stable state where there are no transitions
under outputs. The main contribution of the paper is therefore the definition of synchronizing and
homing experiments for finite Input/Output automata and the adaptation of the known techniques
for the existence check and derivation of such experiments.

The paper is organized as follows. Section 2 contains the definitions and notations used in the
paper. In Section 3, the notions of synchronizing and homing experiments are introduced while
Section 4 is devoted to the existence check and derivation of such experiments. Section 5 concludes
the paper and presents the future work.

2. DEFINITIONS AND NOTATIONS

A finite Input/Output Automaton an Automaton for short, is a 4-tuple S = (S, I,O, hS) where
S is a finite nonempty set of states, I is a finite set of inputs, O is a finite set of outputs, I ∩O = ∅,
and hS ⊆ (S × (I ∪ O) × S) is the transition relation. For practical reasons, the set (I ∪ O) is
assumed to be non-empty. An automaton S is observable if at each state at most one transition
under any action is defined. An automaton S is non-initialized if any state can be an initial state.
In this paper, observable non-initialized automata are considered.

There is a transition from state s to state s′ under action a if and only if the triple (s, a, s′)∈hS
is in the transition relation hS . An automaton is nondeterministic if there exists a state at which
several transitions under outputs are defined [6] and further only observable possibly nondeter-
ministic automata are considered if the contrary is not explicitly stated. An automaton is a trace
model where a trace at state s is a sequence of inputs and outputs of the set (I ∪ O) defined at
this state. The set of all states where there are no transitions under outputs, is denoted Sst; such
states are called stable since the automaton can stay at this state infinitely long until an input is
applied. In particular, an automaton can have states where no transitions are defined; the set of
such states is denoted as Sund. A state of the automaton is a mixed state if at this state there are
transitions under inputs and outputs.

A trace at state s is complete if it takes the automaton to a state from the set Sst. For the
observation of such traces a special output δ �∈ I ∪O (quiescence) is introduced [8]; in other words,
at each state where there are no transitions under outputs, a loop labeled by δ is added and this
symbol (action) is considered as an output, i.e., the automaton Sδ is obtained. The automaton Sδ

has the output alphabet O ∪ {δ}. Thus, a trace σ of the automaton S is complete at state s if
and only if the automaton Sδ has a trace σδ at state s; the latter means that this trace cannot be
appended with any output of the set O and such traces are called δ-traces. By definition, given
a trace of the automaton Sδ, a trace of the automaton S is obtained after erasing all symbols δ,
and vice versa, given a trace σ of the automaton S, a trace of the automaton Sδ is obtained after
adding to σ any number of δ actions after every prefix that is a complete trace.
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3. HOMING EXPERIMENTS WITH INPUT/OUTPUT AUTOMATA

Similar to FSMs [1], “gedanken” experiments with automata have three steps: an input sequence
is applied to an automaton under test, that in our case, can be the empty sequence, a produced
output sequence is observed, that also can be the empty sequence, and the conclusion is drawn
about some properties of the automaton. The experiment is synchronizing or homing if after
the experiment the current automaton state is known. Differently from FSMs, in general case,
“gedanken” experiments with automata cannot be described as sets of finite input sequences with
possible output responses. The reason is that for the same input sequence there can exist different
traces with the same output projection. For example, for an input sequence i1i2 there can be traces
i1o1i2o2 and i1i2o1o2. In the former case, input i2 is applied only after getting a response o1 before
the proper timeout Tin expires, while in the latter case, input i2 is applied during the Tin and
o1 cannot be produced before input i2 is applied. Correspondingly, an input sequence should be
applied under proper conditions. If the initial state when an input sequence is applied is unknown
then the conditions of the application of an input sequence have to be held for every initial state.

For formal representation of the conditions for the application of an input sequence, a special
input/symbol ω is introduced and a copy s′ is created for every state s of the automaton Sδ where
all the transitions from state s under outputs are added. At state s there are only inputs and
an artificial input ω that takes the automaton from state s to its copy s′. As the result, the
automaton Sδω is obtained. Correspondingly, given a trace of the automaton Sδω, a trace of S is
obtained after deleting δ and ω actions, and vice versa, given a trace σ of the automaton S, if any
number of δ actions are added to σ-prefix that is a complete trace while adding ω in front of every
output including δ, then a trace of Sδω is obtained.

Given an automaton S, “gedanken” experiments with it can be described using traces which
have inputs and outputs and also artificial symbols δ and ω. There are proper timeouts for these
symbols: a timeout Tin for ω and a timeout Tout for δ. When there is ω action in an input sequence
no input is applied while an output is expected during the timeout Tout; if there is no output then
it is assumed that the automaton produced the output δ.

As usual, an automaton is assumed to have at least two states since there is no homing problem
for an automaton with a single state. The state identification experiment for setting an automaton
under test into a known state is performed as follows. An input sequence for the experiment has
the following shape α = ωt1i1 . . . ω

tkikω
tk+1 , ij ∈ I , j = 1, . . . , k. If at a current moment, an input

ij ∈ I , j = 1, . . . , k, should be applied then the tester applies this input during the time interval Tin,
and after this, the timer is reset. If there is ω in the input sequence then the tester is waiting for
an output. If an output is produced then the timer is reset and the next input of α is analyzed.
If no output is produced during Tout, then the system is supposed to produce δ and the timer is
reset.

Let α = ωt1i1 . . . ω
tkikω

tk+1 , ij ∈ I, j = 1, . . . , k, be a sequence with inputs and ω. A trace σ at
state s of the automaton Sδ is compatible with α if σ has the shape β1i1 . . . βkikβk+1 where βj is
a sequence of length tj containing outputs and δ, j = 1, . . . , k + 1. For Input/Output automata,
a homing sequence can be defined in two ways; these definitions correspond to active and passive
testing modes. In the active testing mode, a homing sequence has to set a system under test
into a known state where further test cases can be applied at any following moment. Therefore,
a homing sequence has to take the automaton to a stable state. In the passive testing mode, a
homing sequence can take the automaton under test to any state. Correspondingly, two definitions
of a homing sequence are proposed.

A sequence α ∈ (I ∪ {ω})∗ is homing for the automaton S if 1) at each state of Sδ, there exists
a trace compatible with α and 2) for any two different states s1, s2 and a common trace σ at these
states that is compatible with α, σ takes the automaton from states s1 and s2 to the same state.
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If α is a homing sequence for S and there exists a state s such that every trace σ that is compatible
with α takes the automaton from any state to state s, then α is a synchronizing sequence for S.

A sequence α is a stable homing sequence for the automaton S if 1) at every state of Sδ there
exists a trace compatible with α and only complete traces are compatible, 2) for any two different
states s1, s2 and a common trace σ at these states that is compatible with α, σ takes the automaton
from states s1 and s2 to the same state. In this case, after the application of a homing sequence,
the automaton is at a stable state where it can stay infinitely long, for example, until a further
test case is applied. If α is a stable homing sequence for S and there exists a state s such that
any complete trace σ compatible with α takes the automaton from any state to state s, then α
is a stable synchronizing sequence for S. By definition of a homing/synchronizing sequence, the
following proposition holds.

Proposition 1. 1. An automaton has no homing (synchronizing) sequence if for each input se-
quence γ ∈ I∗ there exists a state where there is no trace with such input projection. 2. An automa-
ton has no stable homing (synchronizing) sequence if for each input sequence γ ∈ I∗ there exists a
state where there is no complete trace with such input projection. 3) An automaton with at least
two states has no (stable) homing (synchronizing) sequence if the set Sund has more than one state.
4) An automaton has no stable homing (stable synchronizing) sequence if at each state at least one
output is defined that is different from δ, i.e., the set Sst is empty.

If there are no transitions in S labeled by an output of the set O then S becomes a classical
automaton without outputs for which only synchronizing sequences are considered [7]. If there are
no transitions in S labeled by an input of the set I then for an observable automaton a stable
homing/synchronizing sequence is a sequence that has only ω, i.e., the automaton only produces
outputs with the interval Tout. Such a sequence becomes stable for S if and only if a trace at any
state of Sδ compatible with such a sequence is complete and for any two states s1 and s2 and any
common output sequence β at these states, β takes the automaton from states s1 and s2 to the
same state.

Let α be a homing sequence for an observable automaton S and b ∈ I ∪ {ω}. If at each state
for αb (bα) there exists a trace of Sδ compatible with αb (bα) then αb (bα) is also a homing sequence.
The same proposition holds for stable homing sequences.

Proposition 2. If α is a homing sequence of the automaton S, then sequences αb and bα, b ∈
I ∪ {ω}, for which at each state of Sδ there exists a trace compatible withαb (bα respectively), are
also homing sequences of the automaton S. 2. If α is a stable homing sequence of the automaton S,
then sequences αb and bα for which at each state of Sδ there exists a trace compatible with αb
(bα respectively) and all such compatible traces are complete traces, are also stable homing sequences
for the automaton S.

4. CHECKING THE EXISTENCE AND DERIVING HOMING
AND SYNCHRONIZING SEQUENCES FOR INPUT/OUTPUT AUTOMATA

Similar to [6], when deriving homing/synchronizing sequences, an automaton S is transformed
into an FSM in order to use the well known state identification methods for FSMs. The FSM M δω

S

has all the states of the automaton S and is derived as follows:

— given an input i ∈ I, there is a transition from state s to state q with output δ if and only if
the initial automaton has a transition at state s to state q labeled by input i;

— given an input ω �∈ I, there is a transition from state s to state q with output o if and only if
the initial automaton has a transition at state s to state q labeled by output o;

— there is a loop at state s of the FSM labeled by input/output pair ω/δ if and only if s ∈ Sst.
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Fig. 1. Automaton S and correspondinf FSM M δω
S .

Fig. 2. Automata with (stable) homing sequences.

It is shown that the automaton S has a homing (synchronizing) sequence if and only if the FSM
M δω

S has such a sequence with appropriate features.

Consider the automaton S in Fig. 1 for which FSM M δω
S is constructed. We derive a homing

sequence for this automaton. This sequence cannot be headed by input i since the transition under
this input is not defined at state 2. Correspondingly, at the beginning input ω is applied, i.e., in
fact, no input is applied. An output o2 is expected when the initial automaton reaches state 4 or o1
when the initial automaton reaches state 5 or 2, or, after the output timeout, the current state
is 4 or 5. Since a transition under i is not defined at state 2, another output is expected after the
output timeout. In this situation, it is known that the automaton is at state 4 (output o2) or it
stayed at state 5, or is at state 4 or 5. An input i is applied and the automaton reaches state 2 or 3,
and after that another output is expected (input ω). If output o2 is produced, then the automaton
reached state 4, if output o1 is produced then the automaton reached state 5. Thus, the automaton
has a homing sequence ωωiω that in fact, is a stable homing sequence, since at each state every
trace compatible with ωωiω is complete.

However, if the initial automaton has some states which are not stable then not every homing
sequence of the FSM M δω

S is stable homing, since such a sequence has to take the automaton to
a stable state of the FSM; nevertheless, such an automaton can have a stable homing sequence.
In Fig. 2a there is an example of an automaton for which a sequence ωωiω is homing but the
automaton has no stable homing sequence. The automaton in Fig. 2b has homing sequences ωωi1ω
and ωωi1i2 but only the latter is a stable homing sequence. The automaton in Fig. 2c has a stable
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homing sequence ωωi1ωi2 that is a prolongation of a homing sequence ωωi1ω that is not stable
homing. When deriving a stable homing sequence the notion of an Sst-homing sequence is utilized
(S′-homing sequence [7]).

A homing sequence γ of the FSM M δω
S is an Sst-homing sequence if all traces of M δω

S with the
input projection γ and the same output projection, take the FSM to the same state of the set Sst

where Sst is the set of all stable states of the automaton S, i.e., all the states where there are no
transitions under output actions. If all the traces of the FSM M δω

S with the input projection γ take
the FSM to the same state of the set Sst independently of the initial state and output projection then
an Sst-homing sequence is an Sst-synchronizing sequence. If an FSM has no homing (synchronizing)
sequence then the FSM has no Sst-homing (Sst-synchronizing) sequence; the converse is not always
true.

Proposition 3. 1. An automaton S has a homing sequence if and only if the FSM M δω
S has a

homing sequence. 2. An automaton S has a stable homing sequence if and only if the FSM M δω
S

has a Sst-homing sequence.

Proof. Consider a trace β1α1 . . . βkαkβk+1 of the automaton Sδ over alphabets I and O where
α1, . . . , αk are input sequences, β1, . . . , βk, βk+1 are output sequences which can have action δ as
an output and every sequence can be the empty sequence. By construction of the FSM M δω

S , the
automaton S has a transition from state s to state s′ under output o if and only if such a transition
labeled by ω/o exists in the FSM M δω

S . The automaton S has a transition from state s to state s′

under input i if and only if such a transition labeled by i/δ exists in the FSM M δω
S . Therefore, at

state s, the automaton S has a trace β1α1 . . . βkαkβk+1 that takes the automaton to state s′ if and
only if FSM M δω

S has a trace ω|β1|/β1.α1/δ
|α1| . . . ω|βk|/βk.αk/δ

|αk |.ω|βk+1|/βk+1 that takes the FSM
from state s to state s′ where i1i2 . . . ik/o1o2 . . . ok denotes the sequence i1/o1, i2/o2, . . . , ik/ok.

⇐ Let the FSM M δω
S have a homing sequence ωt1 i1 . . . ω

tk ik ω
tk+1 , ij ∈ I, j = 1, . . . , k.

By definition of a homing sequence, the sequence ωt1i1 . . . ω
tk ikω

tk+1 is defined at each
state of the FSM M δω

S and for very output sequence β1δ . . . βkδβk+1 for which a trace
ω|β1|/β1.i1/δ . . . ω|βk|/βk.ik/δ ω|βk+1|/βk+1 exists at least at one state s of the FSM, there exists
a state s′ such that ω|β1|/β1.i1/δ . . . ω|βk|/βk.ik/δ. ω|βk+1|/βk+1-successor of any state s is either
the empty set or a singleton {s′}. Thus, ω|β1|/β1.i1/δ . . . ω|βk|/βk.ik/δ. ω|βk+1|/βk+1 is a homing
sequence for the automaton S.

⇒ Let now the automaton S have a homing sequence α = ωt1i1 . . . ω
tkikω

tk+1 . Then by
definition, at each state of the automaton Sδ there exists a trace compatible with α; and for any
two states s1, s2 and a common trace σ at these states that is compatible with α, σ takes the
automaton from states s1 and s2 to the same state. In other words, for each trace σ compatible
with α, the final state is uniquely determined independently from the initial state but these states
can be different for traces σ with different output projections.

By definition of the FSM M δω
S , if at each state of the automaton there exists a trace compatible

with ωt1i1 . . . ω
tkikω

tk+1 , then the FSM behavior is defined at each state under this input sequence
and moreover, for each output response β1δ . . . βkδβk+1 to this sequence there exists a state s′ such
that once ωt1/β1.i1/δ . . . ω

tk/βk.ik/δ.ω
tk+1/βk+1 is a trace at least at one state s of the automaton,

it holds that the ωt(1)/β1.i1 . . . ω
t(k)/βk.ik. ω

tk+1/βk+1-successor of such state s is either the empty
set or the singleton {s′}. Therefore, ωt1i1 . . . ω

tkikω
tk+1 is a homing sequence for the FSM M δω

S .

Property 2 of the proposition can be proven in the same way but only complete traces are
considered in the automaton while in the FSM only traces which take the FSM to states of the
set Sst are considered.

We are not aware of any technique for deriving an Sst-homing sequence for an FSM; this tech-
nique can be easily developed based on the prolongation of an FSM successor tree [5], the root of
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which is labeled by the set of all pairs of different states up to the derivation of singletons {s},
s ∈ Sst.

Similar to Proposition 3, the following proposition can be proven.

Proposition 4. 1. The automaton S has a synchronizing sequence if and only if M δω
S has a

synchronizing sequence. 2. The automaton S has a stable synchronizing sequence if and only if M δω
S

has a Sst-synchronizing sequence.

Finally, it is necessary to notice that the length and complexity estimates of deriving hom-
ing/synchronizing sequences for Input/Output automata are the same as for FSMs. It is interesting
to describe automata classes for which there exists a homing/synchronizing sequence of polynomial
length.

5. CONCLUSION

In this paper, the problem of deriving homing and synchronizing experiments for Input/Output
automata is discussed. The notion of “gedanken” experiments is introduced which in fact is different
from that for FSMs and a method for deriving homing and synchronizing experiments is proposed,
based on the construction of an FSM with the same set of traces. The complexity estimates of such
sequences coincide with those for appropriate classical FSMs.

Since for FSMs, the adaptivity can sometimes reduce the complexity of the existence check and
derivation of homing and synchronizing sequences [2], as a future work the authors plan to consider
adaptive homing and synchronizing experiments for Input/Output automata as well as extracting
appropriate classes with “good” complexity estimates for such experiments.
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