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Abstract—In this paper, the problem of suboptimal stabilization of an object with discrete
time, output and control uncertainties, and bounded external perturbation is considered. The
autoregressive nominal model coefficients, uncertainty amplification coefficients, norm and ex-
ternal disturbance offset are assumed to be unknown. The quality indicator is the worst-case
asymptotic upper bound of the output modulus of the object. The solution of the problem
in conditions of non-identifiability of all unknown parameters is based on the method of re-
current target inequalities and optimal online estimation, in which the quality index of the
control problem serves as an identification criterion. A non-linear replacement of the unknown
parameter perturbations that reduces the optimal online estimation problem to a fractional
linear programming problem is proposed. The performance of adaptive suboptimal control is
illustrated by numerical simulation results.

Keywords : robust control, adaptive control, optimal control, bounded perturbation, model ver-
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1. INTRODUCTION

In the 1980s, it was shown in the famous [1, 2] articles that the adaptive control algorithms
known, by that time, in the deterministic formulation do not guarantee stability of adaptive sys-
tems in the presence of any small external perturbations or non-modulated dynamics. During the
next two decades, various modifications of standard estimation algorithms were proposed to ensure
robust stability of adaptive systems (robust implies stability of the system in the presence of opera-
tor perturbations, which are called uncertainty in the theory of robust control). The robust stability
was proved for sufficiently small operator perturbations using the apparatus of Lyapunov functions
and independently of the robust control theory in the H∞ formulation, which was developed in the
same years at the same time [3]. The works of this field became known as robust adaptive control
[4–6]. At the same time, the problem of finding the nominal (i.e. unperturbed) model and levels of
uncertainties and external perturbations from measurement data was recognized in the mid-1990s
as the main problem for practical applications of H∞ theory [7]. Therefore, assessing the quality of
a given or resulting identification model of the controlled object has been called a central problem
in systems identification theory [8]. To this date, this problem remains open and relevant even in
the tasks of offline identification, i.e. identification by a given set of measurements, rather than by
the course of control [9].

In the early 1990s, fundamental results were obtained in the theory of robust control in the
�1-formulation, in which the basic signal space is the space of �∞-bounded real sequences and the
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SUBOPTIMAL ROBUST STABILIZATION 655

control quality indicators are formulated in terms of �∞ norms of the control system output [10, 11].
In the �1 theory of robust control, in contrast to H∞ theory, explicit representations for asymptotic
quality indices for systems with structured uncertainty, external bounded perturbations, and given
command signals were obtained [12–15]. This made it possible to propose a general method for the
synthesis of an adaptive optimal robust control with a given accuracy, potentially implementing
maximum feedback capabilities and providing, under conditions of unidentifiable unknown param-
eters, the same asymptotic control quality as for objects with known parameters [16, 17]. The
importance and relevance of investigating the maximum possibilities of feedback are noted in a
recent review [18]. The mentioned method is based on the method of recurrent target inequali-
ties [19], multiple estimation of unknown parameters, including perturbation parameters, and the
use of the control problem quality index as an ideal identification criterion. For general systems,
this method is not directly implementable due to the high complexity of the task of calculating the
current optimal evaluations under non-convex quality indices and non-convex constraints. That is
why the task of searching the classes of objects or less ambitious problem formulations, for which
this method is implementable (taking into account the growing power of modern computers), seems
relevant. Examples of such less ambitious formulations are, for example, the problem of model vali-
dation and optimal perturbation quantification [20, 21] and the problem of synthesizing an optimal
robust controller for an object with a known transfer function of the nominal object and unknown
norms of the external perturbation and operator perturbations on the output and control [22].
In [23], there are examples of adaptive optimal control problems, in which the optimal values of
quality indicators are linear or fractional-linear functions of the estimated unknown parameters. In
such problems, the optimal estimation is reduced to linear programming and is implemented online
at least for objects of low order.

In this paper, the adaptive optimal robust stabilization problem is considered for a relatively
simple object with an autoregressive nominal model, unknown transfer function coefficients, un-
known output and control uncertainty gain coefficients, and unknown norm and offset of an external
bounded perturbation. The problem is to minimize the worst-case upper bound of the steady-state
output modulus of the object in the class of uncertainties and perturbations under consideration.
The purpose of this paper is to implement the above general method for synthesizing an adaptive
optimal control for the above-described object. The main results of this work are as follows.

1. A special replacement of the unknown parameters of uncertainties and external perturbations
is proposed, through which the control quality index in the considered problem becomes a fractional-
linear function of the unknown parameters, and the sets of estimates of the unknown parameters
consistent with the measurements are described by linear inequalities. The proposed replacement
of the unknown parameters makes it possible to solve the optimal estimation problem in online
mode.

2. The stability of the closed adaptive system in the optimal region of admissible uncertainty
norms, which is universal for all a priori admissible nominal objects, is proved.

3. Under the additional assumption of “unintentionality” of the total perturbation, the opti-
mality of adaptive control with a given accuracy is guaranteed, i.e. the implementation of the
maximum feedback possibilities.

4. Numerical simulation results for an object with five unknown transfer function coefficients
of the nominal model and four unknown perturbation parameters described above illustrate the
performance and optimality of the adaptive control.

5. The problem of quality assessment of the model obtained as a result of identification is solved
in the theory of systems identification in the online mode by calculating the optimal assessments
with the best value of the quality index consistent with the measurement data and guaranteed
in the steady-state mode. The above numerical simulation results clearly illustrate the unfairness
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656 SOKOLOV

of the traditional criticism of identification by means of set-membership approach as a too crude
method. This criticism is based on the traditional and seemingly obligatory assumption that a
priori perturbation bounds, the same for all admissible objects, must be known.

6. The use of the growing computing power of modern computers makes it possible, at least
for low-order objects, to compute online polyhedral estimates of unknown parameters consistent
with measurement data and a priori information about the controlled system. This makes it
possible to solve the problem of online verification of the model and/or a priori assumptions and
their consistency with achieving the desired control quality. Traditional methods of synthesis of
adaptive control based on gradient algorithms and modifications of the least squares method do
not consider the problem of model verification and a priori assumptions.

Notation glossary:
|ϕ|—Eucledian norm of the vector ϕ ∈ R

n;
�e—space of real sequences x = (· · · , x−1, x0, x1, · · · ),
xts = (xs, xs+1, . . . , xt) for x ∈ �e;
|xts| = maxs�k�t |xk|;
�∞—normalized space of bounded real sequences x = (x0, x1, x2, . . .) with the norm ‖x‖ = supt |xt|;
‖x‖ss = lim supt→+∞ |xt|;
�1— normalized space of absolutely summarizable sequences with the norm ‖x‖1 =

∑+∞
k=0 |xk|;

‖G‖ =
∑+∞

k=0 |gk| = ‖g‖1—induced norm of stable linear stationary system G : �∞ → �∞ with
transfer function G(λ) =

∑+∞
k=0 gkλ

k.

2. PROBLEM FORMULATION

The control object with discrete time is described by the model

a(q−1)yt = b1ut−1 + vt, t = 1, 2, 3, . . . , (2.1)

where yt ∈ R is the measured object output at time t, ut ∈ R is the control, vt ∈ R is the total
perturbation, q−1 is the (q−1yt = yt−1) backward shift operator on the linear space �e,

a(q−1) = 1 + a1q
−1 + . . . + anq

−n.

Initial values y01−n = (y1−n, . . . , y0) are arbitrary, yk = 0 when k < 1− n and uk = 0 when k < 0.

A priori information about the control object includes the following assumptions.

AP1. The column vector of the coefficients of the nominal model (i.e. the model without total
perturbation v) belongs to the known bounded polyhedron Ξ,

ξ := (a1, . . . , an, b1)
T ∈ Ξ = { ξ̂ | P ξ̂ � p } ⊂ R

n+1, P ∈ R
l×(n+m), p ∈ R

l,

b1 �= 0 for each ξ ∈ Ξ.

AP2. The total perturbation v is

vt = cw + δwwt + δyΔ1(y)t + δuΔ2(u)t, (2.2)

‖w‖∞ � 1, |Δ1(y)t| � pyt = |yt−1
t−μ|, |Δ2(u)t| � put = |ut−1

t−μ|, (2.3)

where cw is the offset and δw is the norm (upper bound) of the external bounded perturbation
cw + δww, w ∈ �∞ is the unknown normalized external perturbation, δy � 0 and δu � 0 are the
uncertainty amplification coefficients for the output and control, respectively, operators Δ1 : �e → �e
and Δ2 : �e → �e are linear non-stationary or non-linear strictly causal operators with bounded
memory μ (operator Δ : �e → �e is called strictly causal if values zt of the sequence z = Δ(x) only
depend on xt−1

−∞ for all t [10]).
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The uncertainty memory μ is chosen by the designer based on a priori information about the
controlled system and can be chosen as large as desired, but not infinite, without compromising the
quality of the adaptive control synthesized below (see Note 1 at the end of Section 3 and Note 3 in
Section 6).

AP3. Vector θ = (ξT, cw, δw, δy, δu)T of parameters of the (2.1) object is unknown, |cw| � Cw

with the known upper boundary Cw.

The substantive formulation of the problem considered in the paper consists in constructing the
inverse relation ut = Ut(y

t
1−n, u

t−1
0 ,Ξ), guaranteeing the lowest possible upper boundary for the

asymptotic quality index

Jμ(θ) = sup
v

lim sup
t→+∞

|yt|, (2.4)

where sup is taken on the set of perturbations v satisfying the assumption AP2. The inverse relation
is subjected to the requirement of its computational feasibility in online mode, which is difficult to
formalize in exact terms.

The main difficulty of the formulated optimal problem consists in the unidentifiability of the
unknown vector θ in the deterministic formulation under consideration (see Section 4).

3. ROBUST QUALITY OF THE OPTIMAL SYSTEM WITH KNOWN PARAMETERS

For an object with a known vector of coefficients ξ and with a known displacement cw, the
regulator

ut =
1

b1

[
(a(q−1)− 1)yt+1 − cw

]
=

1

b1

[
a1yt + a2yt−1 + . . .+ anyt−n+1 − cw

]
(3.1)

guarantees, for all t, the equality

yt+1 = vt+1 − cw = δwwt+1 + δyΔ1(y)t+1 + δuΔ2(u)t+1 . (3.2)

Because of the unpredictability and arbitrariness of the value vt+1 − cw at time t of the calculated
control ut, it follows that the regulator (3.1) is optimal for the quality index (2.4). Let us introduce
notations for the transfer function from y to u of the regulator (3.1):

Gξ(λ) =
a(λ)− 1

b1λ
=

1

b1

n−1∑
k=0

ak+1 λ
k, ‖Gξ‖ =

1

|b1|
n∑

k=1

|ak| .

The closed system (2.1), (3.1) is called robustly stable in the uncertainty class (2.3) if the value
of the quality index (2.4) is finite. The robust quality of the optimal system (2.1), (3.1) is described
by the following theorem.

Theorem 1. For the closed system (2.1), (3.1) the following statements are true:

1. The system is robustly stable at μ = +∞ if and only if

δy + δu‖Gξ‖ < 1 . (3.3)

2. If the robust stability condition (3.3) is satisfied, then

Jμ(θ) ↗ J(θ) =
δw + δu|cw/b1|
1− δy − δu‖Gξ‖ (μ → +∞), (3.4)

where the ↗ sign indicates monotonic convergence from below at μ → +∞.
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The proof of Theorem 1 is given in the Appendix.

AP4. The unknown parameter vector θ satisfies the inequality

δy + δu‖Gξ‖ � δ̄ < 1 (3.5)

with the known number δ̄.

The assumption of the known upper bound δ̄ is not restrictive. In essence, it consists in the
a priori choice by the constructor of the value δ̄ as close to one as desired without affecting the
control quality and excludes the models near the boundary of the region of robustly stabilizable
objects that are unacceptable for practical applications from consideration. Replacing the open
set of parameters θ characterized by the necessary condition of robust stabilizability (3.3) with a
closed set defined by the inequality (3.5) as close to it as desired allows to formulate rigorous results
about the control quality.

Remark 1. The basic results of the �1 theory of robust control referred to systems with structured
uncertainty with infinite memory (μ = +∞) and only zero initial data [10] and therefore could
not be applied to the problems of adaptive control. The second statement of Theorem 1 makes
it possible to use the exponent J(θ) and the uncertainty model with bounded memory of the
form (2.3) not only for the formulation and solution of adaptive optimal control problems without
loss of control quality, but also for online verification of the object model, including quantification
of uncertainties and external perturbation (i.e. estimation of uncertainty amplification coefficients
and upper bound of external perturbation).

4. OPTIMAL ESTIMATION UNDER CONDITIONS OF NON-IDENTIFIABILITY

This section explains the non-identifiability of all unknown parameters and substantiates the
necessity of using the quality index J as an identification criterion at the content level.

The following simple statement allows us to use the method of recurrent target inequalities to
estimate the unknown parameter vector θ.

Statement 1. If, for some estimation

θ̂ = (ξ̂T, ĉw, δ̂w, δ̂y , δ̂u)T, ξ̂ ∈ Ξ, δ̂w � 0, δ̂y � 0, δ̂u � 0,

of an unknown vector θ for all t, the inequalities

|â(q−1)yt − b̂1ut−1 − ĉw| � δ̂w + δ̂ypyt + δ̂uput , (4.1)

are valid, then the control object (2.1) with parameter vector θ̂ satisfies Eq. (2.1) and a priori
assumptions AP1 and AP2 for all t.

The proof of Statement 1 is given in the Appendix.

It follows from Statement 1 that for any control of the object (2.1) the complete information
about the vector of unknown parameters θ by the time t has the form of inclusion

θ ∈ Θt =
{
θ̂ ∈ Θ0

∣∣ |â(q−1)yk − b̂1uk−1 − ĉw| � δ̂w + δ̂ypyk + δ̂upuk ∀k � t
}
,

where

Θ0 =
{
θ̂ = (ξ̂T, ĉw, δ̂w, δ̂y , δ̂u)T

∣∣ ξ̂ ∈ Ξ, δ̂w � 0, δ̂y � 0, δ̂u � 0, δ̂y + δ̂u‖Gξ̂‖ � δ̄
}

is the a priori set of acceptable parameters.
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The sets Θt consist of vectors θ̂ ∈ Θ0 that satisfy the Eq. (2.1) and the a priori assumptions
AP1, AP2, AP4 for the available measurements yt1−n and ut−1

0 . Obviously, any vector θ̂ with a

sufficiently large component δ̂w lies in Θt. In particular, it follows from this that the parameters ξ
and cw of the optimal regulator (3.1) are unidentifiable under any control of the object (2.1).

The method of recurrent target inequalities consists in constructing a convergent sequence of
estimates θt satisfying the target inequalities (4.1) with sufficiently large t. However, unlike adaptive
stabilization problems, this is not sufficient to solve the problem of ensuring as small an estimate
as possible for the quality indicator (2.4). Indeed, if the estimates θt converge to some marginal
estimate θ∞ and the target inequalities are fulfilled, then from Theorem 1 and Statement 1 it
follows that

lim sup
t→+∞

|yt| � J(θ∞) .

To solve the set optimal problem of this inequality, it is not enough but necessary to ensure the
fulfillment of the following ineqiality with a given accuracy

J(θ∞) � J(θ)

with the unknown and unidentifiable vector θ. It follows from this that it is necessary to use the
quality index J(θ) of the control problem as an identification criterion, i.e. to use the optimal
estimation

θt = argmin
θ̂∈Θt

J(θ̂) = argmin
θ̂∈Θt

δ̂w + δ̂u|ĉw/b̂1|
1− δ̂y − δ̂u‖Gξ̂‖ . (4.2)

The direct online implementation of formula (4.2) is difficult because, first, the number of target
inequalities in the description of the sets Θt can increase indefinitely and, second, the quality index J
and the robust stabilizability condition (3.5) are non-convex. The first difficulty is overcome by
using upper polyhedral approximations of Θt sets and introducing a dead zone when updating
the estimates. The method of getting rid of non-convexity in the optimal estimation problem is
described in the next section.

5. REDUCTION TO A MODEL WITH OUTPUT UNCERTAINTY

In this section, we describe the replacement of the unknown perturbation parameters to convert
the quality index to a fractional-linear form and the non-convex robust stabilizability condition (3.5)
to a relaxed linear condition by reducing it to a model with only output uncertainty.

Let the object (2.1) be controlled in such a way that for all t the inequalities

|ut| � C1 + C2|ytt−n+1| (5.1)

with some constants C1, C2. Then, from Eq. (2.1) and the assumption AP2, follows

|a(q−1)yt − b1ut−1 − cw| � δw + δy|yt−1
t−μ|+ δu|ut−1

t−μ| � δw + δuC1 + (δy + δuC2)|yt−1
t−μ−n|, (5.2)

and for every μ̄ � μ+ n we get

|a(q−1)yt − b1ut−1 − cw| � δw + δuC1 + (δy + δuC2)|yt−1
t−μ̄| . (5.3)

Let us introduce new unknown parameters ζ, δe and δ:

ζ = (ξ, cw, δe, δ), δe = δw + δuC1, δ = δy + δuC2 . (5.4)
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For these new parameters, inequalities (5.3) take the form of

|a(q−1)yt − b1ut−1 − cw| � δe + δ|yt−1
t−μ̄| . (5.5)

Inequalities (5.5) are equivalent to inequalities (4.1) for the modified parameter vector

θm = (ξT, cw, δe, δ, 0)T .

According to Statement 1, the inequalities (5.5) mean that if control satisfies the inequalities (5.1),
the output y can be considered the output of object (2.1) with modified vector of parameters θm

(without control uncertainty), and for this object, according to Theorem 1, we have

lim sup
t→+∞

|yt| � I(ζ) := J(θm) =
δe

1− δ
. (5.6)

If the object (2.1) is controlled by the optimal regulator (3.1), then

|ut + cw/b1| � ‖Gξ‖|ytt−n+1|,

and, therefore,

|ut| � |cw/b1|+ ‖Gξ‖|ytt−n+1‖ . (5.7)

Inequalities (5.7) guarantee inequalities (5.1) and (5.3) with constants C1 = |cw/b1| and C2 = ‖Gξ‖,
for which the parameters δe and δ from (5.4) are equal to

δe = δw + δu|cw/b1|, δ = δy + δu‖Gξ‖ . (5.8)

Then, from formula (3.4) for J(θ) and formula (5.6) for I(ζ) with parameters (5.8), it follows that

J(θ) = I(ζ), ζ = (ξT, cw, δw + δu|cw/b1|, δy + δu‖Gξ‖)T . (5.9)

Thus, for the imaginary system characterized by inequalities (5.5) without control uncertainty,
the quality index becomes a fractional-linear function that depends only on the norm δe of the
imaginary external perturbation and the gain δ of the imaginary output uncertainty.

6. ADAPTIVE CONTROL

Let us proceed to the description of the adaptive suboptimal control algorithm based on the use
of new unknown parameters δe and δ. After applying the control ut and measuring the output yt+1

at time t+ 1, we will update the vector estimates

ζt = (ξTt , c
w
t , δ

e
t , δt)

T

of the unknown vector ζ from (5.9) and polyhedral estimates Zt composed of a priori constraints
and several linear inequalities generated by the new target inequalities (5.5). Initial estimates Z0

and ζ0 have the form of

Z0 =
{
ζ̂ = (ξ̂T, ĉw, δ̂e, δ̂)T | ξ̂ ∈ Ξ, δ̂e � 0, 0 � δ̂ � δ̄

}
, ζ0 = (ξT0 , 0, 0, 0)

T,

where ξ0 is any vector from the a priori polyhedron Ξ, δ̄ is the upper bound of the parameter δ
from the assumption AP4.
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Let us choose any number μ̄ � μ+ n of memorized outputs ytt−μ̄+1 and the parameter ε > 0 of
the dead zone guaranteeing a finite number of updates of the estimates. The control ut at time t
is determined by the adaptive regulator

ut =
1

bt1

(
at1yt + at2yt−1 + . . .+ atnyt−n+1 − cwt

)
. (6.1)

The algorithm for updating the vector estimates ζt and the polyhedral estimates Zt is as follows.
After measuring the output yt+1 at the moment t+ 1, let us assume that

ϕt := (−yt,−yt−1, . . . ,−yt−n+1, ut)
T , ηt+1 := sgn(yt+1 − ϕT

t ξt − cwt ),

pt+1 = |ytt−μ̄+1|, ψt+1 := (ηt+1ϕ
T
t , ηt+1, 1, pt+1)

T , νt+1 := ηt+1yt+1 .

In these notations, the adaptive regulator Eq. (6.1) is equivalent to the equation ϕT
t ξt + cwt = 0,

so that ηt+1 = sgn(yt+1) and the target inequality (5.5) at time t+ 1 for the current estimate ζt is
equivalent to the inequality

ψT
t+1ζt � νt+1 . (6.2)

Let us assume that

ζt+1 := ζt, Zt+1 := Zt, if ψT
t+1ζt � νt+1 − ε|ψt+1| . (6.3)

Otherwise, let us assume that

Zt+1 := Zt ∩ Ωt+1, Ωt+1 :=
{
ζ̂
∣∣ ψT

t+1ζ̂ � νt+1

}
, (6.4)

ζt+1 := argmin
ζ̂∈Zt+1

I(ζ̂), (6.5)

where the quality index I is defined in (5.6).

The algorithm for updating the estimates has a simple geometric interpretation. According to
formula (6.3), the estimates of Zt and ζt are updated only when the distance from the vector ζt to
the half-space Ωt+1 is greater than the parameter of the dead zone ε (see the proof of Theorem 2).
According to formula (6.4) the update of Zt consists in adding the linear inequality ψT

t+1ζ̂ � νt+1,
which is the one of the two linear inequalities that make up the target inequality (5.5) that is
violated for the estimation of ζt. Calculating the optimal estimate ζt+1 according to (6.5) is a
fractional-linear programming problem reduced to a linear programming problem by introducing
an auxiliary variable [25].

Theorem 2. Let the object (2.1) with the unknown parameter vector θ = (ξT, cw, δw, δy , δu)T sat-
isfy the assumptions AP1–AP4 and be controlled by the adaptive regulator (6.1) with the evaluation
algorithm (6.3)–(6.5) and with the dead zone parameter satisfying the inequalities

0 < ε < (1− δ̄)/(
√
n+ 1 +Gu), Gu = sup

ξ∈Ξ
‖Gξ‖ . (6.6)

Then the following statements are true:

1) If the parameters δy and δu satisfy the inequality

δy + δuGu � δ̄ < 1, (6.7)
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then multiple estimations Zt and vector estimations ζt converge in a finite time, and

lim sup
t→+∞

|yt| � I(ζε∞) < I(ζ∞) +Kζ∞ε, (6.8)

I(ζ∞) � Ī =
δw + δu maxt |cwt /bt1|

1− δy − δu maxt ‖Gξt‖ � δw + δu maxt |cwt /bt1|
1− δy − δuGu

, (6.9)

where ζ∞ = (ξT∞, cw∞, δe∞, δ∞) is the limit value of ζt,

ζε∞ =
(
ξT∞, cw∞, δe∞ + ε(

√
2 + |cw∞/b∞1 |), δ∞ + ε(

√
n+ 1 + ‖Gξ∞‖)

)T
, (6.10)

Kζ∞ =

√
2 + |cw∞/b∞1 |+ δe∞(

√
n+ 1 + ‖Gξ∞‖)

(1− δ∞ − ε(
√
n+ 1 + ‖Gξ∞‖))2 . (6.11)

2) If, for all t, the inequalities

|ut| � ūt = |cw/b1|+ ‖Gξ‖|ytt−μ̄+1|, (6.12)

are true, then the multiple estimations Zt and the vector estimations ζt converge in a finite time,
and

lim sup
t→+∞

|yt| � I(ζε∞) < I(ζ∞) +Kζ∞ε � J(θ) +Kζ∞ε, (6.13)

where ζ∞ = (ξT∞, cw∞, δe∞, δ∞) is the limit value of ζt; ζ
ε∞ and Kζ∞ are equal to (6.10) and (6.11),

respectively.

The proof of Theorem 2 is given in the Appendix.

Remark 2. The first statement of Theorem 2 guarantees the stability of adaptive control in the
narrowed set (6.7) of parameters (δy , δu) as compared to the set of parameters (3.5) correspond-
ing to robustly stabilized objects with known nominal model parameters. The upper estimate Ī
in (6.9) is highly overestimated compared to the upper estimates I(ζεt ) computed during control
and converging to measurements in finite time. Despite this, it is better than the a priori universal
estimate for the entire class of admissible coefficient vectors Ξ that can be obtained for projective
or least squares estimation algorithms and that is valid in the much larger two-dimensional domain
of acceptable parameters (δy , δu).

Remark 3. The second statement of Theorem 2 is based on the condition (6.12). This condition
is not verifiable by measurement data, since the parameters cw, b1 and ξ are unknown. The adaptive
regulator (6.1) guarantees the validity of these inequalities for the current estimates cwt , b

t
1 and ξt.

However, due to the fact that, in the chain of inequalities (5.2) and (5.3), each of the inequalities
is substantially coarsened (including the admissible choice of any μ̄ � μ+ n), and given that the
current optimal estimates ζt minimize the quality index I, inequalities (6.12) are not actually
violated, as shown by numerous numerical experiments. The formal proof of this is complicated by
the fact that, although the replacement of variables (5.4) allows one to move to a “good” fractional-
linear quality index I(ζ) under linear target inequalities (5.5), the original non-linearity of the
quality index J(θ) and the non-linearity of the robust stabilizability condition (3.3) are “hidden”
when variables (5.4) are replaced by constants C1 and C2 in the additional condition (5.7).

Remark 4. The most important exclusive advantage of the considered method of synthesis of
adaptive robust control is the verifiability of the a priori assumptions about the controlled object.
An indicator of the acceptability of the a priori assumptions is the non-decreasing sequence of the
smallest values I(ζt) consistent with the a priori assumptions and measurement data. At no point
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in time t is it known whether the current value of I(ζt) is the limiting value of I(ζ∞). But if the
estimates of ζt do not change over a long period of time, this means that the current estimate
satisfies the target inequalities and hence guarantees this best upper bound I(ζt) for |yt| after the
decay of the transients. The invariance of the ζt estimate over a long period of time also guarantees
that the a priori assumptions are consistent with the measured data at the current guaranteed
asymptotic control quality I(ζt). Traditional methods for synthesizing adaptive control in both
deterministic and stochastic formulations leave the problems of model verification and a priori
assumptions out of consideration.

Remark 5. The formula (6.11) for the constant K∞ is given for the sole purpose of explaining
that the accuracy of the solution of the optimal problem is of the order of ε. It is easier to control
this accuracy by direct calculation of the difference I(ζεt )− I(ζt) and correct it, if necessary, by
appropriate change of the dead zone parameter ε. Note, however, that as ε decreases, the number
of possible updates of the estimates and, consequently, the number of inequalities in the description
of Zt estimates may increase exponentially with respect to the number of estimated parameters,
since the volumes of the balls excluded from Zt are proportional to εdim ζ . The question about the
coarseness of the exponential estimator εdim ζ remains open, given that the addition of new linear
inequalities cuts off much larger sets of falsified parameters by measurements.

7. NUMERICAL MODELING

In this section, the results of numerical modeling of the adaptive suboptimal control described
above are presented. The effectiveness of this control is illustrated by a comparison with adaptive
control based on least squares estimation (LSE). The LSE algorithm underlies the stochastic theory
of adaptive optimal control for systems with random external perturbations [26, 27]. However,
attempts to generalize this theory to systems with uncertainty in general have been unsuccessful
even for stochastic uncertainties.

In the case of the object (2.1), the least squares estimates (ξTt , c
w
t ) minimize the mean square of

the unrelatedness (i.e., the centered total perturbation) of the model:

(ξt, c
w
t ) = argmin

ξ̂∈Ξ,ĉw
1

t

t∑
k=1

(
â(q−1)yt+1 − b̂(q−1)ut − ĉw

)2
, (7.1)

without considering fundamentally different effects of the external perturbation w and uncertainties
Δ1 and Δ2 on the system dynamics, and so cannot form a basis for estimation algorithms oriented
at minimizing the upper bound of the object’s output. The least squares estimates are calculated
using the recurrence formulas

ξt+1 = ξt +Kt(yt+1 − ξTt ϕt), Kt =
Ptϕt

1 + ϕT
t Ptϕ

, Pt+1 = (I −Ktϕ
T
t )Pt

with the addition of a projection of the estimates ξt onto the a priori set Ξ. When modeling
adaptive control with initial matrices P0 = cI, where I is a unit matrix and c > 0, relatively better
average results for LSE were observed when c ∈ [1, 5]. The results for c = 1 are given below.

Numerical modeling is illustrated by the example of the object (2.1) with unstable poles, i.e. by
the roots a(λ), 0.9 , 0.8, 0.7 ± 0.6 i and the coefficient b1 = 2. These parameters correspond (with
an accuracy of 10−4) to the vector of coefficients

ξ = (−4.0082, 6.4542, −5.0654, 1.634, 2)	 ∈ R
5 .

A priori restrictions: 0.1 � b1 � 10, |ak| � 20 for all k, |cw| � 100. The dead zone parameter ε
in (6.3) is equal to 0.001.
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Fig. 1. Typical outputs of yt under the LSE algorithm and random perturbations.
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Fig. 2. Left—output of yt under optimal estimation and random perturbations; right—plot of I(ζt).

The modeling results are given below for random perturbations and deterministic perturbations
in the form of

vt = cw + cos(5t) + δy sin(3
√
t) |yt−1

t−μ|+ δu sin(ln(0.3t+ π/2)) |ut−1
t−μ| (7.2)

with parameters cw = 1, δy = 0.2, δu = 0.05, μ = 20. “Exotic” perturbations of the form (7.2)
with non-stationary frequencies were chosen to illustrate possible “bad” dynamics of a closed-loop
adaptive system with LSE algorithm.

In all numerical experiments, the initial data y01−n was chosen randomly (with uniform distribu-
tion) from the interval [−δw, δw] and “locally bad” perturbations vt+1 maximizing |yt+1| at time
intervals [800, 810] and [1200, 1210] were modeled to illustrate the quality of steady-state estimates.
The optimal interval [−J(θ, J(θ)] is denoted in all of the following plots of the yt output by dashed
lines with ordinates ±J(θ).

In experiments with independent random perturbations wt, Δ1(y)t, Δ2(u)t, uniformly dis-
tributed at their respective intervals, the adaptive control based on LSE on most implementations
of initial data y01−n demonstrates the required inequality |yt| � I(ζ) = J(θ) ≈ 2.76 at relatively
small offsets of the mean output value from zero in steady-state mode. However, quite often there
are bursts with outliers beyond the optimal interval due to the maximizing |yt+1| perturbation
vt+1 at the time intervals mentioned above. This effect is shown in the left plot of Fig. 1. It is
also quite common for the output of yt to fall outside the optimal interval. It is known that the
external perturbation offset presents a great difficulty for LSE due to insufficient excitation of the
corresponding estimate of the component (equal to 1) of the regression vector. In the numerical
experiment shown in the right plot of Fig. 1, the steady-state output of yt exceeds the optimal
upper bound by more than one order of magnitude. For comparison, the plot of the output of the
adaptive control with the optimal estimation algorithm (6.3)–(6.5) under the same implementa-
tions of all random variables is presented in the left plot of Fig. 2, illustrating the optimality of
the adaptive control. The right plot of Fig. 2 illustrates the exceptional advantage of the optimal
algorithm in the form of a plot of the current optimal values of I(ζt) consistent with the current
measurement data (yt1−n, u

t−1
1 ) and satisfying the inequalities I(ζt) � J(θ). We emphasize that

the actual guaranteed control quality is markedly better than the optimal value of J(θ) when the
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Fig. 3. Plots of the output of yt under LSE (left) and optimal (right) estimation algorithms and deterministic
perturbations (7.2).
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Fig. 4. Left—plots of ut and ±ūt; right—plot of I(ζt).

simulated perturbations are not actually worst-case. These plots illustrate the unfairness of the
traditional criticism of identification by means of multiple-valuation (set-membership approach) as
a too crude method.

Figure 3 presents plots of the output of yt using LSE (left) and optimal (right) estimation
algorithms with deterministic perturbations (7.2) and the same initial data y01−n. The left plot
illustrates that the output yt exceeds the optimal upper bound J(θ) ≈ 2.76 by two orders of
magnitude. The right plot of Fig. 3 shows an infrequently observed small burst of the adaptive
optimal control output beyond the optimal interval [−J(θ, J(θ)].

The left plot in Fig. 4 illustrates the fulfillment of the inequalities (6.12) (due to large bursts
in the initial period, only the steady-state mode is presented). The plot ut (solid line) at all t is
located in the tube [−ūt, ūt] bounded by the dashed lines. Note that numerous experiments have
failed to find an example of perturbations in which the inequalities (6.12) are violated. The right
plot illustrates the fulfillment of the inequalities I(ζt) � J(θ) guaranteeing the optimality of the
adaptive control.

It is known that transients in stable linear stationary systems with and without limited external
perturbations can be accompanied by significant bursts under unfavorable initial data [28, 29].
It should be noted that due to the “integral” nature of the identification criterion (7.1), LSE, as
a rule, generates significantly smaller bursts at the initial time interval. The optimal algorithm
(6.3)–(6.5) attributes large bursts to the presence of uncertainty with δt estimates close to the upper
bound of 0.9 for quite a long time. This is illustrated by the right-hand plots in Figs. 2 and 4, where,
for quite a long time, I(ζt) = 0 (which is equivalent to estimates of δwt = 0). Numerical experiments
have shown that using the LSE algorithm instead of the optimal estimation (6.3)–(6.5) for initial
time segments from 2dim ζ to 10 dim ζ in most cases improves the transients in the adaptive optimal
system.

The time to model one experiment on a laptop computer with a 4xIntelCore i5-7200U processor
CPU@2.50GHz was less than 0.2 s for LSE estimation and around 2 s for optimal estimation. The
number of estimation updates on the interval [1, 2000] was in the range of 50–75 and increased
slightly on the interval [1, 105]. These figures illustrate the performance of the online optimal esti-
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mation algorithm on the example of a system with ten unknowns and nine adjustable parameters, of
which 3 parameters (norms of external bounded perturbation and output and control uncertainties)
are not estimated within traditional methods of adaptive control synthesis.

8. CONCLUSION

According to [30], “the main control problem for a given process can be formulated as follows:
having some a priori information about the process and a finite set of measurements, it is required to
construct a feedback regulator that provides a given control quality.” A more ambitious variant of
this problem is the requirement for asymptotic control optimality due to specification of information
about the controlled process. Many practical control problems are formulated in terms of tolerances
on deviations of control system outputs from the set values. Such problems correspond to the
basic signal space of �∞ bounded sequences and its corresponding theory of robust control in the
�1 formulation. The present work is devoted to the solution for an object with autoregressive
nominal model of the problem of application of �1 theory in the standard for applications case
when a priori information about the parameters of nominal model and levels of disturbances and
uncertainties is insufficient for the a priori synthesis of the controller and the missing information
has to be extracted from the current measurement data yt1−n, u

t−1
0 . Under clearly stated a priori

assumptions, a solution for the optimal stabilization problem under conditions of strong a priori
uncertainty and non-identifiability of the unknown parameters, based on the multiple estimation
of the unknown parameters and using the quality index of the control problem as an identification
criterion, is proposed.

APPENDIX

Proof of Theorem 1. The robust stability condition (3.3) follows from Theorem 7 [24] applied
to system (2.1), (3.1). To prove the second statement of the Theorem, it is sufficient to apply
Theorems 5 and 6 [24] (see also [15]). To do this, we have to present the system (2.1), (3.1) in the
standard M–Δ form given in Fig. 5 and having a block form.

(
y
z

)
= M

⎛⎜⎝ r
w
ξ

⎞⎟⎠ =

(
Myr Myw Myξ

Mzr Mzw Mzξ

)⎛⎜⎝ r
w
ξ

⎞⎟⎠ , ξ = Δz. (A.1)

For the system (2.1), (3.1) the signal r = cw1, 1 = (1, 1, . . .), and M–Δ form looks like

⎛⎜⎝ y
z1

z2

⎞⎟⎠ = M

⎛⎜⎜⎜⎝
1
w
ξ1

ξ2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0 δw δy δu

0 δw δy δu

−cwq

b1
δwGξ(q−1) δyGξ(q−1) δuGξ(q−1)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
w
ξ1

ξ2

⎞⎟⎟⎟⎠ , (A.2)

where

zt =

(
yt
ut

)
, ξ =

(
ξ1

ξ2

)
=

(
Δ1 0
0 Δ2

)
z =

(
Δ1(y)
Δ2(u)

)
.

The first and second lines of the matrix M in (A.2) correspond to Eq. (3.2). The third row of M
corresponds to the representation of the optimal regulator (3.1) in the form of

ut = −cw/b1 +Gξ(q−1)yt = −cw/b1 + δwGξ(q−1)wt + δyGξ(q−1)ξ1t + δuGξ(q−1)ξ2t .
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Fig. 5. M–Δ form of the system (2.1), (3.1).

The formula for J(θ) in (3.4) corresponds to the quality index (2.4), in which sup is taken on
the perturbation set v with uncertainties Δ1 and Δ1 with finite memory (see [12]), and is derived
by Theorem 5 [24] as follows. Let us assume that ‖z‖ss = (‖z1‖ss, · · · , ‖zp‖ss)T for the vector
sequence z ∈ �pe, and

[M ]1 :=

⎛⎜⎝ ‖M11‖1 · · · ‖M1p‖1
...

...
...

‖Mq1‖1 · · · ‖Mqp‖1

⎞⎟⎠
for a stable q × p response matrix M of impulses Mij ∈ �1. For the matrix M from (A.1) we will
assume that

Mss(r) :=

(
[Myrr]ss + [Myw]1 [Myξ]1

[Mzrr]ss + [Mzw]1 [Mzξ]1

)
.

According to Theorem 5 from [24]

J(θ) = [Myrr]ss + [Myw]1 + [Myξ ]1(I − [Mzξ]1)
−1([Mzrr]ss + [Mzw]1) .

Then, for the system (A.2), we have

J(θ) = δw + (δy δu)

(
I −

(
δy δu

δy‖Gξ‖ δu‖Gξ‖

))−1 (
δw

|cw|‖−q
b1
r‖ss + δw‖Gξ‖

)

= δw + (δy δu)

(
1− δy −δu

−δy‖Gξ‖ 1− δu‖Gξ‖

)−1 (
δw

|cw/b1|+ δw‖Gξ‖

)

= δw +
1

1− δy − δu‖Gξ‖(δ
y δu)

(
1− δu‖Gξ‖ δu

δy‖Gξ‖ 1− δy

)(
δw

|cw/b1|+ δw‖Gξ‖

)

= δw +
1

1− δy − δu‖Gξ‖ (δy δu)

(
δw + δu|cw/b1|

(1− δy)|cw/b1|+ δw‖Gξ‖

)

= δw +
δyδw + δu|cw|‖Gξ‖+ δuδw‖Gξ‖

1− δy − δu‖Gξ‖ =
δw + δu|cw/b1|)
1− δy − δu‖Gξ‖ .

Finally, the monotonic convergence of Jμ(θ) to J(θ) in (3.4) is guaranteed by Theorem 6
from [24].

Proof of Statement 1. The vector θ̂ satisfies the a priori assumption AP1 due to the conditions
of Statement 1. For all t > 0, let us assume v̂t = â(q−1)yt − b̂1ut−1. Then the control object
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with the parameter vector θ̂ and the total perturbation v̂ satisfies Eq. (2.1), and due to (4.1) the
perturbation v̂ satisfies the inequalities

|v̂t − ĉw| � δ̂w + δ̂ypyt + δ̂uput .

The values of v̂t can be represented in the form of (2.2) by choosing suitable values of wt,
Δ1(y)t, Δ

2(u)t that satisfy the inequalities (2.3), and thereby ensure that the a priori assump-
tion of AP2 is true.

Proof of Theorem 2. Let us prove that for each update of the estimates, the distance from ζt
to the half-space Ωt+1 is greater than ε. Since ζt only changes when ψT

t+1ζt < νt+1 − ε|ψt+1| and
ψT
t+1ζ̂ � νt+1 for all ζ̂ ∈ Ωt+1, then

ε|ψt+1| < |ψT
t+1(ζ̂ − ζt)| � |ψt+1||ζ̂ − ζt|

and, therefore, |ζ̂ − ζt| > ε for all ζ̂ ∈ Ωt+1. Thus, after adding the inequality ψT
t+1ζ̂ � νt+1 describ-

ing the half-space Ωt+1 to the description of Zt, the polyhedron Zt+1 and all subsequent ones do
not intersect the neigborhood of ε of the vector ζt ∈ Zt. It follows that the ε/2-neigborhoods of
the various estimates of ζt do not intersect each other. Since Zt+1 ⊂ Zt for all t, the number of
changes in the estimates of Zt and ζt will be finite if the estimates of ζt lie in a bounded set. From
the equation of the adaptive regulator (6.1) for all t we have

|ut| � |cwt /bt1|+ ‖Gξt‖|ytt−n+1‖ .
Then, for the object (2.1) on the time interval [0, t], the inequalities (5.5) with the parameters

δ̃et = δw + δu max
s�t

|cws /bs1|, δ̃t = δy + δu max
s�t

‖Gξs‖

are true. Therefore, ζ̃t = (ξT, cw, δ̃et , δ̃t)
T ∈ Zt for all t. If the assumption (6.7) is satisfied, then

I(ζ̃t) � Ī, where Ī is defined in (6.9) (with the right-hand inequality in (6.9) obviously followed
from the definition of Gu in (6.6)). From (6.5) for all t, it follows that

I(ζt) � I(ζ̃t)

and then I(ζt) � Ī . From the boundedness of I(ζt), there follows the boundedness of the esti-
mates ζt and thus the finiteness of the number of updates of the estimates ξt and Zt. Then
ζt = ζ∞ = (ξT∞, cw∞, δe∞, δ∞) from some point of time t∞ and

ψT
t+1ζ∞ � νt+1 − ε|ψt+1| ∀t � t∞ . (A.3)

From (A.3), it follows that, for all t � t∞,

|a∞(q−1)yt+1 − b∞(q−1)ut − cw∞| � δe∞ + δ∞pt+1 + ε|ψt+1|
� δe∞ + δ∞pt+1 + ε(

√
n+ 1 pt+1 +

√
2 + |ut|)

� δe∞ + ε(
√
2 + |cw∞/b∞1 |) + [δ∞ + ε(

√
n+ 1 + ‖Gξ∞‖)]pt+1 .

Given Statement 1 of Section 4, it follows from the obtained inequality that the output of y at all
t � t∗ satisfies the Eq. (2.1) with the parameter vector ζε∞ of the form (6.10). Then Theorem 1
guarantees the left-hand inequality in (6.8). To prove the right-hand inequality in (6.8), we estimate
the difference I(ζε∞)− I(ζ∞) from above using the inequality

C1 + ε1
C2 − ε2

− C1

C2
=

C2ε1 + C1ε2
C2(C2 − ε2)

<
ε1 + C1ε2
(C2 − ε2)2

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 6 2023



SUBOPTIMAL ROBUST STABILIZATION 669

with the parameters C1 = δe∞, C2 = 1− δ∞ � 1, ε1 = ε(
√
2 + |cw∞/b∞1 |), ε2 = ε(

√
n+ 1 + ‖Gξ∞‖).

Then

I(ζε∞)− I(ζ∞) <

√
2 + |cw∞/b∞1 |+ δe∞(

√
n+ 1 + ‖Gξ∞‖)

(1− δ∞ − ε(
√
n+ 1 + ‖Gξ∞‖))2 ε

and, therefore, Kζ∞ has the form of (6.11). The first statement of Theorem 2 is proved.

Let us prove the second statement. Now let the inequalities (6.12) be satisfied in the closed
adaptive system. Then inequalities (5.3) with constants C1 = |cw/b1| and C2 = ‖Gξ‖ follow from
the object Eq. (2.1). This means that for the unknown parameter vector ζ defined in (5.9), the
target inequalities (5.5) with the parameters δe, δ of the form (5.8) and inclusion ζ ∈ Zt are satisfied
for all t. Then, due to the choice of optimal estimates ζt according to (6.5), at all t,

I(ζt) � I(ζ) = J(θ),

where the equality I(ζ) = J(θ) is established in (5.9). Hence, as in the first statement of Theorem 2,
there follows the convergence of the estimates ξt and Zt in finite time and the inequalities (6.13).
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