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Abstract—We present a model of a stochastic observation system that allows for time delays
between the received observation and the actual state of the observed object that formed these
observations. Such delays can occur when observing the movement of an object in a water
medium using acoustic sonars and have a significant impact on the accuracy of position tracking.
We present equations to solve the optimal mean square filtering problem. Since the practical use
of the optimal solution is barely feasible due to its computational complexity, we pay the main
attention to an alternative, suboptimal but computationally efficient approach. Specifically, we
adapted a conditional minimax nonlinear filter (CMNF) to the proposed model and formulated
sufficient existence conditions for its estimate. We conducted a computational experiment on a
model that is close to practical needs. The results of the experiment show the effectiveness of
CMNF in the model considered. However, they also show a significant decrease in the quality of
estimation compared to the model without random observation delays, which can be considered
as a motivation for further research into the model and related problems.
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1. INTRODUCTION

One of the most versatile tools for describing the behavior of systems that change over time
are stochastic dynamic system models. If information about the unknown state of the system
is only available through indirect observations, then the key to solving almost any problem is
the filtering problem, that is, estimating the current state of the system with the occurrence of
the subsequent observation. The solution of the filtering problem, which is important in itself,
provides a means of solving other problems such as analysis (e.g., parameter identification) and
synthesis (e.g., feedback control) of stochastic systems. These problems have remained relevant for
many years for a variety of applications and fundamental research. Among numerous applications,
some of the most significant examples of the use of stochastic filtering methods involve tracking
and navigation problems [1]. The traditional context for such applications is aircraft (manned
or unmanned) and radar observation equipment. In recent years, the same problems have been
investigated more frequently in another applied context involving autonomous underwater vehicles
(AUVs) or “underwater drones” [2]. This class of robotic systems has many different applications
and most of them require solving tracking and navigation problems [3–5]. Well-known methods
of stochastic filtering from the Kalman filter [6] and its non-linear suboptimal analogs like the
extended Kalman filter [7] to modern trendy concepts of sigma-point filters (the pioneering work
on this topic is [8], a well-executed overview is [9]) are applicable to the models of these systems.
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However, significant details are revealed for problems related to the water medium. For example, a
well-known property of acoustic sensors is the dependence of sound speed on temperature, salinity,
and water pressure [10]. This property is well explored in [11] in the problem of building a robust
navigation system that combines measurement data from acoustic sensors with information from
other sensors in the onboard inertial navigation system. The study [12] applies a similar model and
approach, but with a focus on the performance of using Doppler sensors. This work suggests the
possibility of investigating an observer model that takes into account observation delays depending
on the distance to the object. Indeed, when modeling the movement of underwater vehicles, in
particular autonomous vehicles and typical means of observing them, observations of the position
of the vehicle are considered immediately available, and the time delay between initiating the next
measurement cycle by the sensor and receiving the result of this measurement is not taken into
account. Traditionally, they ignore this delay, which is entirely justified for aircraft and various
radars and is physically understandable. In addition, models with time delay are not very popular
because deterministic delay does not introduce any new quality into the filtering problem. Finally,
proposing a meaningful model requires understanding the nature of the delay. The movement of
underwater vehicles, unlike aircraft, provides substantive answers to these questions. Specifically,
since the sensors use sound waves that are transmitted through the water medium, delays, first of
all, can be significant and, secondly, will change along with the distance to the observed object.
Based on these premises, this paper proposes a fundamentally new model of a stochastic dynamic
observation system, which is described in Section 2. Sections 3 and 4 present solutions to the
filtering problem—optimal and conditional minimax filters [13]. Section 5 discusses the results of
the numerical experiment that models the movement of an AUV in a plane with constant speed,
for which acoustic observations are made from two remote points (range and angle to the target are
measured). We highlight the fundamental difference in the effectiveness of estimating the position
of the vehicle from observations with and without delay. We also discuss the perspectives for solving
other problems related to the model under consideration, in particular, the possibility of identifying
motion parameters.

2. MODEL OF DYNAMICAL SYSTEM WITH RANDOM OBSERVATION DELAYS

We describe the observation system in discrete time t = −T,−T + 1, . . . , 0, 1, . . . . We assume
the filtering process starts at t = 0, when it is required to acquire the first state estimation, but
the system started its evolution some time T earlier. The state xt ∈ R

px of the system is described
with standard form difference equations:

xt = ϕt (xt−1, wt) , x−T−1 = η, (1)

where wt ∈ R
pw is discrete white noise that models perturbations, and η ∈ R

px is initial condition.

The observation time delay value τt is modeled as a random sequence, the elements of which are
discrete random variables with values in the set {0, 1, . . . , T} and is a function of the state xt :

τt = θt (xt) . (2)

Indirect observations yt ∈ R
qy are described by equations of the following form:

yt = ψt(xt−τt , vt), (3)

where vt ∈ R
qv is discrete white noise that models measurement errors. We assume that the vectors

η,wt, vt are mutually independent.

Thus, the only difference between this model and the traditional non-linear observation system
with discrete time is the dependence of the current observation yt on the state calculated before
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time t by a random variable τt. This formulation follows from the above practical interpretation
of the problem as tracking the movement of an AUV. We do not aim to propose a model of
maximum generality. For example, there is no standalone perturbation in (2), and all observations
are delayed by the same amount in (3). If necessary, we can expand the model by considering
additional disturbances in (2), simply by expanding its state vector. It is also possible to make τt
a vector. However, it is more important to form a qualitative idea of the model (1)–(3), even if it
is not in the most general form.

Consider the problem of the state xt estimation based on observations ys, s = 0, 1, . . . , t, the

criterion of accuracy x̂t is mean-root-square: E
{
‖xt − x̂t‖2

}
, E {x} is statistical expectation x,

‖x‖ is common Euclidean norm of the vector x.

Note that there are several reasons to refine both the state (1) and observation (3) models.
Therefore, the existence of a solution to the filtering problem is the availability of the second
moments of the process xt, which is ensured by limiting the linear growth of the function ϕt,
which is too burdensome for practical purposes. We also require a compromise description for
the application of several popular suboptimal filters, such as the extended Kalman filter [7] or
Sigma-point filters [8]. Although such filtering methods cannot be applied to this model, the need
to replace model (1)–(3) with some diffusion-type alternative is evident. Finally, we need the
simplified form (1)–(3) to write the equations of the optimal filter presented in the next section.

3. OPTIMAL FILTRATION

The proposed and possibly only approach to obtaining the optimal filtering equations in the given
problem consists of writing the recurrent Bayesian relations for the posterior probability density,
which is a typical solution for discrete observation systems [14]. To simplify the representation, we
refine the model (1)–(3) as follows:

xt = ϕt (xt−1) + wt, x−T−1 = η,

yt = ψt (xt−τt) + vt.
(4)

We assume that the probability density functions of the vectors wt, η, and vt to be known. To
denote these densities, as well as the densities of others, including conditional distributions, we will
use the same method. Let the random vector (x′, y′)′, where x ∈ R

p, y ∈ R
q, ′ is the symbol of

transposition, has both joint and marginal probability densities. Then, the marginal density of x is
denoted by fx(X), the joint density of x and y is denoted by fx,y(X,Y ), and the conditional density
of x with respect to y is denoted by fx|y(X|Y ) (assuming additionally that fy(Y ) > 0). Thus, we
use the same lowercase letters to denote the arguments corresponding to the random variables.

Let yt denote the vector of all observations up to the moment t inclusive, i.e., yt = (y′0, . . . , y′t)
′.

Note that the system with observations (4) is not Markovian, but can be represented as a
component of a Markov process by expanding the state vector. Let xt ∈ R

(T+1)px be the new state

vector defined as follows: xt =
(
x′t−T , . . . , x

′
t−1, x

′
t

)′
, i.e., it includes all states from the moment

t − T to the current moment t. Note that we use boldface symbols for the extended state and
its corresponding probability characteristics that are used later. The state equations now take the
form

(xt)
px
1 = (xt−1)

2px
px+1 ,

. . .

(xt)
Tpx
(T−1)px+1 = (xt−1)

(T+1)px
Tpx+1 ,

(xt)
(T+1)px
Tpx+1 = ϕt

(
(xt−1)

(T+1)px
Tpx+1

)
+ wt,

xt = Φt (xt) +wt, wt =

⎛⎜⎜⎜⎝
0
. . .
0
wt

⎞⎟⎟⎟⎠ , (5)
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where (x)ji denotes a sub-vector of vector x with elements from the ith to the jth. Therefore, we
replace the state function ϕt from (4) with Φt from (5). The observer function ψt will be replaced
with Ψt:

Ψt (xt) =
(
ψ′
t ((xt)

px
1 ) , . . . , ψ′

t

(
(xt)

(T+1)px
Tpx+1

))′
=
(
ψ′
t (xt−T ) , . . . , ψ

′
t (xt)

)′
.

Instead of (2), let us define the function Θt (xt) that takes the value in the set of unit vectors
{e0, . . . , eT } of the space RT+1 in such a way that Θt (xt) = ei if θt (xt) = i. This denotation allows
us to write the observation equation as follows:

yt = Θ′
t (xt)Ψt (xt) + vt. (6)

Therefore, we have the canonical form of a Markovian observation system with discrete time
(5)–(6). We can formally write the recurrent Bayesian relations for the posterior probability density
for the conditional distribution of the state xt of this system relative to the observations ys, s =
0, . . . , t, [14]:

fxt|yt
(
Xt

∣∣∣Y t
)
=

∫
fxt|xt−1

(Xt|Xt−1) fxt−1|yt−1

(
Xt−1

∣∣Y t−1
)
dXt−1 · fyt|xt

(Yt|Xt)∫ ∫
fxt|xt−1

(Xt|Xt−1) fxt−1|yt−1 (Xt−1|Y t−1) dXt−1 · fyt|xt
(Yt|Xt) dXt

. (7)

We write (7) with the assumption that all occurring densities exist. For this reason, certain re-
finements are required with respect to the transition density fxt|xt−1

(Xt|Xt−1), that can be written
only using generalized δ-functions. Beyond that, we can refine the form of density fyt|xt

(Yt|Xt).
For this purpose, let us adjust the derivation of (7). While repeating the first steps, let us introduce
the posterior density in the following form:

fxt|yt
(
Xt

∣∣∣Y t
)
=

fxt,yt
(
Xt, Y

t
)

fyt (Y t)
=

fxt,yt−1,yt

(
Xt, Y

t−1, Yt
)

fyt (Y t)

=
fxt,yt−1

(
Xt, Y

t−1
)
fyt|xt

(Yt|Xt)

fyt (Y t)
.

Then, for the first multiplier:

fxt,yt−1

(
Xt, Y

t−1
)
= fxt−T ,...,xt,yt−1

(
Xt−T , . . . ,Xt, Y

t−1
)

=

∫
fxt−T−1,xt−T ,...,xt,yt−1

(
Xt−T−1,Xt−T , . . . ,Xt, Y

t−1
)
dXt−T−1

=

∫
fxt|xt−1, yt−1

(
Xt

∣∣∣Xt−1, Y
t−1
)
fxt−1, yt−1

(
Xt−1, Y

t−1
)
dXt−T−1

=

∫
fxt|xt−1

(Xt|Xt−1) fxt−1|yt−1

(
Xt−1

∣∣∣Y t−1
)
dXt−T−1 · fyt−1

(
Y t−1

)
=

∫
fxt−1|yt−1

(
Xt−1

∣∣∣Y t−1
)
dXt−T−1 · fxt|xt−1

(Xt|Xt−1) fyt−1

(
Y t−1

)
=

∫
fxt−1|yt−1

(
Xt−1

∣∣∣Y t−1
)
dXt−T−1 · fwt (Xt − ϕt (Xt−1)) fyt−1

(
Y t−1

)
.

We made the last manipulations assuming that T > 1. This condition must be met in order for
the considered delay model to be meaningful.
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The step we made with the first multiplier allows us to use the transition density fxt|xt−1
(Xt

∣∣Xt−1)
of the assumed state instead of the transition density fxt|xt−1

(Xt|Xt−1) of the expanded state,

as well as calculating the R
px space integral

∫ ·dXt−T−1 instead of the R
(T+1)px space integral∫ ·dXt−1.

Now, for the second multiplier:

fyt|xt
(Yt|Xt) =

T∑
i=0

I (Θt (Xt) = ei)fyt|xt
(Yt|Xt,Θt (Xt) = ei)

=
T∑
i=0

I (θt (Xt) = i)fyt|xt,τt=i (Yt|Xt, τt = i)

=
T∑
i=0

I (θt (Xt) = i)fvt (Yt − ψt (Xt−i)) .

Finally we obtain

fxt|yt =

∫
fxt−1|yt−1dXt−T−1 · fwt(Xt − ϕt(Xt−1))

∑
i
I(θt(Xt) = i)fvt(Yt − ψt(Xt−i))

fyt (Y t) /fyt−1 (Y t−1)

=

fwt(Xt − ϕt(Xt−1))
∑
i
I(θt(Xt) = i)fvt(Yt − ψt(Xt−i))

∫
fxt−1|yt−1dXt−T−1∫

fwt(Xt − ϕt(Xt−1))
∑
i
I(θt(Xt) = i)fvt(Yt − ψt(Xt−i))

∫
fxt−1|yt−1dXt−T−1dXt

.

We omit the arguments of the densities in the last equality: fxt|yt(Xt

∣∣Y t) and fxt−1|yt−1(Xt−1

∣∣Y t−1),

furthermore, we denote the sum
∑T

i=0 as
∑

i and account for the coefficient fyt
(
Y t
)
/fyt−1

(
Y t−1

)
being a normalizing factor.

Therefore, we obtain the following statement.

Theorem 1. Let the following probability densities exist for the system (4): perturbation fwt(Wt),
t = −T,−T + 1, . . . , observation errors fvt(Vt), t = 0, 1, . . . , and initial condition fη(X−T−1). Then

the posterior probability density ρt = ρt
(
Xt

∣∣Y t
)
of the expanded state xt =

(
x′t−T , . . . , x

′
t−1, x

′
t

)′
,

t = 0, 1, . . . , of this system with respect to the observations yt = (y′0, . . . , y′t)
′ , t = 0, 1, . . . , and the

optimal filter estimation x∗t = E
{
xt
∣∣Y t
}
of the state xt lead to the following recurrent equalities

being satisfied:

ρt =

fwt (Xt − ϕt (Xt−1))
∑
i
I (θt (Xt) = i) fvt (Yt − ψt (Xt−i))

∫
ρt−1dXt−T−1∫

fwt(Xt − ϕt(Xt−1))
∑
i
I(θt(Xt) = i)fvt(Yt − ψt(Xt−i))

∫
ρt−1dXt−T−1dXt

,

x∗
t =

∫
Xtρt

(
Xt

∣∣∣Y t
)
dXt, x∗t = (x∗

t )
(T+1)px
Tpx+1 ,

(8)

with initial condition

ρ−1

(
X−1

∣∣∣Y −1
)
= ρ−1 (X−1) = ρ−1 (X−T−1, . . . ,X−1)

= fη (X−T−1) fw−T
(X−T − ϕ−T (X−T−1)) · . . . · fw−1 (X−1 − ϕ−T (X−2)) .

Here, as above, we omit the arguments of the densities ρt
(
Xt

∣∣Y t
)
, and simplified the sum.

Note that there are no formal reasons that prevent computer implementation of the obtained
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relation (8). Unlike (7), all multipliers in (8) are described by ordinary functions, so integrals
can be computed using any approximate method. However, the feasibility of such a computer
calculation is another question. It depends on the dimensions, which are mainly determined by
the value of (T) rather than the dimensions of the observation system px and qy. In the example
discussed later in the article, T = 75, and this choice is confirmed by examples of real-life modeled
trajectories. Under more realistic conditions, T can reach several hundred. Consequently, even
with the low state (px = 2) and observation (qy = 4) dimensions used in the model example, the

integrals in (7) would have to be computed over R150 and R
300, which is practically impossible. The

purpose of relations (8) and the canonical representation of the studied observation system (5)–(6)
is to justify the impossibility of practical implementation of even an approximate optimal filter, as
well as the application of common suboptimal filtering methods. Thus, the formal representation
(5)–(6) does not prevent the application of well-known filters, such as extended Kalman filters,
polynomial, sigma-point, and other similar filters, as well as more precise constructions such as
particle filters [15]. However, the mentioned features show the futility of such attempts. The only
concept of practical filtering that remains relevant for the considered case is conditional minimax
filtering.

4. CONDITIONAL MINIMAX FILTERING

The ideas and detailed description of the conditional minimax nonlinear filter (CMNF) are
presented in several accessible works [13, 16], so we briefly present the following main provisions
with the notation used in the article.

The CMNF estimate x̂t of the state xt based on the observations yt is sought in the form
of a prediction correction x̂t = x̃t +Δx̂t. To calculate the prediction, we use a basic prediction
function ξt = ξt(x), a typical example of which is a prediction based on the system (1), i.e.,
ξt (x̂t−1) = ϕt (x̂t−1, E {wt}) and ξt∈ R

px . To calculate the correction, we use a basic correction
function ζt = ζt(x, y), a typical example of which is the disparity of the observations (3), i.e.,
ζt (x̃t, yt) = yt − ψt(x̃t, E {vt}) and ζt∈ R

qy . The conditional minimax prediction x̃t and the correc-
tion Δx̂t are solutions to the following optimization problems:

x̃t = Ξ̃t (ξt) , Ξ̃t = argminΞt
max
Fz

E
{
||xt − Ξt (ξt) ||2

}
,

Δx̂t = x̂t − x̃t = Ẑt (ζt) , Ẑt = argminZt
max
FZ

E
{
||xt − x̃t − Zt (ζt) ||2

}
,

(9)

where Fz denotes the distribution of the vector z, with respect to which we suggest that Fz ∈
F(mz,Dz) — a class of all probability distributions with mean mz and covariance Dz. Accordingly,
in the first problem, z = (x′t, ξ′t)

′, and in the second problem z = (x′t − x̃′t, ζ ′t)
′. Thus, we refine the

basic prediction and correction in the best way (in terms of mean square closeness to the estimated
state) with the assumption that only the second-order moment characteristics of the estimated and
observable variables are known.

It should be noted that in general, the choice of basic prediction and correction may be an inde-
pendent problem with a solution that ensures the consideration of the specific features of the partic-
ular dynamic system. For instance, ξt and ζt are not limited to the dimensions px and qy. The typical
choice of the basic correction proposed in the considered problem ζt (x̃t, yt) = yt − ψt(x̃t, E {vt})
essentially ignores observation delays. Perhaps a more correct choice would be the basic correc-

tion in the form of ζt (x̃t, yt) = yt − ψt

(
x̃t−τ̃t

, E {vt}
)
, τ̃t = θt (x̃t), i.e., utilizing a delay model (2)

in the basic filter structure. We consider further investigation of this prediction structure, but
currently it seems excessive. The optimization of the parameters in (9) should use the difference
yt − ψt(x̃t, E {vt}) no less effectively, while the dimension of the filter will be the same as in the
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case without considering time delay, whereas the “more complex” correction yt − ψt

(
x̃t−τ̃t

, E {vt}
)
,

τ̃t = θt (x̃t), will lead to a significant increase in the dimension of the filter since it requires storing
all predictions x̃t−τ , τ = 0, 1, . . . , T.

Since the worst distribution in problem (9) is normal and the corresponding best mean square
estimate is determined by the normal correlation theorem [17], the optimal minimax functions
sought Ξ̃t (ξt) and Ẑt (ζt) are linear, i.e.,

x̃t = Ftξt + ft, ξt = ξt (x̂t−1) ,

x̂t = x̃t +Htζt + ht, ζt = ζt (x̃t, yt) ,
(10)

where

Ft = cov (xt, ξt) cov
+ (ξt, ξt) , ft = E {xt} − FtE {ξt} ,

Ht = cov (xt − x̃t, ζt) cov
+ (ζt, ζt) , ht = −HtE {ζt} .

(11)

In (11) we use denotations cov(x, y) for covariance of x and y, + for the Moore–Penrose pseu-
doinverse operation.

In this case, the prediction x̃t and the state estimate x̂t are unbiased and provide the following
quality of estimation:

K̃t = cov (xt − x̃t, xt − x̃t) = cov (xt, xt)− Ftcov (ξt, xt) ,

K̂t = cov (xt − x̂t, xt − x̂t) = K̃t −Htcov (ζt, xt − x̃t) .
(12)

It is important to understand that the relations (10)–(11) define the conditionally optimal Pu-
gachev filter [18, 19], the linear structure of which is initially postulated. Accordingly, the concept
of CMNF complements this filter with a minimax justification of the structure. However, the sec-
ond element of the CMNF concept is no less important—it is the way of practically determining
the coefficients Ft, ft, Ht, and ht using the Monte Carlo method, that is, computer simulation
modeling, which is used to obtain the filter by substituting the mathematical expectations and
covariances in (11) with their statistical estimates obtained through simulation modeling.

Applying it to the considered model (1)–(3) or its particular case (4), it remains to formulate
the conditions for the existence of a solution (9). The following statement gives a convenient set of
sufficient conditions for the existence of the CMNF estimation.

Theorem 2. Let one of the following conditions be met :

1) for the observation system (1)–(3)

a) the function exists Cϕ(w)> 0, w∈R
pw , such that E{Cϕ(wt)}<∞, t = −T,−T + 1, . . . ,

0, 1, . . . , and ‖ϕt(x,w)‖2 < Cϕ(w)
(
1 + ‖x‖2

)
, x ∈ R

px;

b) the function exists Cψ(v) > 0, v ∈ R
qv , such that E{Cψ(vt)} < ∞, t = 0, 1, . . . , and

‖ψt(y, v)‖2 < Cψ(v)
(
1 + ‖y‖2

)
, y ∈ R

qy ;

c) constants Cξ > 0 and Cζ > 0 exist such that structural functions of CMNF satisfy

‖ξt(x)‖2 < Cξ

(
1 + ‖x‖2

)
and ‖ζt(x, y)‖2 < Cζ

(
1 + ‖x‖2 + ‖y‖2

)
;

2) for the observation system (4)

a) perturbations wt, observation errors vt and initial conditions η have normal distributions
(or any distributions with all moments finite);

b) constants C > 0 and D > 0 exist such that ‖ϕt(x)‖2 + ‖ψt(y)‖2 + ‖ξt(x)‖2 + ‖ζt(x, y)‖2 <
C
(
1 + ‖x‖D + ‖y‖D

)
.
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Then the prediction x̃t and the estimation x̂t of the conditional minimax filter (9) exist, are
described by the relations (10), (11), and provide the quality of filtration (12).

This statement is an adaptation of the existence theorems [13]. The proof consists of two essential
points. Firstly, it is the solution of minimax problems (9), which provides the already mentioned
property of a linear estimate determined by the theorem of normal correlation, together with the
worst normal distribution in the class F(mz,Dz). The second element of the proof is the existence

of second moments of vectors (x′t, ξ′t)
′ and (x′t − x̃′t, ζ ′t)

′ assuming the moment E
{
‖x̂t−1‖2

}
< ∞.

The sufficiency of conditions 1) for the model (1)–(3) or 2) for (4) can be conveniently confirmed
by using the expanded system (5). Specifically, by expressing the observation system using the
variable xt and taking into account that ‖Θt (x)‖ = 1, we obtain the same canonical notation for
the observation system used in [13], and therefore the sufficiency of conditions 1) and 2) for the
existence of the required second moments.

Qualitatively, the content of the conditions 1) and 2) implies the limitation of the growth rate of
the model functions and filter structure at infinity: in conditions 1), it is linear growth and bounded
random factors, and in conditions 2), it is polynomial growth and the existence of all moments of
random factors.

Thus, to confirm the applicability of the CMNF estimate in the problem considered with random
observation delay, it remains to verify, through numerical experiments, the possibility of approx-
imate calculation of the filter parameters (11) and compare the actual filtering quality with the
computed values (12), obtained by Monte Carlo estimation of the parameters (11).

5. TRACKING AN UNDERWATER TARGET MOVING IN A PLANE
WITH CONSTANT SPEED

To conduct a practical experiment on the investigated problem and filtering algorithm, we used
a simple planar motion model with constant velocity. We assume that an autonomous underwater
vehicle moves at depth in the horizontal plane Oxy. Figure 1 schematically illustrates the motion
of the AUV and observations of it. We use the common notations x(t) and y(t) to denote the
coordinates of the motion trajectory, and take kilometers (km) as the unit of its measurement.
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18

y

11
7 8 9 x
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6

Fig. 1. Motion and observation schematic, and an example of typical trajectories: (1)—direct position estima-
tion x̆t, (2)—AUV trajectory xt, (3)— CMNF estimation x̂t.
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The use of x and y here should not cause confusion in connection with the general notations
xt and yt used above for states and observations. The initial position of the AUV is given by
the vector (x(−T − 1), y(−T − 1))′, which has a normal distribution with mean of (0, 12.5)′ and
covariance of diag {25, 100}. The coordinate components of the velocities are constant and equal
to vx = 25 km/h and vy = 50 km/h, respectively. The time unit is hours (h), and the observation
sampling rate is h = 0.0001 h, which corresponds to a frequency of about three measurements per
second. The calculation is performed for 1000 sampling rates, which corresponds to 6 minutes of
motion. During this time, the AUV moves an average distance of about 5.5 km.

The delay parameter T will take two values. First, the results of the calculation for T = 0 will be
shown, i.e., under normal observation conditions without delay. Then, we assume T = 75, i.e., the
maximum delay of 0.0075 h or 27 s. The figures below show that for the selected case parameters,
such a delay value corresponds to the physical interpretation used, i.e., there are trajectories for
which the observation delay is close to the specified maximum.

We assume that the motion of the AUV is influenced by uncontrolled disturbances, which are
modeled by additive perturbations wx(t) and wy(t). The vector (wx(t), wy(t))

′ has a normal distri-
bution with mean of (0, 0)′ and covariance of diag {1, 4}. Thus, we obtain the following dynamics:

x(t) = x(t− 1) + hvx +
√
hwx(t),

y(t) = y(t− 1) + hvy +
√
hwy(t).

(13)

The observers are located at two points on the same plane Oxy: the first one has coordi-
nates (0, ly), ly = 25 km, i.e., located at a distance of 25 km from the origin along the Oy axis,
and the second one has coordinates (lx, 0), lx = 12.5 km, i.e., located at a distance of 12.5 km
from the origin along the Ox axis. The observers are identical, each measuring the range, d1(t)
and d2(t), and the directional cosine to the object, c1(t) and c2(t). We assume the observation
error vector (vd1(t), vd2(t), vc1(t), vc2(t))

′ to be Gaussian with mean of (0, 0, 0, 0)′ and covari-
ance of diag

{
0.0012, 0.0052, 0.0012, 0.0052

}
. Since in practice such measurements can only be

implemented with sonars, it should be noted that the assigned accuracy parameters do not fully
reflect the accuracy of real devices [20]. In the described experiment, such accuracy characteristics
are used to maintain at least the apparent competitiveness of the alternative filtering algorithm,
the algorithm for direct position calculation, described below. Increasing observation errors leads
to the loss of meaning of this algorithm.

Now then, we have the following observations:

d1(t) =
√
(x (t− τt))

2 + (y (t−τ t)− ly)
2 + vd1(t),

c1(t) =
(y (t−τ t)− ly)√

(x (t−τ t))
2 + (y (t−τ t)− ly)

2
+ vc1(t),

d2(t) =
√
(x (t−τ t)− lx)

2 + (y (t−τ t))
2 + vd1(t),

c2(t) =
(x (t−τ t)− lx)√

(x (t−τ t)− lx)
2 + (y (t−τ t))

2
+ vc2(t).

(14)

It remains to define the model τt. For the first calculation, the assumption T = 0 automatically
implies τt = 0. For the second calculation, it is convenient to define the model τt with two ran-
dom variables τ1(t) and τ2(t), reflecting the observation delays for the first and second observers,
respectively. Taking into account the sampling rate of h = 0.0001 h and the approximate speed of
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sound in water of vs = 6000 km/h, we express τ1(t) and τ2(t) in terms of the distances from the
observers to the AUV, i.e.,

τ1(t) = min

⎧⎨⎩T,
⎡⎣
√
(x(t))2 + (y(t)− ly)

2

(hvs)

⎤⎦⎫⎬⎭ ,

τ2(t) = min

⎧⎨⎩T,
⎡⎣
√
(x(t)− lx)

2 + (y(t))2

(hvs)

⎤⎦⎫⎬⎭ .

(15)

Here, we use the notation [x] for the integer part of x, and take into account the potential
possibility of the object being removed to a distance for which the delay exceeds the maximum
value T . Note that in (14), instead of the general delay notation τt, we use the values τ1(t)
for d1(t) and c1(t), and the values τ2(t) for d2(t) and c2(t). Thus, the delay model (15) has an
even more general form than (2). In fact, there is no fundamental generalization here, and it is
easy to adjust the model (2) to account for the different delays obtained in this case study for
different observations. Since these circumstances do not affect the filtering, we will not dwell on
them further.

To analyze the quality of filtering provided by the CMNF estimate, an alternative method for
estimating the position of the AUV is required. As noted above, known suboptimal filtering algo-
rithms are not applicable to the model under consideration. For a different reason of computational
nature but with the same result, it is not possible to calculate the estimate of the optimal filter,
defined by Theorem 1. The only implementable alternative at this stage of the study is the di-
rect position calculation algorithm or the least-squares method. The estimate x̆t = (x̆(t), y̆(t))′ of
this filter is obtained as follows. First, assume that there is no delay and no observation errors
in (14). Then, each pair of measured ranges and cosines can be obviously recalculated to coordi-
nates (x̆1(t), y̆1(t)) and (x̆2(t), y̆2(t)). Now, the estimate of the position x̆t is the midpoint of the
segment that connects these two points. This rather primitive estimate is not that bad for this
problem. The point is that using other algorithms, such as the extended Kalman filter, various
versions of sigma-point filters, and others, which are used without taking into account the delay, is
likely to lead to filter divergence, whereas the estimate of direct position calculation filter cannot
diverge, as it does not consider any dynamics and only uses a single point observation.

To synthesize the CMNF and analyze its quality, we modeled two independent sets of 100 000
trajectories. For the first set, we calculated the filter parameters using formulas (11) and (12), where
the mathematical expectations were replaced by the statistical means, i.e., using the Monte Carlo
method. For the second set we evaluated the real quality of the CMNF estimate x̂t = (x̂(t), ŷ(t))′

and the estimate x̆t. We compared the accuracies of the coordinates estimation of the AUV position,
determined by the root mean square deviations of the estimation errors denoted as σx̂(t), σŷ(t) for
the CMNF estimate x̂t and as σx̆(t), σy̆(t) for the direct position estimate x̆t.

First, let us consider the results obtained in the first calculation, assuming that T = 0. Figure 1
shows a typical trajectory of the AUV movement (x(t), y(t)) and the corresponding estimates x̆t
and x̂t, in addition to the already mentioned motion schematic. Besides the very high accuracy of
the CMNF estimate, it should be noted that, compared to it, the direct position estimate is not
very informative. Figure 2 presents the formal characteristics. Additionally, it should be noted
that the experiment confirms the nonbias of the CMNF estimate, and the estimate x̆t is slightly
biased—about 1 m along the x variable and 0.5 m along the y variable, which is unlikely to be
significant given such quality of estimation. With quite accurate range measurements, the low
quality of point observations is provided by the error in measuring the directional cosine, which,
at the existing distance to the AUV, leads to a very large error in the scale of kilometers of the
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Fig. 2. Root mean square deviations: (1) — σx̂(t), (2) — σŷ(t), (3) — σx̆(t), (4) — σy̆(t).
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Fig. 3. Cases of typical trajectories of the model with delays: (1) — direct position estimation x̆t,
(2) — AUV trajectory xt, (3) — CMNF estimation x̂t.

position estimate. Of course, this estimate should not be used. However, in the next calculation,
its quality will not seem that unacceptable.

In the next calculation, we keep all the parameters, and show the same trajectory (x(t), y(t))
in Fig. 3 as in Fig. 1, but with T = 75. Visually, this example shows that the accuracy of the
CMNF estimate has significantly decreased, while the accuracy of the direct observation estimate
has not changed much. This was to be expected for an estimation that uses only a single point
observation. Its accuracy could not be greatly affected by the delay, since compared to the speed
of sound waves, even in water, the speed of the AUV is small compared to the existing error in the
direct position calculation filter estimate. Figure 4 formally illustrates the quality and shows the
root mean square deviations for the estimation errors of the coordinates of the AUV position. And
the main thing here is the decrease in the quality of the CMNF estimate by an order, although,
of course, it continues to significantly exceed the direct observation estimate. The reason for this
decrease is the process τt, or more specifically, τ1(t) and τ2(t). Figure 5 illustrates the real delay
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Fig. 4. Root mean square deviations in the model with delays: (1) — σx̂(t), (2) — σŷ(t),
(3) — σx̆(t), (4) — σy̆(t).
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Fig. 5. Cases of observation delay trajectories: (1), (3), (5) — τ1(t), (2), (4), (6) — τ2(t),
pairs (1)–(2), (3)–(4), (5)–(6) correspond to similar trajectories xt.

values. As can be seen, it may take tens of seconds—the time in which the AUV can swim hundreds
of meters. The insights from the experiment are formulated in the conclusion. Note, however, that
the sections of linear growth of τ1(t) and τ2(t) at the initial stage are related to the absence of
observations at the initial moments t = 0, 1, . . . , until the values of t greater than the delays for a
given trajectory are reached. Such a difference in the implementation of the experiment compared
to the formal description of the model (1)–(3) is necessary in order to model both cases with and
without observation delays on the same set of trajectories.

6. CONCLUSION

The attempt presented in this paper to approach the physical reality of sonar observation of
underwater targets is expressed by a simple model of random observation delay, which is unknown
and dependent on the state of the system. Such a simple delay model resulted in an observation
system that is rather complex for a filtration problem. In fact, the delay is a multidimensional
multiplicative noise in the observations. Dealing with such noise is extremely difficult. Many
suboptimal filtering algorithms even exclude the possibility of such noise right at the level of ob-
servation modeling. The goals of the conducted experiment were, first, to confirm the performance
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of the conditional minimax filter concept and, secondly, to understand the magnitude of the loss in
estimation quality compared to the delay-free model. We achieved both goals, but there are still
a number of questions for further study. The first thing that needs improvement is the quality of
the state estimation provided by the CMNF. We used the simplest filter structure in the paper,
while the physics of the case study allows reasonable proposals for more flexible solutions, which
is the direction of the conditional optimal filtration concept and CNMF in particular. The second
direction is the generalization of the motion model, involving the absence of information on the
movement parameters. Indeed, at least the velocity of the AUV movement, or rather its system-
atic component, can hardly be considered known. Thus, we must solve the identification problem
in parallel with filtration. This is a typical situation in practice, but here it will be significantly
burdened by random delay. Finally, the third question is the use of Doppler observations. The
study [12] shows how essential the estimation using simple sonar observations improves if there
are even not very accurate velocity data. In the model considered, this effect can be even more
significant.
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