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Abstract—This paper considers an optimal movement routing problem with constraints. One
such constraint is due to decomposing the original problem into a preliminary subproblem and
a final subproblem; the tasks related to the preliminary problem must be executed before the
tasks of the final subproblem begin. In particular, this condition may arise in the tool control
problem for thermal cutting machines with computer numerical control (CNC): if there are long
parts among workpieces, the cutting process near a narrow material boundary should start with
these workpieces since such parts are subject to thermal deformations, which may potentially
cause rejects. The problem statement under consideration involves two zones for part process-
ing. The aggregate routing process in the original problem includes a starting point, a route
(a permutation of indices), and a particular track consistent with the route and the starting
point. Each of the subproblems has specific precedence conditions, and the travel cost functions
forming the additive criterion may depend on the list of pending tasks. A special two-stage
procedure is introduced to apply dynamic programming as a solution method. The structure
of the optimal solution is established and an algorithm based on this structure is developed.
The algorithm is implemented on a personal computer and a computational experiment is
carried out.
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1. INTRODUCTION

In applied problems, it is often necessary to choose the sequence of certain tasks under various
constraints. As a result, substantial differences arise even when formulating these problems com-
pared to the natural prototype, the traveling salesman problem (TSP); [1–7] and other publications.
Several circumstances, including the presence of constraints, required a special theory for solving
applications-oriented routing problems. For example, we refer to the monographs [8–10].

As it turned out [8, § 4.9], the precedence conditions, natural for engineering applications, can
serve for reducing computational complexity; this fact was established theoretically. In addition, the
main constraint in this paper (also, see [11, 12]) works “positively” as well. This can be observed,
e.g., from the results of [11, Sec. 10].

We mean the problem statement in which the entire set of tasks for sequential execution is
divided into two (disjunctive) subsets: the execution of tasks belonging to the second subset can
be started only after completing all the tasks from the first subset. (Note that this problem may
have specific precedence conditions and the travel cost functions forming the additive criterion may
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depend on the list of pending tasks.) Such a situation occurs in the shaped thermal cutting of
parts on CNC machines. The matter concerns the possibility of effective heat rejection, which
is motivated by thermal deformation considerations. (More details can be found in [10, § 1.3],
including the rules of part stiffness and sheet stiffness.) These considerations particularly lead to
the idea of zone cutting ( [10, § 1.3.3]); in connection with the implementation of this idea, we
note the constructs [12, Sec. 12] on a multistage modification of the dynamic programming-based
procedure.

Omitting the details (see [10, Ch. 1]), we discuss one typical case of two zones. Consider the
pre-cutting of long parts (see [11, Sec. 10]); these are parts with one of the dimensions exceeding at
least 10 times another [10, p. 46]. Such workpieces are subjected to maximum thermal deformation.
Therefore, if the workpieces are near a narrow material boundary, the cutting process should be
started with them: in this case, there will be quite “a lot” of solid metal near the tool cut-in
and switch-out points. The natural implementation of this principle is to form a zone that includes
long (and perhaps some other) parts. This zone should be associated with the preliminary problem.
The remaining parts form the second (final) zone. Of course, this solution is the simplest only in
terms of zone cutting, but we consider it in more detail, continuing the constructs of [11, 12]
and accompanying algorithmic design with theoretical justifications. In particular, the framework
presented in [11, 12] will be supplemented by some properties of the preliminary problem.

Note that the decomposition of the original problem into a set of two subproblems can be reduced
to imposing new precedence conditions. In this case, a “standard” optimal routing problem (in the
sense of [8, 13, 14]) arises, which has a well-known structure of the optimal solution. However,
in problems of appreciable dimension, one faces difficulties with computational implementation,
quite understandable due to the NP -hardness of TSP. The decomposition approach [11, 12] allows
overcoming these difficulties to a large extent without losing optimality; see the results of the
computational experiment in [11, 12]. Hence, it is reasonable to study the decomposition approach
in detail, especially in view of publications on shaped sheet cutting on CNC machines (in particular,
see [10, 15–18]). Here, we focus on the modification with the pre-cutting of long parts under the
localized precedence conditions for the preliminary and final subproblems.

2. GENERAL CONCEPTS AND NOTATIONS. PROBLEM STATEMENT

In the sequel, we use the following abbreviations: DP (dynamic programming), FS (feasible
solution), TSP (Traveling Salesman Problem), RP (routing process), and OP (ordered pair). The
problems investigated in this paper, traditionally regarded as intractable, require a thorough for-
malization for developing optimal procedures. This is all the more essential under constraints that
arise in engineering applications and considerably complicate the problem statement compared to
TSP-like problems, more traditional in discrete optimization. Therefore, we summarize general
definitions, including some results of set theory. They are crucial for the correct formulation of the
problem.

We use the conventional set-theoretic symbolism (quantifiers, connectives, etc.) and the nota-
tions ∅ (empty set) and � (equality by definition). A family is a set whose all elements are sets.
As usual [19, Ch. II, § 2], the expression { a ∈ A | . . .} means the set of all elements a ∈ A with the
property . . . ; this convention is widely used below.

Any two objects x and y are assigned an unordered pair {x; y} : {x; y}, i.e., a set containing x
and y only. An object z is assigned the singleton {z} � {z; z} containing z. A set is an object;
therefore, following [19, Ch. II, § 3], any two objects u and v are assigned their ordered pair (OP)
(u, v) � {{u}; {u; v}} with the first u and second v elements. If h is an OP, we denote by pr1(h)
and pr2(h) the first and second elements of h, respectively, h = (pr1(h),pr2(h)). Any three objects
x, y, and z are assigned their (ordered) triplet (x, y, z) � ((x, y), z) [20, Ch. 1, § 3] with the first x,
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second y, and third z elements. Thus, strictly speaking [20, Ch. 1, § 3], an ordered triplet is defined
as a special-form OP (a convention accepted in set theory); sometimes, this will be utilized below.

We denote by P(H) and P ′(H) the families of all and all non-empty subsets of an arbitrary
set H, respectively, and by Fin(H) the family of all non-empty finite subsets of H; Fin(H) ⊂ P ′(H).
For a finite set H, we have Fin(H) = P ′(H). If A, B, and C are three sets, then [20, Ch. 1, § 3]
A×B ×C � (A×B)× C; therefore, for x ∈ A×B and y ∈ C, we have (x, y) ∈ A×B × C. For
any non-empty sets S and T, we denote by T S the set of all mappings (functions) from S into T
(see [19, Ch. II, § 6]); the expressions h ∈ T S and h : S → T are identical. The value of a mapping
at a certain point of the definitional domain (here, the set S) is denoted in a traditional way: for
g ∈ T S and s ∈ S, we have g(s) ∈ T . For non-empty sets S, T , and C ∈ P ′(S) and a mapping
h ∈ T S ,

h1(C) � {h(x) : x ∈ C} ∈ P ′(T )

is the image of C under the action of h. We follow conventional notations for multivariate functions;
note that ψ(h, l) = ψ(pr1(h),pr2(h), l) ∈ Q is defined for non-empty sets S, T , P , and Q, a mapping
ψ ∈ QS×T×P , and points h ∈ S × T and l ∈ P . As Q, we often use R+ � {ξ ∈ R | 0 � ξ}, where R

stands for the real line. If H is a non-empty set, then R+[H] � (R+)
H is the set of all nonnegative

real-valued functions on H.

In the sequel, N � {1; 2; . . .}∈P ′(R+) and N0 � {0} ∪ N = {0; 1; 2; . . .}∈P ′(R+); for K ∈P ′(N)
and m ∈ N, we have K ⊕m � {k +m : k ∈ K} ∈ P ′(N). For p ∈ N0 and q ∈ N0,

p, q � {k ∈ N0 | (p � k)&(k � q)} ∈ P(N0).

(The case p, q = ∅ is not ruled out.) Note that 1, 0 = ∅ and 1,m = {k ∈ N | k � m} for m ∈ N. For
a non-empty finite set K, |K| ∈ N is the cardinality of K and 1, |K| = {j ∈ N | j � |K|} is a non-
empty discrete interval of N. If m ∈ N, then (bi)[1,m] is the (non-empty) set of all permutations
[21, Ch. 5] of the discrete interval 1,m; for α ∈ (bi)[1,m], α−1 ∈ (bi)[1,m] is the permutation inverse
to α:

α(α−1(k)) = α−1(α(k)) = k ∀k ∈ 1,m.

Any mappings defined on finite subsets N0 are called tuples, according to the notion of an image of
non-empty subsets of the definitional domain. In particular, this applies to permutations. We often
adopt the index representation of mappings, particularly tuples (an indexed family; see [22, I. 1]).
The symbols � and � indicate tuple gluing operations.

Following tradition in set theory [19], a set consisting of OPs is called a relation.

2.1. Problem Statement

In the sequel, X is a non-empty set, X0 ∈ Fin(X) is the set of possible starting points of the
processes under consideration, and n ∈ N , n � 4; the sets

M1 ∈ Fin(X), . . . ,Mn ∈ Fin(X), (2.1)

called megalopolises, and the relations

M1 ∈ P ′(M1 ×M1), . . . ,Mn ∈ P ′(Mn ×Mn), (2.2)

are fixed. For each j ∈ 1, N, the elements of the relation Mj are OPs, including the arrival point
at the megalopolis Mj and the departure point from Mj ; Mj is the set of all OPs of this form.
Concerning X0 and the megalopolises (2.1), we assume that(

Mj ∩X0 = ∅ ∀j ∈ 1,n
)
&

(
Mp ∩Mq = ∅ ∀p ∈ 1,n ∀q ∈ 1,n \ {p}) . (2.3)
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Conditions (2.3) are typical for the routing problems discussed. As M � {Mi : i ∈ 1,n} we obtain
the family of megalopolises of the original problem to be visited from some point of X0. Let M
be implemented as the sum of two non-empty subfamilies. To introduce them, we fix a number
N ∈ 2,n− 2 and assume that

M1 � {Mi : i ∈ 1, N}, M2 � M\M1 = {Mi : i ∈ N + 1,n}. (2.4)

(The latter property in (2.4) can be easily verified in view of (2.3).) Each of the families (2.4)
contains at least two megalopolises. Defining the families (2.4), we consider the problem of visiting
megalopolises from M as the set of two interconnected subproblems: the problems of visiting
megalopolises from M1 and M2, respectively. In this regard, for j ∈ 1,n−N, we suppose that

M (j) � MN+j ∈ Fin(X) ∀j ∈ 1,n−N

(see (2.2)). From (2.4) it follows that M2 = {M (j) : j ∈ 1,n−N}. Within this approach, let us
accept an appropriate convention: the precedence conditions, possibly present in the M-problem,
are localized in the M1- and M2-problems. Taking these considerations into account, we introduce
the sets

(K1 ∈ P(1, N × 1, N))&(K2 ∈ P(1,n −N × 1,n−N));

their elements (OPs) are called address pairs. In each such pair, the first element is called the
sender and the second one the recipient. From this point onwards, we assume that

(∀K0 ∈ P ′(K1) ∃z0 ∈ K0 : pr1(z
0) �= pr2(z) ∀z ∈ K0) (2.5)

&(∀K̃0 ∈ P ′(K2) ∃z0 ∈ K̃0 : pr1(z
0) �= pr2(z) ∀z ∈ K̃0).

Conditions (2.5) usually hold in practical problems; see the discussion in [8, part 2]. For example,
in the case of sheet cutting, the following traditional requirement is reduced to this condition:
if the part to be cut has inner contours, they must be cut before the outer (enclosing) contour;
see [8, Remark 2.2.1].

Remark 1. Introducing K̃2 � {(pr1(z) +N,pr2(z) +N) : z ∈ K2}, as K1 and K̃2 we obtain two
subsets of 1,n× 1,n. It is possible to consider the case in which K1 ⊂ K̃ and K̃2 ⊂ K̃, where
K̃ ⊂ 1,n× 1,n, and K̃ ∈ P(1,n × 1,n) can be treated as the aggregate set of address pairs and
used to define the aggregate precedence conditions. If an OP ẑ ∈ K̃ is such that k̂ � pr1(ẑ) ∈ 1, N
and l̂ � pr2(ẑ) ∈ N + 1,n, under the decomposition into the M1- and M2- problems, Mk̂ will
automatically be visited before Ml̂. (In other words, no special consideration of ẑ as an address pair

is required.) If z̃ ∈ K̃ has the property k̃ � pr1(z̃) ∈ N + 1,n and l̃ � pr2(z̃) ∈ 1, N , the problem
with the precedence conditions defined through K̃ will be infeasible when solving the M1- and M2-
problems sequentially. Therefore, within the problem statement with the decomposition into the
M1- and M2-problems, a natural case is K̃ = K1 ∪ K̃2 : no additional consideration of the cross
precedence conditions is required if the aggregate problem is feasible under this decomposition.

Let P1 � (bi)[1, N ] and P2 � (bi)[1,n−N ]; then, according to [8, formulas (2.1.5) and (2.2.53)],
[10, formula (4.4.6)], and (2.5),

A1 �
{
α ∈ P1 | α−1(pr1(z)) < α−1(pr2(z)) ∀z ∈ K1

}
∈ P ′(P1), (2.6)

A2 �
{
α ∈ P2 | α−1(pr1(z)) < α−1(pr2(z)) ∀z ∈ K2

}
∈ P ′(P2). (2.7)
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Thus, under conditions (2.5), we have non-empty sets of precedence-feasible routes (index permu-
tations) in the M1- and M2-problems. Now, let P � (bi)[1,n] (the set of all routes of the aggregate
problem). For α ∈ P1 and β ∈ P2, a (glued) route α♦β ∈ P is given by the rule

(
(α♦β)(k) � α(k) ∀k ∈ 1, N

)
&

(
(α♦β)(l) � β(l −N) +N ∀l ∈ N + 1,n

)
. (2.8)

Here, the matter concerns gluing special-form permutations (shift gluing). Below we will introduce
another gluing operation, not for permutations but for fragments of tracks. For this reason, a
different notation will be used there. In (2.8), in particular, it is possible to use routes from the
sets (2.6) and (2.7). Considering this aspect, we obtain

P � {α � β : α ∈ A1, β ∈ A2} = {pr1(z) � pr2(z) : z ∈ A1 ×A2} ∈ P ′(P). (2.9)

The routes from P (2.9) are treated as feasible in the M-problem (based on the sequential solution
of the M1- and M2-problems). Following [11, formulas (2.11)–(2.13)], we naturally arrive at the

tracks described by [11, formula (2.14)]. To this end, let Z � (X ×X)0,n. According to [11, formu-
las (2.11)–(2.13)], for x ∈ X0 and γ ∈ P, the tracks of the bundle

Zγ [x] �
{
(zt)t∈0,n ∈ Z | (z0 = (x, x))&(zτ ∈ Mγ(τ) ∀τ ∈ 1,n)

}
∈ Fin(Z) (2.10)

start from the point x (in the notations of [11, 12], from (x, x); this difference is nonessential) and
are consistent with γ. In addition, for x ∈ X0,

D̃[x] �
{
(γ, (zt)t∈0,n) ∈ P× Z | (zt)t∈0,n ∈ Zγ [x]

}
∈ Fin(P× Z) (2.11)

is the set of all feasible solutions (FSs) in the M-problem with the starting point x, i.e., feasible in
the (M, x)-problem. Finally,

D �
{
(γ, (zt)t∈0,n, x) ∈ P× Z×X0 | (γ, (zt)t∈0,n) ∈ D̃[x]

}
∈ Fin(P× Z×X0) (2.12)

is the set of all FSs in the M-problem, called routing processes (RPs). For substantive details,
see [11, 12]. Following [11, formula (2.17)], for j ∈ 1,n, we introduce the sets

(
Mj � {pr1(z) : z ∈ Mj} ∈ Fin(Mj)

)
&

(
Mj � {pr2(z) : z ∈ Mj} ∈ Fin(Mj)

)

with the property Mj ⊂ Mj ×Mj ⊂ Mj ×Mj ; see (2.2). For j ∈ 1,n−N, it is obvious that

M (j) = MN+j ∈ Fin(X), M
(j) � MN+j ∈ P ′(M (j) ×M (j)), (2.13)

M(j) � MN+j ∈ Fin(M (j)), M(j) � MN+j ∈ Fin(M (j)).

Here, the sets used in the final problem are simply renumbered. In view of (2.13), we also sup-
pose [11, formula (2.18)] that M̄ is the union of all sets M(i), i ∈ 1,n−N . Finally, let N � P ′(1,n);
the sets from N are called lists. Following [11, formula (2.19)], we have

(
X �

n⋃
i=1

Mi ∈ Fin(X)

)
&

(
X �

(
n⋃

i=1

Mi

)
∪X0 ∈ Fin(X)

)
. (2.14)

Also, we fix the real-valued functions

c ∈ R+[X× X×N], c1 ∈ R+[M1 ×N], . . . , cn ∈ R+[Mn ×N], f ∈ R+[M̄]. (2.15)
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Note in this regard that for γ ∈P and τ ∈ 1,n, γ1(τ,n)∈N is an image of the discrete interval τ,n
under the action of γ. The values of c serve to estimate external movements; the values of c1, . . . , cn,
to estimate internal work associated with visiting megalopolises; the values of f, to estimate the
terminal state. One of the arguments of the functions c, c1, . . . , cN is the list of pending tasks. This
dependence may arise in the sheet cutting problem when considering possible thermal deformations
of the parts during cutting by introducing penalties. Speaking about the general problem statement,
we emphasize that the dependence on the list of pending tasks may also arise for other reasons.
(For example, in the sequential disassembly of nuclear facilities in case of accidents, only those
objects radiate that are not dismantled at the moment.) Now, let us proceed to constructing the
additive criterion. Following [11, formula (2.21)], for x ∈ X0, γ ∈ P, and (zt)t∈0,n ∈ Zγ [x], we have

Cγ

[
(zt)t∈0,n

]
�

n∑
t=1

[
c(pr2(zt−1),pr1(zt), γ

1(t,n)) + cγ(t)(zt, γ
1(t,n))

]
+ f(pr2(zn)). (2.16)

Of course, see (2.11), the value of (2.16) is defined for x ∈ X0 and
(
γ, (zt)t∈0,n

)
∈ D̃[x]. For x ∈ X0,

we introduce the (M, x)-problem

Cγ

[
(zt)t∈0,n

]
→ min,

(
γ, (zt)t∈0,n

)
∈ D̃[x]. (2.17)

Its optimum Ṽ [x] ∈ R+ and the non-empty set (sol)[x] of all its optimal solutions are given by

Ṽ [x] � min(
γ,(zt)t∈0,n

)
∈D̃[x]

Cγ

[
(zt)t∈0,n

]
∈ R+, (2.18)

(sol)[x] �
{(

γ0, (z0t )t∈0,n
)
∈ D̃[x] | Cγ0

[
(z0t )t∈0,n

]
= Ṽ [x]

}
∈ Fin(D̃[x]). (2.19)

In (2.17), the total travel cost of external movements, internal works, and terminal state imple-
mentation is optimized; in the case of sheet cutting, these types of travel cost are associated with
non-cutting stroke, cutting in the operating mode, and, e.g., tool “parking,” respectively. In the
simplest case, the components mentioned can be characterized by the execution times of the corre-
sponding operations. Generally, we obtain a minimization problem for the additive criterion (2.16)
in the class of FSs defined each as a route–track OP; (2.19) is the set of all optimal route–track
OPs in the mentioned sense. We admit the possibility of varying x∈X0. As a consequence, the
M-problem (the original problem) arises:

Cγ

[
(zt)t∈0,n

]
→ min,

(
γ, (zt)t∈0,n, x

)
∈ D. (2.20)

Problem (2.20) is assigned the global optimum V and the non-empty set SOL of all optimal RPs:

V � min
(γ,(zt)t∈0,n

,x)∈D
Cγ

[
(zt)t∈0,n

]

= min
x∈X0

min
(γ,(zt)t∈0,n

)∈D̃[x]
Cγ

[
(zt)t∈0,n

]
= min

x∈X0
Ṽ [x] ∈ R+,

(2.21)

SOL �
{
(γ0, (z0t )t∈0,n, x

0) ∈ D | Cγ0 [(z0t )t∈0,n] = V

}
∈ Fin(D). (2.22)

(In (2.21), we take advantage of (2.12) and (2.18).) The elements of the set (2.22) represent
optimal RPs. They are triplets, in contrast to the elements of (2.19). With the dependence

Ṽ [·] � (Ṽ [x])x∈X0 ∈ R+[X
0] (2.23)
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we associate the starting point minimization problem:

Ṽ [x] → min, x ∈ X0. (2.24)

In this problem, the criterion is given by (2.23) and the optimum coincides with V (see (2.21)); the
optimum set has the form

X0
opt �

{
x ∈ X0 | Ṽ [x] = V

}
∈ P ′(X0). (2.25)

In (2.24), the starting point is optimized provided that, in the case of its particular choice, the
FS (the route–track OP) is also selected optimally. As a result, the global maximum is reached.

Proposition 1. If x ∈ X0
opt and (γ, (zt)t∈0,n) ∈ (sol)[x], then (γ, (zt)t∈0,n, x) ∈ SOL.

The proof is obvious by combining (2.19), (2.22), and (2.25). Indeed, in (2.21), we sequentially
reach the minimum, first in the FS of the elements (2.11) under a fixed starting point and then in
the starting point itself (see (2.24) and (2.25)).

3. PRELIMINARY AND FINAL ROUTING PROBLEMS

As already noted, to solve problem (2.20), we actually decompose it into the set of the M1-
and M2-problems. This decomposition will be optimal in some sense: we find (2.21) and some
RP from the set (2.22). Let us discuss this optimal method (see [11, 12]) on a substantive level
after formulating the partial problems mentioned. The statement of the M1-problem depends on
the set of parameters defined when solving the M2-problem. For this reason, we first discuss the
M2-problem (the upper-level problem or the final problem). However, its statement incorporates
an object related very simply to the M1-problem. We begin with this object, i.e., the set of starting
points in the M2-problem. Letting

K̃1 � {pr1(h) : h ∈ K1}, (3.1)

we obtain 1, N \ K̃1 ∈ P ′(1, N ) by [8, formula (4.9.9), Proposition 4.9.3]. Then

X00 �
⋃

i∈1,N\K̃1

Mi ∈ Fin(X) (3.2)

is the set of all possible starting points of the M2-problem in which M (1), . . . ,M (n−N) form the
family of megalopolises to be visited (see (2.14)).

The set X00 plays the role of “input variable” for the M2-problem. Right after obtain-
ing X00 (3.2), this problem is well defined in terms of the set of parameters. It is solved by
determining the necessary fragments (layers) of the Bellman function (the optimal solution of
the M2-problem is postponed). As a result, we find the value (optimum) function defined on X00.
This function then determines the terminal component of the additive criterion in the M1-problem,
therefore representing the “output variable” for the M2-problem. The M2-problem participates
in constructing the criterion of the M1-problem (the preliminary problem). Hence, it is possible
to solve the M1-problem (the criterion is completely defined). Now we construct the layers of the
Bellman function of this problem and, in particular, the value function defined on X0. Accord-
ing to [12], this is sufficient to find V and the optimal starting point. Next, the M1-optimal FS
is standardly built for this point and its finish point is fixed. The M2-optimal solution is then
implemented from this point as a route–track OP and is subsequently glued with the M1-optimal
solution to form the optimal FS of the aggregate problem with a fixed starting point. Comple-
menting the componentwise glued FS with the latter, we finally obtain the optimal RP. This is the
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general scheme of the study, applied below. Now, let us recall some concepts related to the final
problem.

For j ∈ 1,n −N, with the megalopolis M (j) we associate a relation M
(j) such that(

M(j) = {pr1(z) : z ∈ M
(j)} ∈ Fin(M (j))

)
&

(
M(j) = {pr2(z) : z ∈ M

(j)} ∈ Fin(M (j))
)

(3.3)

(see (2.13)). The set A2 consists of all feasible routes in the M2-problem. Let Z∗ � (X ×X)0,n−N ;
for x ∈ X00 and β ∈ A2,

Z∗
β[x] �

{
(zt)t∈0,n−N ∈ Z∗ | (z0 = (x, x))& (zt ∈ M

(β(t)) ∀t ∈ 1,n−N)
}
∈ Fin(Z∗), (3.4)

is the bundle of tracks in the M2-problem that start from the point x and are consistent with β.
From (2.13) and (2.14) it follows thatM(j) ⊂ X for j ∈ 1,n−N ; in addition, X00 ⊂ X due to (2.14)
and (3.2). From (2.13), (2.14), (3.3), and (3.4), we obtain pr1(zτ ) ∈ X and pr2(zτ ) ∈ X for x ∈ X00,
β ∈ A2, (zt)t∈0,n−N ∈ Z∗

β[x], and τ ∈ 1,n−N. Therefore, see (2.13), c(pr2(zτ−1),pr1(zτ ),K) ∈ R+

and cN+β(τ)(zτ ,K) ∈ R+, where K ∈ N, are defined for x ∈ X00, β ∈ A2, (zt)t∈0,n−N ∈ Z∗
β[x], and

τ ∈ 1,n−N. In view of (3.4), for x ∈ X00,

D∗[x] �
{
(β, (zt)t∈0,n−N ) ∈ A2 × Z∗ | (zt)t∈0,n−N ∈ Z∗

β[x]
}
∈ Fin(A2 × Z∗), (3.5)

is the set of all FSs in the (M2, x)-problem, i.e., the M2-problem with the starting point x. Let
N∗ � P ′(1,n−N) (the family of all non-empty subsets of 1,n−N); for K ∈ N∗, we have the list

K ⊕N = {k +N : k ∈ K} ∈ N (3.6)

in the original problem. Obviously (see [11, formula (4.9)]), the value

n−N∑
t=1

[
c(pr2(zt−1),pr1(zt), β

1(t,n−N)⊕N)

+ cN+β(t)(zt, β
1(t,n−N)⊕N)

]
+ f(pr2(zn−N )) ∈ R+ (3.7)

for x ∈ X00, β ∈ A2, and (zt)t∈0,n−N ∈ Z∗
β[x]. To derive expressions similar to [14, formula (3.16)]

for these values, we introduce a transformation of travel cost functions. To this end, we first define

(
X
∗ �

(
n−N⋃
i=1

M(i)

)
∈ Fin(X)

)
&

(
X∗ �

(
n−N⋃
i=1

M(i)

)
∪X00 ∈ Fin(X)

)
(3.8)

with the properties X∗ ⊂ X and X∗ ⊂ X (i.e., consider (2.13), (2.14), and (3.2)). Then, we define
c∗ ∈ R+[X

∗ ×X
∗ ×N∗] by the rule

c∗(x, y,K) � c(x, y,K ⊕N) ∀x ∈ X∗ ∀y ∈ X
∗ ∀K ∈ N∗ (3.9)

(see (2.15) and (3.6)). Formulas (3.8) and (3.9) determine the travel cost of external movements in
the M2-problem (see (3.7)). For j ∈ 1,n−N, we define c∗j ∈ R+[M

(j) ×N∗] by the rule

c∗j (z,K) � cN+j(z,K ⊕N) ∀z ∈ M
(j) ∀K ∈ N∗. (3.10)

Formula (3.10) determines the travel cost of internal works in theM2-problem. Finally, the terminal
component of the additive criterion coincides with f (see (2.15)). Thus, (c∗, c∗1, . . . , c∗n−N , f) is the
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tuple of real-valued travel cost functions in the M2-problem. In this case, for x ∈ X00, β ∈ A2,
and (zt)t∈0,n−N ∈ Z∗

β[x], the expression (3.7) reduces to

C∗
β

[
(zt)t∈0,n−N

]
�

n−N∑
t=1

[
c∗(pr2(zt−1),pr1(zt), β

1(t,n−N))

+ c∗β(t)(zt, β
1(t,n−N))

]
+ f(pr2(zn−N )) ∈ R+, (3.11)

thereby defining the additive criterion of the M2-problem. For x ∈ X00, we obtain the (M2, x)-
problem

C∗
β

[
(zt)t∈0,n−N

]
→ min,

(
β, (zt)t∈0,n−N

)
∈ D∗[x], (3.12)

with an optimum Ṽ ∗[x] ∈ R+ and a (non-empty) set (sol)∗[x] of all optimal solutions:

Ṽ ∗[x] � min
(β,(zt)t∈0,n−N

)∈D∗[x]
C∗
β

[
(zt)t∈0,n−N

]
∈ R+, (3.13)

(sol)∗[x] �
{(

β, (zt)t∈0,n−N

)
∈ D∗[x] | C∗

β

[
(zt)t∈0,n−N

]
= Ṽ ∗[x]

}
∈ Fin(D∗[x]). (3.14)

Formula (3.13) determines an important function Ṽ ∗[·] of the form

x �→ Ṽ ∗[x] : X00 → R+. (3.15)

The expressions (3.14) and (3.15) can be treated as the resultants of the M2-problem. Using (3.15),
we construct the additive criterion of the M1-problem.

Let Z� � (X ×X)0,N ; for x ∈ X0 and α ∈ A1,

Z�
α[x] �

{
(zt)t∈0,N ∈ Z� | (z0 = (x, x))&(zτ ∈ Mα(τ) ∀τ ∈ 1, N)

}
∈ Fin(Z�) (3.16)

is the bundle of tracks in the M1-problem that start from the point x and are consistent with the
route α. We introduce the sets(

X
� �

N⋃
i=1

Mi ∈ Fin(X)

)
&

(
X� �

(
N⋃
i=1

Mi

)
∪X0 ∈ Fin(X)

)
, (3.17)

for which X
� ⊂ X and X� ⊂ X (see (2.14)). For x ∈ X0, we define the set of all FSs in the (M1, x)-

problem (the M1-problem with the starting point x):

D�[x] �
{(

α, (zt)t∈0,N
)
∈ A1 × Z� | (zt)t∈0,N ∈ Z�

α[x]
}
∈ Fin(A1 × Z�). (3.18)

Note a quite obvious and important property for “binding” the M2-problem to the M1-problem:
if x ∈ X0, α ∈ A1, and (zt)t∈0,N ∈ Z�

α[x], then

pr2(zN ) ∈ X00. (3.19)

(For details, see [11, Proposition 3.3].) Now we sequentially introduce the travel cost functions
forming the additive criterion in the M1-problem. We begin with the terminal component, actually
identifying it with the function Ṽ ∗[·] (3.15). Precisely, assuming that M� is the union of all sets Mi,
i ∈ 1, N , we define f ∈ R+[M

�] by the rule(
f(x) � Ṽ ∗[x] ∀x ∈ X00

)
&

(
f(x) � 0 ∀x ∈ M� \X00

)
. (3.20)
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The second expression in (3.20) is insignificant; it ensures consistency with [14]. Let N� � P ′(1, N )
(the family of all non-empty subsets of 1, N.) In view of (2.15), we define c� ∈ R+[X

� × X
� ×N�]

by the conditions

c�(z,K) � c(z,K ∪N + 1,n) ∀z ∈ X� × X
� ∀K ∈ N�. (3.21)

For j ∈ 1, N, the function c�j ∈ R+[Mj ×N�] is given by the rule

c�j(z,K) � cj(z,K ∪N + 1,n) ∀z ∈ Mj ∀K ∈ N�. (3.22)

Thus, formulas (3.20)–(3.22) determine the tuple (c, c�1, . . . , c
�
N , f) of the real-valued travel cost

functions in the M1-problem. For x ∈ X0, α ∈ A1, and (zt)t∈0,N ∈ Z�
α[x], let (see (3.20)–(3.22))

C�
α[(zt)t∈0,N ] �

N∑
t=1

[
c�(pr2(zt−1),pr1(zt), α

1(t,N)) + c�α(t)(zt, α
1(t,N))

]
+ f(pr2(zN ))

=
N∑
t=1

[
c�(pr2(zt−1),pr1(zt), α

1(t,N )) + c�α(t)(zt, α
1(t,N))

]
+ Ṽ ∗[pr2(zN )]; (3.23)

these expressions take into account (3.19) and (3.20). For x ∈ X0, we define the (M1, x)-problem
as

C�
α

[
(zt)t∈0,N

]
→ min,

(
α, (zt)t∈0,N

)
∈ D�[x], (3.24)

with an optimum V �[x] and a (non-empty) set (sol)�[x] of all optimal solutions:

V �[x] � min(
α,(zt)t∈0,N

)
∈D�[x]

C�
α

[
(zt)t∈0,N

]
∈ R+, (3.25)

(sol)�[x] �
{(

α, (zt)t∈0,N
)
∈ D�[x] | C�

α

[
(zt)t∈0,N

]
= V �[x]

}
∈ Fin(D�[x]). (3.26)

Then x �→ V �[x] : X0 → R+ is the value function V �[·] in the M1-problem, with the starting point
as the argument. For separate consideration, we take the problem

V �[x] → min, x ∈ X0, (3.27)

with an optimum V
� ∈ R+ and a (non-empty) set X�

opt ∈ Fin(X0) of all optimal starting points:

V
� � min

x∈X0
V �[x] ∈ R+, (3.28)

X�
opt �

{
x ∈ X0 | V �[x] = V

�
}
∈ Fin(X0). (3.29)

Thus, we have two interconnected subproblems for the decomposition-based solution of the original
problem.

4. SOLUTION STRUCTURE AT THE FUNCTIONAL LEVEL:
A SUBSTANTIVE DISCUSSION

This brief section outlines an optimal solution scheme for the (original) M-problem correspond-
ing to the constructs of the previous two sections. We describe the logical chain only (in fact, an
algorithm at the functional level).
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Stage 1. Using (3.2), determine the set X00 of possible starting points in the M2-problem.

Stage 2. Form the M2-problem as the system of the (M2, x)-problems (3.12), where x ∈ X00;
determine the value function Ṽ ∗[·] (3.15), used to construct the terminal component of the additive
criterion in the M1-problem (see (3.20)).

Stage 3. Form the M1-problem as the system of the (M1, x)-problems (3.24), where x ∈ X0;
determine the value function V �[·] and the optimum V

� in Problem (3.27) and some (optimal)

starting point x0 ∈ X�
opt; also, determine the optimal solution of the (M1, x

0)-problem from the
set (3.26), where x = x0, calling it the M1-solution.

Stage 4. Choose the finish point x00 of the M1-solution, an element of X00 (see (3.19)), as the
starting point in the M2-problem. Then, construct the optimal solution of the (M2, x

00)-problem,
thereby obtaining the M2-solution.

Stage 5. Glue the M1- and M2-solutions (separately their routes and tracks), thereby obtaining
the optimal RP with x0.

We emphasize the equality V = V
�, which was established in [11, 12]. It serves for implement-

ing V easily when seeking the global optimum and the optimal starting point only (i.e., if the
optimal RP itself is not so important). In this case, Stages 1 and 2 are retained, and Stage 3 is
reduced to finding the value function V �[·]. (Minimizing this function on X0 gives the required
value V and the starting point implementing it.)

Note that the broadly understood DP is the apparatus to implement Stages 1–4.

Let us introduce the natural gluing procedure for tracks. This procedure differs from permutation
gluing: it operates tracks, quite different objects. In this regard, we introduce a new designation.
First, assume that for z′ ∈ Z� and z′′ ∈ Z∗, the tuple z′�z′′ ∈ Z is given by the rule(

(z′�z′′)(τ) � z′(τ) ∀τ ∈ 0, N
)
&

(
(z′�z′′)(τ) � z′′(τ −N) ∀τ ∈ N + 1,n

)
. (4.1)

In particular, z′ and z′′ in (4.1) can be tracks. According to [11, Proposition 6.4], ∀x∈X0 ∀α∈A1

∀β ∈A2 ∀z′ ∈Z�
α[x] ∀z′′∈Z∗

β[pr2(z
′(N))]

z′�z′′ ∈ Zα♦β [x]. (4.2)

Obviously, see (3.19), pr2(zN ) ∈ X00 for x ∈ X0, α ∈ A1, β ∈ A2, and (zt)t∈0,n ∈ Zα♦β [x]. In this

context, we also recall [11, Proposition 6.5]: if x ∈ X0, α ∈ A1, β ∈ A2, (zt)t∈0,n ∈ Zα♦β [x] and a
tuple (z∗t )t∈0,n−N ∈ Z∗ is given by the rule(

z∗0 � (pr2(zN ),pr2(zN ))
)
&

(
z∗τ � zτ+N ∀τ ∈ 1,n−N

)
,

then

(z∗t )t∈0,n−N ∈ Z∗
β[pr2(zN )]. (4.3)

In view of (4.2) and (4.3), we establish the following result (see [12, Theorem1]):

V = V
�. (4.4)

Note that (3.28) and [12, formula (6.12)] must be considered in (4.4). Let us present another result
concerning the logical chain 1)–5).

Proposition 2.

Assume that x0 ∈X�
opt, (ξ, (yi)i∈0,N )∈ (sol)�[x0], and (η, (ŷi)i∈0,n−N )∈ (sol)∗[pr2(yN )]. Then the

solution (
ξ � η, (yi)i∈0,N � (ŷi)i∈0,n−N

)
∈ D̃[x0] (4.5)
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is such that

Cξ�η
[
(yi)i∈0,N �(ŷi)i∈0,n−N

]
= V. (4.6)

Proposition 2 is proved in the Appendix. In fact, it provides an explicit method for constructing
the optimal RP.

Really, let all conditions of Proposition 2 be true (those imposed on x0, (ξ, (yi)i∈0,N ), and

(η, (ŷi)i∈0,n−N )). In this case, due to (2.12), (4.5), and x0 ∈X0 (see (3.29)), we obtain

(
ξ � η, (yi)i∈0,N � (ŷi)i∈0,n−N , x0

)
∈ D (4.7)

(a feasible RP with the property (4.6)). By (2.22) and (4.6), we have(
ξ � η, (yi)i∈0,N � (ŷi)i∈0,n−N , x0

)
∈ SOL, (4.8)

i.e., the optimal RP has been built. Note also that Ṽ [x0] = V due to (2.18), (2.21), and (4.4)–(4.6);
consequently, x0 ∈ X0

opt (see (2.25)). In the next sections, we discuss the implementation of
Stages 1–5 in the light of (4.4) and (4.8).

In addition to the framework [11, 12], we mention several properties similar to the one of Propo-
sition 2 in terms of gluing constructs. These properties are important for the further application
of DP.

Proposition 3. If x ∈ X0, (ξ, (yi)i∈0,N ) ∈ D�[x], and (η, (ŷi)i∈0,n−N ) ∈ D∗[pr2(yN )], then

Cξ�η
[
(yi)i∈0,N � (ŷi)i∈0,n−N

]
= C�

ξ

[
(yi)i∈0,N

]
− Ṽ ∗[pr2(yN )

]
+ C∗

η

[
(ŷi)i∈0,n−N

]
.

In essential part, the proof is common to that of Proposition 2.

Corollary 1. If x ∈ X0, (ξ, (yi)i∈0,N ) ∈ D�[x], and (η, (ŷi)i∈0,n−N ) ∈ (sol)∗[pr2(yN )], then

Cξ�η
[
(yi)i∈0,N � (ŷi)i∈0,n−N

]
= C�

ξ

[
(yi)i∈0,N

]
.

Corollary 2. If x ∈ X0, (ξ, (yi)i∈0,N ) ∈ (sol)�[x], and (η, (ŷi)i∈0,n−N ) ∈ (sol)∗[pr2(yN )], then

Cξ�η[(yi)i∈0,N � (ŷi)i∈0,n−N ] = V �[x].

Proposition 4. X0
opt = X�

opt.

The proof of this result is given in the Appendix. From (4.4) and Proposition 4 it follows that
the resulting M1-problem reproduces the most important elements of the original M-problem: the
global optimum (2.21) and the optimal set (2.24). Note another useful property on the coincidence
of value functions, which is, however, not employed in further considerations.

Proposition 5. If x ∈ X0, then V �[x] = Ṽ [x].

It is established by analogy with Proposition 4.

5. THE FINAL PROBLEM

This section discusses the exact implementation of Stages 1–5 using the broadly understood DP;
see [13, 14] and other publications. We begin with solving the M2-problem, following Stage 2 and
adhering to the algorithmic presentation similar to [13, 14]. The matter concerns constructing the

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 5 2023



TWO-STAGE DYNAMIC PROGRAMMING 621

layers of the Bellman function involving precedence conditions. Note that these constructs have
been repeatedly used by us before. Here, they are described in a fairly brief form with the necessary
references. First of all, for pending tasks from the list, we introduce the crossing-out operator I∗

acting in N∗ by the rule: for K ∈ N∗ and Ξ∗[K] � { z ∈ K2 | (pr1(z) ∈ K)&(pr2(z) ∈ K)}, the set
I∗(K) ∈ N∗ is

I∗(K) � K \ {pr2(z) : z ∈ Ξ∗[K]} . (5.1)

(The definition of I∗ (5.1) agrees with [8, formulas (2.2.27) and (2.2.28)].) The operator I∗ serves to
determine substantial lists of pending tasks [13, 14]. Let

S∗ � {K ∈ N∗| ∀z ∈ K2 (pr1(z) ∈ K) =⇒ (pr2(z) ∈ K)} ; (5.2)

the sets representing elements of the family (5.2) are called substantial lists in the M2-problem.
For s ∈ 1,n−N, let S∗

s � { K ∈ S∗ | s = |K|}. Then S∗
n−N = {1,n −N} (singleton) and, for

K̂2 � { pr1(z) : z ∈ K2},
S∗

1 = { {t} : t ∈ 1,n−N \ K̂2}.
In addition, for s ∈ 2,n−N, we have

S∗
s−1 = { K \ {t} : K ∈ S∗

s, t ∈ I∗(K)} (5.3)

(see [14, formula (4.6)]). Formula (5.3) defines the following recurrence procedure:

S∗
n−N −→ S∗

n−N−1 −→ . . . −→ S∗
1. (5.4)

A regular step of the procedure (5.4) is implemented using (5.3).

The sets S∗
s, s ∈ 1,n−N, being available, we construct the layers of the state space, denoted

by D∗
0,D

∗
1 , . . . ,D

∗
n−N . Note that

D∗
0 � {(x,∅) : x ∈ M̂∗}, (5.5)

where M̂∗ is identified with the union of all sets M(j), j ∈ 1,n−N \ K̂2. In addition, let

D∗
n−N �

{
(x, 1,n −N) : x ∈ X00

}
. (5.6)

Consider the construction of D∗
s for s ∈ 1,n−N − 1. First, for each K ∈ S∗

s, we sequentially con-
struct

J ∗
s (K) �

{
j ∈ 1,n−N \K | {j} ∪K ∈ S∗

s+1

}
, M∗

s[K] �
⋃

j∈J ∗
s (K)

M(j),

D
∗
s[K] � {(x,K) : x ∈ M∗

s[K]}
(i.e., implement the procedure J ∗

s (K) → M∗
s[K] → D

∗
s[K]). Second, let

D∗
s �

⋃
K∈S∗

s

D
∗
s[K]. (5.7)

Each layer D∗
j , j ∈ 0,n−N , is a non-empty set (see [8, Proposition 4.9.3]). Note an important

property [11, formula (5.5)] as follows: for s ∈ 1,n−N , (x,K) ∈ D∗
s , j ∈ I∗(K), and z ∈ M

(j),

(pr2(z),K \ {j}) ∈ D∗
s−1. (5.8)

(Also, see [8, Proposition 4.9.4]).
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The next step is constructing the layers of the Bellman function: v∗0, v∗1 , . . . , v∗n−N . We use the
Bellman equation (see [23, Theorem5.1]) and the contractions of the resulting Bellman function to
the layers of the state space. These constructs can be reduced to the recurrence procedure

v∗0 → v∗1 → . . . → v∗n−N . (5.9)

In this case, v∗0 ∈ R+[D
∗
0 ] is given by the rule

v∗0(x,∅) � f(x) ∀x ∈ M̂∗. (5.10)

In view of (5.8), a regular step of this procedure is implemented as follows: for s ∈ 1,n−N, we
determine v∗s ∈ R+[D

∗
s ] based on v∗s−1 ∈ R+[D

∗
s−1] according to the rule [11, formula (5.6)], i.e.,

v∗s(x,K)� min
j∈I∗(K)

min
z∈M(j)

[
c∗(x,pr1(z),K)+ c∗j (z,K)+ v∗s−1(pr2(z),K \{j})

]
∀(x,K)∈D∗

s . (5.11)

For the final function v∗n−N ∈ R+[D
∗
n−N ], we have

Ṽ ∗[x] = v∗n−N (x, 1,n −N) ∀x ∈ X00. (5.12)

Remark 2. If Ṽ ∗[·] needs to be determined without constructing the optimal routing process in
the M2-problem, the procedure (5.9) can be implemented with rewriting the layers. (Note the
construct in [24] for a somewhat different problem.) In this case, for s ∈ 1, N − 1, computer’s
memory contains the layer v∗s−1 of the Bellman function; after determining v∗s , it is eliminated and
replaced by the layer v∗s . If s � N − 2, then the layer v∗s is used to construct v∗s+1. This simple
circumstance follows directly from (5.11) and saves memory resources; see [25].

After constructing v∗n−N , we proceed to solving the M1-problem using (5.12). So, we pass to
Stage 3 and determine the terminal component of the additive criterion based on (3.20).

6. THE PRELIMINARY PROBLEM

Let us find the function f through (3.20) and (5.12). (Now, it is substantial that

f(x) � v∗n−N (x, 1,n −N) ∀x ∈ X00;

hence, f can be explicitly determined.) Further constructs are similar to those for the M2-problem
and are given in the short form. The matter concerns implementing DP in the spirit of [13, 14]
(based on the constructs from [8, § 4.9]).

We introduce the crossing-out operator I� acting in N�: for K ∈ N� and

Ξ�[K] � { z ∈ K1| (pr1(z) ∈ K)&(pr2(z) ∈ K)},

the set I�(K) is

I�(K) � K \ { pr2(z) : z ∈ Ξ�[K]}. (6.1)

Consider the construction of substantial lists of pending tasks in the M1-problem. Let

S� � { K ∈ N�| ∀z ∈ K1 (pr1(z) ∈ K) =⇒ (pr2(z) ∈ K)}; (6.2)

the sets representing elements of the family (6.2) are called substantial lists in the M1-problem.
For s ∈ 1, N, let

S�
s � { K ∈ S�|s = |K|}.
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Obviously, S�
N = {1, N} (singleton). For K̂1 � {pr1(z) : z∈K1}, we have S�

1 = { {t} : t∈1, N \K̂1}.
It is evident that, for s ∈ 2, N,

S�
s−1 =

{
K \ {j} : K ∈ S�

s, j ∈ I�(K)
}
. (6.3)

Formula (6.3) defines the recurrence procedure

S�
N −→ S�

N−1 −→ . . . −→ S�
1. (6.4)

(A regular step of the procedure (6.4) is implemented using (6.3).) The sets S�
s, s ∈ 1, N, being

available, we construct the layers of the state space, denoted by D�
0,D

�
1, . . . ,D

�
N . Letting

(
D�

0 � { (x,∅) : x ∈ X00}
)
&

(
D�

N � { (x, 1, N ) : x ∈ X0}
)
, (6.5)

yields the extreme layers of the state space. If s ∈ 1, N − 1, then for K ∈ S�
s we first sequentially

determine

J �
s (K) � { j ∈ 1, N \K| {j} ∪K ∈ S�

s+1}, M�
s(K) �

⋃
j∈J �

s (K)

Mj, (6.6)

D
�
s[K] � {(x,K) : x ∈ M�

s(K)}

(i.e., implement the procedure J �
s (K) → M�

s(K) → D
�
s[K]). The layer D�

s is given by the rule

D�
s �

⋃
K∈S�

s

D
�
s[K]. (6.7)

Thus, all layers D�
0,D

�
1, . . . ,D

�
N have been built. According to [8, Proposition 4.9.3], all these layers

are non-empty sets. Note that for s ∈ 1, N , (x,K) ∈ D�
s, j ∈ I�(K), and z ∈ Mj ,

(pr2(z),K \ {j}) ∈ D�
s−1. (6.8)

The construct (6.6)–(6.8) is used for obtaining the layers of the Bellman function: we sequen-

tially determine the functions v�0 ∈ R+[D
�
0], v

�
1 ∈ R+[D

�
1], . . . , v

�
N ∈ R+[D

�
N ], coinciding with the

contractions of the Bellman function to the layers of the state space. In addition,

v�0(x,∅) � Ṽ ∗[x] = v∗n−N (x, 1,n−N) ∀x ∈ X00. (6.9)

If s ∈ 1, N and the function v�s−1 has been built, then due to (6.8), the function v�s ∈ R+[D
�
s] is

such that

v�s(x,K) � min
j∈I�(K)

min
z∈Mj

[
c�(x,pr1(z),K) + c�j(z,K) + v�s−1(pr2(z),K \ {j})

]
∀(x,K) ∈ Ds. (6.10)

Thus, we have designed the following recursive procedure:

v�0 −→ v�1 −→ . . . −→ v�N . (6.11)

A regular step of the procedure (6.11) is described by (6.10). In addition,

v�N (x, 1, N ) = V �[x] ∀x ∈ X0. (6.12)
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This property follows from the fact that all functions in (6.11) are the contractions of the Bellman

function; also, see (6.5). The function v�N being available, we determine (see (3.28) and (3.29)) V�

and the point from X�
opt. In view of (3.28), (4.4), and (6.12), we have

V = min
x∈X0

v�N (x, 1, N ), (6.13)

whereas the point x0 ∈ X�
opt (see (4.4), Proposition 4) is obtained from the following condition: the

point x0 ∈ X0 is such that

V = v�N (x0, 1, N ). (6.14)

Formulas (6.13) and (6.14) yield the global optimum and the optimal starting point without con-
structing the RP. Therefore, a considerable part of Stage 3 is implemented. Note that the logic of
Remark 2 fully applies to the procedure (6.11): the variant with overwriting the layers can be used
to find V and x0. As a matter of fact, we have the uniform glued procedure

(v∗0 −→ v∗1 −→ . . . −→ v∗n−N ) → (v�0 −→ v�1 −→ . . . −→ v�N ), (6.15)

where gluing is given by (6.9).

Now let us construct the optimal RP under the assumption that all functions in (6.15) are
available. (In other words, the procedure (6.15) has been implemented with all these functions
stored in computer’s memory.) Following 3), we first determine the M1-solution. Well, V ∈ R+

and x0 ∈ X�
opt (see (6.13) and (6.14)). Considering (4.4) and Proposition 4, let y0 � (x0, x0); by

the choice of x0,

(pr2(y0), 1, N ) = (x0, 1, N ) ∈ D�
N (6.16)

(see (6.5)). From (6.10) and (6.14) it follows that

V = min
j∈I�(1,N)

min
z∈Mj

[
c�(x0,pr1(z), 1, N ) + c�j(z, 1, N ) + v�N−1(pr2(z), 1, N \ {j})

]
. (6.17)

In view of (6.16) and (6.17), we choose ξ1 ∈ I�(1, N ) and y1 ∈ Mξ1 so that

V = c�(x0,pr1(y1), 1, N ) + c�ξ1(y1, 1, N ) + v�N−1(pr2(y1), 1, N \ {ξ1}). (6.18)

The relations (6.8) and (6.16) imply (pr2(y1), 1, N \ {ξ1}) ∈ D�
N−1. According to (6.10), we there-

fore have the equality

v�N−1(pr2(y1), 1, N \ {ξ1}) = min
j∈I�(1,N\{ξ1})

min
z∈Mj

[
c�(pr2(y1),pr1(z), 1, N \ {ξ1})

+ c�j(z, 1, N \ {ξ1}) + v�N−2(pr2(z), 1, N \ {ξ1; j})
]
. (6.19)

Considering (6.19), we choose ξ2 ∈ I�(1, N \ {ξ1}) and y2 ∈ Mξ2 so that

v�N−1

(
pr2(y1), 1, N \ {ξ1}

)
= c�

(
pr2(y1),pr1(y2), 1, N \ {ξ1}

)
(6.20)

+ c�ξ2
(
y2, 1, N \ {ξ1}

)
+ v�N−2

(
pr2(y2), 1, N \ {ξ1; ξ2}

)
;

in this case, by (6.8), (pr2(y2), 1, N \ {ξ1; ξ2}) ∈ D�
N−2. Due to (6.18) and (6.20), we have the

equality

V = c�
(
x0,pr1(y1), 1, N

)
+ c�

(
pr2(y1),pr1(y2), 1, N \ {ξ1}

)
(6.21)

+ c�ξ1
(
y1, 1, N

)
+ c�ξ2

(
y2, 1, N \ {ξ1}

)
+ v�N−2

(
pr2(y2), 1, N \ {ξ1; ξ2}

)
.
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Remark 3. For N = 2, the optimality of the OP ((ξi)i∈1,2, (yi)i∈0,2) in the (M1, x
0)-problem is

easily derived from (6.21).

In the general case N � 2, the procedures similar to (6.18) and (6.20) should be continued until

exhausting 1, N . As a result, we will construct the tuples ξ � (ξi)i∈1,N ∈ A1 and (yi)i∈0,N ∈ Z�
ξ[x

0]
with the property

C�
ξ[(yi)i∈0,N ] = V. (6.22)

Then, see (3.18), (ξ, (yi)i∈0,N ) ∈ D�[x0]. Furthermore, according to (3.25), (3.28), (4.4), and (6.22),

V
� � V �[x0] � C�

ξ[(yi)i∈0,N ] = V = V
�,

and consequently, C�
ξ[(yi)i∈0,N ] = V �[x0] = V = V

�. From (3.26) we obtain the property

(ξ, (yi)i∈0,N ) ∈ (sol)�[x0]. (6.23)

On the other hand, since V �[x0] = V
�, from (3.29) it follows that x0 ∈ X�

opt. Hence (see (6.23)),

x0 ∈ X�
opt : (ξ, (yi)i∈0,N ) ∈ (sol)�[x0]. (6.24)

Thus, the M1-solution (6.23) has been built and Stage 3 is complete.

7. THE COMPOSITION SOLUTION OF THE AGGREGATE PROBLEM:
THE OPTIMAL ROUTING PROCESS

This section finalizes Stages 4 and 5. Recall that pr2(yN ) ∈ X00 by (3.19). In view of this fact,
letting x00 � pr2(yN ) yields

x00 � pr2(yN ) ∈ X00. (7.1)

Note that the functions v∗0, v∗1 , . . . , v∗n−N are known; also, we emphasize (5.12). Due to (7.1),

ŷ0 � (x00, x00) = (pr2(yN ),pr2(yN ));

ŷ0 ∈ X00 ×X00. In addition, according to (5.6),

(x00, 1,n−N) = (pr2(ŷ0), 1,n −N) ∈ D∗
n−N . (7.2)

Considering (5.11) and (7.2), we obtain the equality

v∗n−N (x00, 1,n−N) = min
j∈I∗(1,n−N)

min
z∈M(j)

[
c∗(x00,pr1(z), 1,n −N)

+ c∗j (z, 1,n −N) + v∗n−N−1(pr2(z), 1,n −N \ {j})
]
. (7.3)

In view of (7.3), we choose η1 ∈ I∗(1,n−N) and ŷ1 ∈ M
(η1) so that

v∗n−N (x00, 1,n −N) = c∗(x00,pr1(ŷ1), 1,n−N) (7.4)

+ c∗η1(ŷ1, 1,n −N) + v∗n−N−1(pr2(ŷ1), 1,n −N \ {η1}),

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 5 2023



626 A.G. CHENTSOV, P.A. CHENTSOV

where (pr2(ŷ1), 1,n −N \ {η1}) ∈ D∗
n−N−1 by (5.8). From (5.11) we obtain the equality

v∗n−N−1(pr2(ŷ1), 1,n −N \ {η1})
= min

j∈I∗(1,n−N\{η1})
min

z∈M(j)

[
c∗(pr2(ŷ1),pr1(z), 1,n −N \ {η1})

+ c∗j (z, 1,n −N \ {η1}) + v∗n−N−2(pr2(z), 1,n −N \ {η1; j})
]
.

In view of this relation, we choose η2 ∈ I∗(1,n −N \ {η1}) and ŷ2 ∈ M
(η2) so that

v∗n−N−1(pr2(ŷ1), 1,n −N \ {η1}) = c∗(pr2(ŷ1),pr1(ŷ2), 1,n −N \ {η1}) (7.5)

+ c∗η2(ŷ2, 1,n−N \ {η1}) + v∗n−N−2(pr2(ŷ2), 1,n −N \ {η1; η2}),

where (pr2(ŷ2), 1,n −N \ {η1; η2}) ∈ D∗
n−N−2 by (5.8). Note that conditions (7.4) and (7.5) imply

v∗n−N (x00, 1,n−N) = c∗(x00,pr1(ŷ1), 1,n −N) + c∗(pr2(ŷ1),pr1(ŷ2), 1,n −N \ {η1}) (7.6)

+ c∗η1(ŷ1, 1,n −N) + c∗η2(ŷ2, 1,n−N \ {η1}) + v∗n−N−2(pr2(ŷ2), 1,n −N \ {η1; η2}).

(Obviously, for n = N + 2, formula (7.6) ensures the optimality of the solution ((ηi)i∈1,2, (ŷi)i∈0,2)
in the (M2, x

00)-problem; there is an analogy with Remark 3.) In the general case N ∈ 2,n− 2, the
choice procedures (precisely, the ones for solving the local optimization problems) similar to (7.4)
and (7.5) should be continued until exhausting 1,n−N . As a result, we will construct the tuples
η � (ηi)i∈1,n−N ∈ A2 and (ŷi)i∈0,n−N ∈ Z∗

η [x
00] for which (see (5.12))

C∗
η[(ŷi)i∈0,n−N ] = v∗n−N (x00, 1,n −N) = Ṽ ∗[x00]. (7.7)

Then (η, (ŷi)i∈0,n−N ) ∈ D∗[x00] (see (3.5)), and the relations (3.14) and (7.7) imply

(η, (ŷi)i∈0,n−N ) ∈ (sol)∗[x00]. (7.8)

In view of (7.1) and (7.8), the natural property is

(η, (ŷi)i∈0,n−N ) ∈ (sol)∗[pr2(yN )]. (7.9)

Considering (6.24) and (7.9) and Proposition 2, we obtain

(ξ � η, (yi)i∈0,N � (ŷi)i∈0,n−N ) ∈ D̃[x0]

and (see (4.6)) Cξ�η[(yi)i∈0,N � (ŷi)i∈0,n−N ] = V. Due to (2.12), (3.29), and (6.24), the triplet

(ξ � η, (yi)i∈0,N � (ŷi)i∈0,n−N , x0) ∈ D

is the optimal RP, i.e., (4.8) holds. Thus, implementing the two-stage procedure

[x0 → (ξ1, y1) → . . . → (ξN , yN )] → [x00 = pr2(yN ) → (η1, ŷ1) → . . . → (ηn−N , ŷn−N )]

gives the optimal RP (4.8). In addition, x0 ∈ X0
opt by Proposition 4, i.e., x0 is the optimal starting

point in the sense of (2.24).
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8. A COMPUTATIONAL EXPERIMENT (THE PRE-CUTTING OF LONG PARTS)

We consider an illustrative example: the sheet cutting of parts on CNC machines. In this
section, X = [0, a] × [0, b], where a > 0 and b > 0 are two given values. By assumption, a cutting
plan is specified for the sheet X. There are n pairwise disjunct contours to be cut. Megapolises are
assigned to contours according to the standard rule: for each contour, an equidistant is specified,
on which possible cut-in points and the corresponding tool switch-off points are located. External
movements (between megalopolises and from the starting point to megalopolises) are performed in
the non-cutting (idle) mode, i.e., “fast.” Movements from a cut-in point to the starting point on
a contour and, after the cut finish, to the tool switch-off point are implemented in the operating
(work stroke) mode, i.e., “slowly.” We optimize the total time, excluding the cutting time of the
contours, which is the same for all variants of solving the problem. However, we consider possible
thermal deformations through penalties for violating the requirements for efficient heat rejection;
see [14, Secs. 5, 6]. Such an approach leads (see [14, Sec. 6]) to the travel cost functions that depend
on the list of pending tasks.

The precedence conditions in the aggregate problem are determined by considerations related to
the nesting of contours and parts. For example, if a part has inner contours, they must be cut before
an outer contour; a similar requirement applies to the cutting of nested parts (see [10, § 1.3.2]).
Thus, the set K̃ of aggregate address pairs is defined (Remark 1). However, we suppose that
the family M of megalopolises is divided into the disjunct sum of the subfamilies M1 and M2

(Section 2) provided that M1 includes the megalopolises corresponding to the contours of long
parts (Section 1). Note that there are other ways to select contours for priority cutting; for
example, see [10, § 1.3.3]. By assumption, the constraint K̃ is reduced to a variant defined by the
sets K1 and K̃2 of Remark 1, where K̃2 is due to a rational choice of K2. These considerations can
easily be implemented based on nesting rules (roughly speaking, using the distribution over the
volumetric parts and their contours). Of course, constructing M1 and M2 requires preliminary
work to implement the precedence conditions corresponding to the M1- and M2-problems. Let
this (rather uncomplicated) stage of the problem formulation be complete.

We allow the choice of different starting points in the interest of optimizing the additive criterion,
specifying a required final set X0 only. As a rule, X0 is a subset of the boundary of the sheet X.
This set is simultaneously the set of possible starting points in the M1-problem. The set X00,
which plays the same role for the M2-problem, is generated by the algorithm in Stage 1.

Computational experiment. The computations were performed on a personal computer with an
Intel i5-11300H processor, 8GB RAM, and Windows 11 (64-bit) OS. The program was developed
in the C++ language with the MinGW compiler and the Qt interface library. Let us present the
experimental data: 42 contours, 24 parts, and 20 address pairs. (Due to limited space, we omit
here the coordinates of contour points, cut-in points, the starting points of contour cut, and tool
switch-off points.) All contours were divided into two clusters. The first included the contours
of 7 long parts (19 contours); the second one, the contours of 17 compact parts (23 contours).
For the sake of simplicity, let X0 be a singleton corresponding to the origin of coordinates. The
values of f correspond to the calculated non-cutting stroke time when the tool returns to the origin
(the more comprehensible case of the closed problem). In the example, the thermal constraints
described in [14, Secs. 5, 6] were taken into account. The matter concerns the formation of special
cut completion domains with obtaining a threshold that characterizes the share of solid metal in
each such domain. Precisely, a cut completion domain has a length of 100 mm and a width of
25 mm. The threshold for using the penalty is equal to 0.5 of the area of the cut completion
domain.

The figure shows the placement of the parts to be cut on the sheet and the process track obtained
during the computational experiment. The rhombus at the origin of the coordinates is the starting

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 5 2023



628 A.G. CHENTSOV, P.A. CHENTSOV

1184

1184 1332 1479 1627 1775

Y

X

1036

1036

888

888

740

740

592

592

444

444

296

296

148

0 148

The result yielded by the algorithm.

and finishing point. Square boxes are cut-in points. Crosses are tool switch-off points. The pluses
on the contours are the starting and finishing points of cutting. The non-cutting stroke track is a
set of separate lines: the line from the starting point to the cut-in point for the first contour, the
lines from the tool switch-off point for the previous contour to the cut-in point for the next contour,
and the line from the tool switch-off point for the last contour to the movement finish. The cutting
track is a set of lines, each consisting of a line from the cut-in point to the point where the contour
begins to be cut, the contour itself, and the line from the cut-out point to the tool switch-off point.

The statement of this particular problem was described in detail in [14, Secs. 5, 6]; here, we
briefly recall the key aspects. As already noted, the total time is optimized (measured in seconds).
All penalty constants coincide with 1 000 000. The result obtained, a value of 97.724 for V, is
significantly less than this constant. Hence, all heat rejection constraints were satisfied. (See the
general considerations on this topic at the beginning of the section.) The computing time was
7 min 8 s, which is quite acceptable from the practical point of view; furthermore, 42 contours
correspond to the problem of significant dimension. We emphasize that for problems of smaller
dimension, DP without decomposition requires significantly higher time for computations: for
N = 30 and |K| = 20, the computing time in [26, Sec. 5] was 51 min 58 s (the standard cutting
version). Thus, the approach adopted in this paper considers technological constraints and can be
used in applications.

Note finally that research related to sheet metal cutting on CNC machines was comprehensively
surveyed in [26, Introduction].

9. CONCLUSIONS

This paper has developed a method for solving an optimal routing problem with a dedicated
system of first-priority tasks. The study is based on decomposing the original problem into the
preliminarily and final optimal subproblems and using the broadly understood dynamic program-
ming in each of them. This approach allows solving routing problems of significant dimensions in
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a reasonable time. A possible application of the method is tool control during the shaped sheet
cutting of parts with zoning on CNC machines.

APPENDIX

Proof of Proposition 2. In view of (4.2),

(ωt)t∈0,n � (yt)t∈0,N � (ŷt)t∈0,n−N ∈ Zξ�η[x0].

Since ξ � η ∈ P, we obtain (4.5), i.e.,

(ξ � η, (ωt)t∈0,n) ∈ D̃[x0]. (A.1)

According to (3.26) and (3.21), C�
ξ[(yt)t∈0,N ] = V �[x0] = V

�, and furthermore, pr2(yN ) ∈ X00 due

to (3.19); Ṽ ∗[pr2(yN )] ∈ R+. In addition,

C∗
η[(ŷi)i∈0,n−N ] = Ṽ ∗[pr2(yN )]. (A.2)

Note that by (3.9)–(3.11), however, it follows that

C∗
η[(ŷi)i∈0,n−N ] =

n−N∑
t=1

[
c(pr2(ŷt−1),pr1(ŷt), η

1(t,n−N)⊕N)

+ cN+η(t)(ŷt, η
1(t,n−N)⊕N)

]
+ f(pr2(ŷn−N )). (A.3)

Based on the choice of ξ and (yt)t∈0,N , we have

C�
ξ[(yt)t∈0,N ] =

N∑
t=1

[
c(pr2(yt−1),pr1(yt), ξ

1(t,N) ∪N + 1,n)

+ cξ(t)(yt, ξ
1(t,N) ∪N + 1,n)

]
+ Ṽ ∗[pr2(yN )] (A.4)

(see (3.21) and (3.22)). Finally, considering (2.16) and (A.1) leads to the equality

Cξ�η[(ωt)t∈0,n] =
N∑
t=1

[
c(pr2(ωt−1),pr1(ωt), (ξ � η)1(t,n)) + c(ξ�η)(t)(ωt, (ξ � η)1(t,n))

]

+
n∑

t=N+1

[
c(pr2(ωt−1),pr1(ωt), (ξ � η)1(t,n)) + c(ξ�η)(t)(ωt, (ξ � η)1(t,n))

]
+ f(pr2(ωn)). (A.5)

Due to (4.1), (A.5), and the definition of (ωt)t∈0,n, we obtain

Cξ�η[(ωt)t∈0,n] =
N∑
t=1

[
c(pr2(yt−1),pr1(yt), ξ

1(t,N) ∪N + 1,n) + cξ(t)(yt, ξ
1(t,N ) ∪N + 1,n)

]

+
n∑

t=N+1

[
c(pr2(ŷt−N−1),pr1(ŷt−N ), η1(t−N,n−N)⊕N)

+ cη(t−N)+N (ŷt−N , η1(t−N,n−N)⊕N)
]
+ f(pr2(ŷn−N )). (A.6)
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This expression involves the chain of equalities pr2(ωN ) = pr2(yN ) = pr2(ŷ0) (see (3.4), (3.5),
and (3.14)). From (A.3), (A.4), and (A.6) it follows that

Cξ�η[(ωt)t∈0,n] = C�
ξ[(yt)t∈0,N ]− Ṽ ∗[pr2(yN )]

+
n−N∑
τ=1

[
c(pr2(ŷτ−1),pr1(ŷτ ), η

1(τ,n−N)⊕N) + cη(τ)+N (ŷτ , η
1(τ,n−N)⊕N)

]

+ f(pr2(ŷn−N )) = C�
ξ[(yt)t∈0,N ]− Ṽ ∗[pr2(yN )] + C∗

η[(ŷi)i∈0,n−N ].

Hence, considering (A.2), we can write

Cξ�η[(ωt)t∈0,n] = C�
ξ[(yt)t∈0,N ], (A.7)

where C�
ξ[(yt)t∈0,N ] = V �[x0] = V

� by the choice of (ξ, (yt)t∈0,N ) and (3.26). Using (4.4) and (A.7),
we derive the chain of equalities

Cξ�η[(ωt)t∈0,n] = V
� = V;

according to the definition of (ωt)t∈0,n, the property (4.6) is the case, where (4.5) holds due to (A.1).

Proof of Proposition 4. Let x∗ ∈X�
opt, i.e., x∗ ∈X0 and V �[x∗] = V (see (4.4)). Using (3.27),

we choose

(ξ, (yi)i∈0,N ) ∈ (sol)�[x∗],

obtaining (ξ, (yi)i∈0,N ) ∈ D�[x∗] with the property C�
ξ[(yi)i∈0,N ] = V �[x∗] (the optimal FS in

the (M1, x∗)-problem). Then, see (4.4), C�
ξ[(yi)i∈0,N ] = V. In view of (3.15), we choose

(η, (ŷi)i∈0,n−N ) ∈ (sol)∗[pr2(yN )],

obtaining (η, (ŷi)i∈0,n−N ) ∈ D∗[pr2(yN )] with the property

C∗
η[(ŷi)i∈0,n−N ] = Ṽ ∗[pr2(yN )].

By Proposition 2, (ξ � η, (yi)i∈0,N � (ŷi)i∈0,n−N ) ∈ D̃[x∗] is such that (4.6) holds. Consider-
ing (2.18), we have the inequality

Ṽ [x∗] � Cξ�η[(yi)i∈0,N � (ŷi)i∈0,n−N ] = V,

where V � Ṽ [x∗] due to (2.21). As a result, Ṽ [x∗] = V and consequently, x∗ ∈ X0
opt (see (2.25)).

Thus,

X�
opt ⊂ X0

opt. (A.8)

Let x∗ ∈ X0
opt, i.e., x

∗ ∈ X0 and Ṽ [x∗] = V. In view of (2.19), we choose the optimal FS

(α, (zi)i∈0,n) ∈ (sol)[x∗];

then Cα[(zi)i∈0,n] = Ṽ [x∗] = V. In addition, α ∈ P, which implies α = α1 � α2, where α1 ∈ A1 and

α2 ∈ A2. Therefore, see (2.11), (zi)i∈0,n ∈ Zα1�α2 [x
∗]. Then (zi)i∈0,N ∈ Z�

α1
[x∗] and consequently,

(α1, (zi)i∈0,N ) ∈ D�[x∗]
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(see (3.18)). We introduce a tuple (z̃i)i∈0,n−N in X ×X by the rule

(z̃0 � (pr2(zN ),pr2(zN )))&(z̃t � zN+t ∀t ∈ 1,n−N).

Obviously, (z̃t)t∈0,n−N ∈ Z∗
α2
[pr2(zN )] (see (4.3)). Therefore, see (3.5), we have

(α2, (z̃t)t∈0,n−N ) ∈ D∗[pr2(zN )].

In addition, (zt)t∈0,n = (zt)t∈0,N � (z̃t)t∈0,n−N . Hence, according to Proposition 3 and (4.4),

V
� = Cα[(zt)t∈0,n] = C�

α1
[(zt)t∈0,N ]− Ṽ ∗[pr2(zN )] + C∗

α2
[(z̃t)t∈0,n−N ],

where Ṽ ∗[pr2(zN )] � C∗
α2
[(z̃t)t∈0,n−N ] (see (3.14)). Now, we obtain

C�
α1
[(zt)t∈0,N ] = V

� − C∗
α2
[(z̃t)t∈0,n−N ] + Ṽ ∗[pr2(zN )] � V

�.

Then V
� � C�

α1
[(zt)t∈0,N ] � V

�. As a result, C�
α1
[(zt)t∈0,N ] = V

�[x∗] = V
� and consequently,

see (3.29), x∗ ∈X�
opt. This finally verifies the property X0

opt ⊂ X�
opt and, see (A.8), the equality

X0
opt = X�

opt as well. �
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