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Abstract—The problem of optimal flow production planning at the operational scheduling stage
is being studied, using the example of the out-of-furnace department of a converter-based steel-
making production in the iron metallurgy industry. To solve this problem, a linear integer
programming model is proposed, which fully describes the specifics of the investigated tech-
nological processes. A major advantage of this approach is its scalability for solving related
optimization problems in the industry of plant logistics, as well as flexibility in adapting to
changes and fine-tuning the system of constraints and objective function. The software im-
plementation of the developed model forms the basis of the operational scheduling module of
the optimal flow production planning system, which is used for a large-scale computational
experiment on real-world data.
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1. INTRODUCTION

Linear integer programming (LIP) is widely used in various fields of science and technology,
including transportation and production planning. In [1, 2], LIP models were developed to solve
applied problems in railway transportation planning. In [3], LIP methods were considered in the
context of solving flow problems in networks. In [4, 5], various scheduling problems were reduced to
the corresponding LIP problems. In [6], LIP models were proposed to solve some industrial planning
problems. The main difficulties in reducing applied problems to the corresponding LIP models
are related to describing the complex system of constraints inherent in many applied problems.
In this paper, an LIP model is proposed to solve the problem of optimal flow production planning
at the operational scheduling stage, which fully reflects all significant features of the considered
technological processes. The software implementation of the proposed model forms the basis of the
operational scheduling module of the intelligent decision-making system in planning and logistics
problems of flow production in the black metallurgy industry.

In [7–10], an extended review of LIP model applications and modern solution methods is pro-
vided. In [7, 8], classical formulations and solution methods of LIP problems are discussed in
detail, including boolean LIP. In [9, 10], particular attention is paid to the development of LIP
models for solving various applied problems in the field of management, planning and decision
making. The approach proposed in this paper is also scalable and can be extended to solving
related optimization problems in the technological processes of metallurgical production. Such
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related optimization problems may include plant logistic transportation, crane fleet management,
reassignment of technological routes, and more.

As the LIP problem is a well-known NP-hard, its solution methods continue to be actively
researched and developed. An extended review of modern methods for solving LIP problems is
presented in [11, 12]. In this paper, solution methods for LIP problems are not discussed in detail.
The main goal here is to develop an adequate and scalable mathematical model that fully describes
the technological features of the processes under consideration. Any modern software can be used
to obtain a solution for the proposed model.

In [13–15], some applied problems related to optimal planning of technological processes in
metallurgical production were discussed, mainly focusing on improving the quality of the final
product. In [13], a methodology for solving complex decision-making problems in metallurgical
production management was proposed. Robust optimization approaches to solving related problems
in the steelmaking industry were proposed in [16–18]. In [14, 15], algorithms were also developed to
improve the quality of the final product in a hot rolling mill. In this paper, a fundamentally different
approach to production optimization is considered, where the main focus is on energy efficiency at
each stage of the production chain. In particular, the optimal implementation of the operational
scheduling stage considered in this paper will significantly improve the overall production quality
by increasing plan feasibility and ensuring even equipment utilization.

It is well-known that various classes of Machine Scheduling and Shop Scheduling problems can
be successfully reduced to the Resources Constrained Project Scheduling Problem (RCPSP). The
applied problem of flow production planning at the operational scheduling stage investigated in this
paper also exhibits properties similar to RCPSP. Given a set of resources (machines, out-of-furmace
units), it is necessary to construct a schedule for processing requirements (jobs, ladles of hot metal)
within a given set of technological constraints. Thus, the investigated problem of operational
scheduling of flow production can be classified as RCPSP with fixed processing durations and
constraints on the start and finish times of processing each requirement. A wide review of different
classes of RCPSP problems is presented in [19].

RCPSP is an NP-hard problem in the strong sense, even in its simplest form. The best exact
algorithm for solving it was proposed in [20] and provides solutions for instances of size up to
n = 60, where n is the number of requirements. It is clear that this size is insufficient for practical
problems. As for polynomial-time algorithms with guaranteed accuracy (when the error does
not exceed a given constant), they are not known even for the case of K = 1, where K is the
number of resources. A popular approach to solving RCPSP is based on forming upper and lower
bounds for the optimal solution. In [21, 22], upper and lower bounds for the RCPSP solution
were obtained using linear programming methods. Among efficient polynomial-time algorithms for
solving RCPSP, the List Scheduling (LS) algorithm should be highlighted. An important drawback
of the LS algorithm is the limitation on the size of the problem – even in the case of a small (several
units) number of requirements, the algorithm does not guarantee the optimality of the obtained
solution. Moreover, LS is not flexible enough to implement specific application constraints, such
as shift production planning (when a specified number of requirements must be fulfilled within a
given time interval across all machines). The same is true for various LS modifications, including
Ant Colony and other metaheuristics. Therefore, the development of a generalized model that
allows for fine-tuning of constraints and functionality, taking into account the peculiarities of the
processes under consideration, is a relevant issue. In this paper, a LIP model is proposed for these
purposes.

The paper has the following structure. Section 1 provides a general statement of the problem,
including in terms of the subject area. Section 2 is devoted to describing the LIP model for solving
the investigated problem and algorithms for forming the functional space. Section 3 presents the

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 5 2023



596 KIBZUN, RASSKAZOVA

results of a computational experiment using the developed LIP model. In conclusion, paths for
further development of the topic are discussed, including expanding the functionality of the model
in the case of infeasible system of constraints, as well as continuing the methodology for solving
related problems of shop floor logistics.

2. MATHEMATICAL MODEL OF THE PROBLEM
OF FLOW PRODUCTION PLANNING

The problem of operational scheduling of flow production refers to the formation of a detailed
schedule for the movement of demands (jobs to be executed) on machines in a shop floor with
restrictions on the sequence of machines in the technological chain, intervals, and duration of pro-
cessing of each demand depending on specified characteristics and type of machine. Let’s consider a
section of flow production as an example of the out-of-furnace processing department of a converter
steel-making shop floor. We denote:

T — the number of different types of machines for out-of-furnace processing of steel (steel
finishing unit, circulating vacuum steel unit, etc.),

k(i) ∈ N — the number of machines of the ith type, where i = 1, T (steel finishing unit no. 1,
steel finishing unit no. 2, out-of-furnace unit no. 1, etc. for each type of machine),

K =
T∑
i=1

k(i)

— the total number of machines in the shop floor.

The normative duration of transportation (minimum time in minutes) for each pair of machines
in the shop floor is determined by a square matrix of the form

Δ = ‖δij‖, i, j = 1,K,

where δij ∈ {0} ∪ N and the following conditions are hold:

1) the equality δij = 0 is achieved if and only if the transportation of the job (steel ladle) from
machine i to machine j is prohibited;

2) transportation is allowed only between different machines, i.e.

δii = 0 for all i = 1,K;

3) the duration of transportation for any pair of machines does not depend on the start of
movement, i.e.

δij = δji for all i, j = 1,K.

In the case of assigning multiple jobs to the same machine sequentially, time is required for its
setup. This is because different jobs may have different technological characteristics and processing
requirements, and the machine (out-of-furnace processing unit) must be prepared to meet these
requirements. Even with identical technological requirements, checking the operability of the ma-
chine is necessary before assigning it to perform the next job. Assuming that the setup norms are
determined only by the type of machine, we denote the vector of setup durations as

Π = (π1, . . . , πT ),

where πi is the minimum required time in minutes.
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During the planning period, repair and maintenance measures, such as technical inspection (TI)
or planned preventive maintenance (PPM), may be provided for any machine. We denote the set
of all scheduled TIs and PPMs (hereinafter referred to as TIs) by

R = {ρi|i = 1, . . . , Ro},

where Ro is the number of such inspections and repairs. For each element ρi, parameters(
s(ρi), f(ρi),m(ρi)

)
are defined, where s(ρi), f(ρi) are the start and finish times, and m(ρi) ∈

1, . . . ,K is the identifier of the machine (out-of-furnace processing unit) for which the TI is planned.

The grade of steel is the most important characteristic of jobs to be assigned to machines. It
is the grade of steel that determines the technological instruction for job formation at the level of
forecasting scheduling. For instance, different grades of steel have different norms for minimum and
maximum allowable metal holding times in steel ladles. At the operational scheduling stage, the
grade of steel also plays a decisive role, as different grades of steel require different out-of-furnace
processing procedures (in terms of the type and number of units in the technological route, the
length of steel processing on a unit of a specific type, etc.). Let S = {σi|i = 1, s} be the set of steel
grades for the considered flow production (converter shop floor). The minimum and maximum
normative processing durations for each steel grade and each machine type are determined by the
matrices

M = ‖μij‖, i = 1, s, j = 1, T

and

M̂ = ‖μ̂ij‖, i = 1, s, j = 1, T ,

where μij, μ̂ij ∈ {0} ∪N characterize the minimum and maximum processing time (in minutes) for
steel of grade i on machine of type j, and μij = μ̂ij = 0 if the steel of grade i is not subject to
processing on machine of type j.

Let P (σi) =
{
p1(i), . . . , pn(i)

}
be the set of permissible types of technological routes (the set

of generalized technological routes, GTRs) for each steel grade σi ∈ S, where n = n(σi) ∈ N is the
number of different GTRs for processing steel grade σi, and each GTR pj(i) is a sequence of machine
types of the form

pj(i) =
(
τ1(i, j), . . . , τl(i, j)

)
,

where l = l(σi, j) ∈ N is the number of machines in GTR j for processing steel grade σi, and
τk(i, j) ∈ {1, 2, . . . , T} is the type of the kth machine in the considered GTR. For all σi, the set P (σi)
contains the main GTR as the first element and possible alternatives in descending order of priority.
Essentially, the priority is determined by the energy efficiency of production following the given
GTR. For instance, the main GTR envisages a shorter total transportation time (even considering
the minimum processing time on each machine), so that machines do not idle and the raw material
does not cool down (additional heating requires significant resource consumption).

2.1. Source Data

Let Z = {ζi|i = 1, z} be a set of jobs for the forecast schedule. For each job ζi, (ki, ri, ui, di, σi)
are given, where ki is the start position (converter), ri is the start time, ui is the finishing position
(continuous steel casting machine), di is the finishing time, σi ∈ S is the steel grade. It is necessary
to determine specific technological routes and deadlines for all jobs.
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Since the start and finish positions of the forecast schedule jobs are essentially some reference
points of the shop, let us determine the normative duration of transporting the job (steel-ladle)
from each such position to other machines. Let us define:

Δ′ = ‖δ′ij‖, i = 1,K ′, j = 1,K,

where K ′ is the number of the initial positions in the shop (number of converters), δ′ij is the
minimum transportation time (in minutes) from the initial position i to the machine j, and δ′ij = 0
if transportation is prohibited. Similarly,

Δ′′ = ‖δ′′ij‖, i = 1,K ′′, j = 1,K,

where K ′′ is the number of the final positions in the shop (number of continuous steel casting
machines), δ′′ij is the minimum transportation time (in minutes) from the machine j to the final
position i, and δ′′ij = 0 if transportation is prohibited.

2.2. Statement of the Problem

The problem of forming an operational schedule for assigning heats (the problem of operational
scheduling) can be formulated as follows. For each job ζi ∈ Z, i = 1, z a detailed time and machine-
specific technological route (extended TR) of the form

f(ζi) =
(
s1(i),m1(i), f1(i), . . . , sl(i),ml(i), fl(i)

)
must be assigned, subject to the following constraints:

1) for any f(ζi) such that σ = σi, and some j ∈ {1, . . . , n(σ)}, l = l(σ, j) is satisfied, i.e. the length
(in terms of the number of machines) of the extended TR corresponds to the length of some GTR
for processing the steel grade σ;

2) for any f(ζi) and the corresponding j ∈ {1, . . . , n(σ)}, it is satisfied that

t (mk(i)) = τk(i, j)

for all k = 1, l, where t (mk(i)) is the type of the kth machine in the extended TR;

3) for all f(ζi) and mk(i),mh(i) such that k < h, it is satisfied that

sh(i)− fk(i) � δkh,

where δkh is the minimum transportation duration from machine mk(i) to machine mh(i);

4) for any f(ζi) and mk(i) such that t (mk(i)) = t, it is satisfied that

μσt � fk(i)− sk(i) � μ̂σt,

where μσt, μ̂σt respectively are the minimum and maximum durations of processing the steel grade σ
on the machine of type t;

5) for any f(ζi), f(ζj) and m = mk(i) = mh(j) such that t(m) = t, it is satisfied that

{
sh(i)− fk(j) � πt, if sk(i) � sh(j),

sk(i) − fh(j) � πt otherwise,

where πt is the minimum time (in minutes) required to set up the machine of type t when assigning
jobs sequentially;
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6) for all f(ζi) and TR ρj ∈ R such that mk(i) = m = m(ρj) for some k, it is satisfied that

{
sk(i) > s(ρj),

sk(i) � f(ρj)

or {
sk(i) < s(ρj),

fk(i) � s(ρj),

where s(ρj), f(ρj) are the start and finish times of the TR on machine m;

7) for all f(ζi) such that ki = k and m1(i) = m, it is satisfied that

s1(i)− ri � δ′km,

where s1(i) is the time when job i arrives at the first machine in the extended TR f(ζi), ri is
the start of the execution of the ith job, ki is the start position of the job’s execution, δ′km is the
minimum transportation duration (in minutes) from the start position of the job’s execution to the
first machine in the extended TR;

8) for all f(ζi) such that ui = u and ml(i) = m, it is satisfied that

di − fl(i) � δ′′um,

where fl(i) is the time when job i is finished on the last machine in the extended TR, di is the finish
time of the execution of the ith job, and δ′′um is the minimum transportation duration (in minutes)
from the last machine in the extended TR to the position of the job’s completion.

The objective function is defined as the minimum total transportation duration, which cor-
responds to the maximum total processing duration of all requirements on each machine in the
processing TR, i.e.

z∑
i=1

l(i)∑
j=1

(fj(i) − sj(i)) −→ max,

where l(i) is the length (in terms of number of machines) of the TR f(ζi) assigned to execute
the job ζi ∈ Z. The choice of this function is due to the fact that lengthy transportation leads
to the need for adjustment of requirements on the next machine in the TR and incurs additional
resource costs (such as temperature or chemical heating). Thus, the total transportation duration,
as previously noted in discussing TR priorities, reflects the energy efficiency indicator of the process,
and minimizing it (i.e. maximizing the processing duration, time on the machine) corresponds to
the goals of increasing energy efficiency.

In other words, the problem of real-time scheduling is to construct a detailed TR for each job
under specified constraints on the sequence and duration of processing on each machine, as well as
taking into account the normative transportation duration. To solve this problem, a LIP model is
proposed, the discussion and description of which is dedicated to the following section.

3. LIP MODEL FOR THE OPERATIONAL SCHEDULING
OF FLOW PRODUCTION PROBLEM

In modeling applied problems using LIP methods, a fundamental role is assigned to the structure
of the functional space (model variables), since the efficient and adequate implementation of this
stage lays the foundation for both the structure of the constraint system and subsequent oppor-
tunities for fine-tuning the model with regard to additional technological features of the studied
processes. Let us take a closer look at this procedure.
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In Algorithm 1, a set of boolean variables is formed for each job, corresponding to the processing
of the job on one of the machines in the shop floor, indicating the start and finish times, as well as
the duration of operations. In this process:

— the function end(i, s, j, k) fixates l(s, j)− k machines in the route (starting from the end)
with the minimum processing and transportation duration, where i is the identifier of the job, j is
the GTR for processing the grade s = σi, and k is the number of fixated machines;

— the function start(i, s, j, k) fixates k − 1 machines in the route (starting from the beginning)
similarly to the function end(i, s, j, k);

— the function move(i, s, j, k, r), for fixed start and finish times in the route, forms options for
the start and finish of processing job i on the kth machine with the minimum processing duration.

Algorithm 1. Formation of functional space

1: c = 0 � global counter of variables
2: s1 = 0, s2 = 0, f1 = 0, f2 = 0 � auxiliary counters
3: For all i = 1, z do
4: s = σi � the grade
5: n = n(s) � number of GTRs
6: For all j = 1, n do
7: For all k = 1, l(s, j) do
8: If k �= l(s, j) then
9: end(i, s, j, k) � fix l(s, j)− k machines from the end of the TR

10: Else
11: s1 = 0, s2 = 0

12: If k �= 1 then
13: start(i, s, j, k) � fix the first k − 1 machines from the beginning
14: Else
15: f1 = 0, f2 = 0

16: t = τk(s, j) � type of the kth machine
17: For all r = 1, k(t) do
18: move(i, s, j, k, t, r) � moving the kth machine

Algorithm 2. Function end(i, s, j, k)

1: For all h = 1, l(s, j)− k do
2: t = τl(s,j)−h+1(s, j)

3: For all r = 1, k(t) do
4: m = m(t, r) � identifier of the rth machine of type t
5: For all ii = f1, f2 do
6: c = c+ 1
7: If ii = 0 then
8: u = ui

9: f(c) = di − δ
′′
um � move the transportation duration to the left

10: Else
11: f(c) = s(ii)− δm(ii)m

12: s(c) = f(c)− μst � move the processing duration to the left
13: id(c) = i, p(c) = j, num(c) = l(s, j)− h+ 1, α(c) = j

14: If f2 = 0 then
15: f1 = c− k(t) + 1
16: Else
17: f1 = f2 + 1

18: f2 = c
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Algorithm 3. Function start(i, s, j, k)

1: For all h = 1, k − 1 do
2: t = τh(s, j)
3: For all r = 1, k(t) do
4: m = m(t, r)
5: For all ii = s1, s2 do
6: c = c+ 1
7: If ii = 0 then
8: v = ki
9: s(c) = ri + δ

′
vm � move the transportation duration to the right

10: Else
11: s(c) = f(ii) + δm(ii)m

12: f(c) = s(c) + μst � move the processing duration to the right
13: id(c) = i, p(c) = j, num(c) = h, α(c) = j

14: If s2 = 0 then
15: s1 = c− k(t) + 1
16: Else
17: s1 = s2 + 1

18: s2 = c

Algorithm 4. Function move(i, s, j, k, t, r)

1: m = m(t, r)
2: For all ii = s1, s2 do
3: For all jj = f1, f2 do
4: If ii = 0 then
5: t1 = ri, v = ki, δ = δ

′
vm

6: Else
7: t1 = f(ii), δ = δm(ii)m

8: If jj = 0 then
9: u = ui, t2 = di − δ

′′
um − μst

10: Else
11: t2 = s(jj)− δm(ii)m − μst

12: While t2 − t1 � δ do
13: c = c+ 1, s(c) = t2, f(c) = s(c) + μst, id(c) = i, p(c) = j, num(c) = k, m(c) = m, α(c) = j,

t2 = t2 − step � move the start of processing to the left on the kth machine

It is clear that the implementation of Algorithm 1 is possible in a different configuration, where
the start of the route is fixed first and then its end. In general, the subsets of variables formed in
different approaches may be different, leading to structural differences in subsequent constraints
and functionality. In addition, in the proposed variant, the minimum processing duration is fixed for
each machine for each job i, reducing the optimization potential. However, with the aim of reducing
the dimensionality of the model as a whole, the problem of real-time scheduling of flow production
can be decomposed into two stages, the first of which is the proposed configuration of Algorithm 1
with a fixed minimum processing duration. The subsequent expansion within allowable limits for
each machine can be implemented within an auxiliary LIP model with a guaranteed solution, which
constitutes a direction for development of the proposed methodology.

It is worth noting the substantive meaning of the parameter step in Algorithm 4 — this is a
tunable parameter that corresponds to the discretization of the functional space. For example,
when the value of the parameter step is sufficiently small, variables corresponding to the same job i
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and processing on the same TR j will have proportional differences in transportation duration based
on the step parameter value. Correspondingly small values of the parameter step (in the extreme
case, equal to 1 min) significantly increase the dimensionality of the functional space. Therefore,
the natural problem arises of finding a balance between the size of the parameter step and the
performance of the model as a whole (since a large dimensionality of the functional space entails a
significant increase in computational resource consumption).

Based on the results of Algorithm 1 (including the nested functions of Algorithms 2, 3, and 4),
arrays of parameters for the variables of the LIP model will be formed. For each variable xi ∈ {0, 1},
i = 1, c, the following are defined: idi — the identifier of the job for which the machine is assigned;
pi — the GTR; numi — the ordinal number of the machine in the TR; mi — the identifier of the
machine; si — the start time of processing; fi — the finish time of processing; αi — the coefficient
of the objective function, determined in the simplest case as the ordinal number of the selected
GTR.

The main limitation in solving the operational scheduling problem is the completion of all jobs
in the set Z. Then,

c∑
i=1

{xi : idi = id, numi = 1} = 1 (1)

for all id = 1, z. The condition (1) ensures the selection of a single extended TRs for the execution
of each job. Moreover, the condition numi = 1 allows avoiding the construction of an ”ifthen”
statement associated with the length of the selected TRs.

Furthermore, the selected starting point of the TR in constraint (1) must be continued according
to its length in terms of the number of machines, i.e.,

c∑
i=1

{xi : idi = id, pi = p} = l(σ, p) ·
c∑

i=1

{xi : idi = id, pi = p, numi = 1} (2)

for all id = 1, z and p = 1, n(σ), where σ = σid. In other words, constraint (2) is designed to“track”
the choice of a complete (in terms of the number of machines) TR whose starting point is deter-
mined by constraint (1). At the same time, constraint (2) does not contradict the choice of such
xi = xj = 1, where numi = numj = k for some k > 1. In order to exclude such errors, the following
constraints are introduced:

c∑
i=1

{xi : idi = id, pi = p, numi = k} � 1 (3)

for all id = 1, z, p = 1, n(σ) and k = 2, l(σ, p), where σ = σid.

Thus, due to constraints (1), a single TR will be selected in the solution. Furthermore, due to
constraints (2), this TR will be extended to l(σ, p) in terms of the number of machines. Moreover,
each machine k will be selected only once due to constraint (3).

Let us now formulate constraints on machine performance. In the case of sequential assignment
of jobs to the same machine, the setup time should be no less than the specified performance
parameter for the respective machine type, i.e.,

xi +
c∑

j=1,j 	=i

{
xj : mi = mj, |si − fj| � πt

}
� 1 (4)

for all mi = 1,K , where t = τk(σ, p) if k = numi, idi = id, σ = σid, p = pi, and πt is the normative
setup time for machine type t. It is clear that constraints (4) are redundant, as some of them
may be subsets of others. To form a set of maximal inclusion constraints of the form (4), a simple
lexicographic rule can be used (pairwise comparison of binary strings of length K, where each string
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corresponds to a constraint for variable xi, and the jth element of the string takes the value 1 if mj

is included in the constraint for xi).

Constraints on maintenance operations can be introduced at the stage of functional space for-
mation by setting to zero all variables for which

c∑
i=1

{
xi : s(ρ) � si � f(ρ),mi = m(ρ)

}
= 0, (5)

c∑
i=1

{
xi : si � s(ρ) � fi,mi = m(ρ)

}
= 0 (6)

for all planned maintenance operations ρ ∈ R, wherem(ρ) is the machine on which the maintenance
operation is planned, and s(ρ) and f(ρ) are the start and completion times. In other words, for
any xi for which the start or completion time of processing job i on machine mi falls within the
period of the scheduled maintenance of that machine, xi should be set to zero. This condition can
be satisfied either at the level of formation of the model variable set (by means of pre-checking),
or at the level of constraints. The latter option is more preferable in the conditions of the modified
problem of finding the maximum feasible subsystem of constraints, where some of them may be
violated according to established priorities. However, this problem is beyond the scope of the
present paper and presents a direction for future research.

In general, the objective function in the problem of operational scheduling of flow production
is the indicator of energy efficiency. However, with the aim of decomposing the problem and
reducing the dimensionality of the main model in the simplest configuration, ordinal numbers of
GTR are used as variable coefficients — the main GTR is more energy efficient compared to the
alternatives, and for each subsequent alternative GTR there is a decrease in processing energy
efficiency indicators. Thus, the problem is to minimize the objective function of the form

c∑
i=1

αi · xi −→ min (7)

subject to the constraints

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c∑
i=1

{xi : idi = id, numi = 1} = 1,

c∑
i=1

{xi : idi = id, pi = p} = l(σ, p) ·
c∑

i=1

{xi : idi = id, pi = p, numi = 1},
c∑

i=1

{xi : idi = id, pi = p, numi = k} � 1,

xi +
c∑

j=1,j 	=i

{xj : mi = mj, |si − fj| � πt} � 1,

c∑
i=1

{
xi : s(ρ) � si � f(ρ),mi = m(ρ)

}
= 0,

c∑
i=1

{
xi : si � s(ρ) � fi,mi = m(ρ)

}
= 0,

xi ∈ {0, 1},

(8)

where

• id = 1, z — the set of jobs to be assigned to a sequence of machines,
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• p = 1, n(σ) — the set of GTR for processing grade σ = σid,

• l(σ, p) — the length of the TR according to the number of machines,

• k = 1, l(σ, p) — the ordinal number of the machine in TR p,

• t = τk(σ, p) — the type of the kth machine in TR p,

• πt — normative duration of setup for machine type t,

• ρ ∈ R — the set of scheduled maintenance operations,

• m(ρ) — the machine on which maintenance ρ is planned,

• s(ρ), f(ρ) — start and finish of maintenance ρ.

For solving the problem (7) with constraints (8), any application software (IBM CPLEX, Analytic
Solver VBA Excel, Gurobi, Google OR-Tools, etc.) for solving mathematical programming prob-
lems or built-in libraries of high-level programming languages (Optimization Toolbox, CVXOPT,
HeO, etc.) can be used.

4. COMPUTATIONAL RESULTS

The LIP model (7), (8) was implemented in Python 3.8.5 using the PuLP library for finding
solutions in the operational scheduling module of the flow production planning system. The simplest
system component diagram and data flow are presented in the figure, where
[1] request for parameters of the daily task, transfer of a set of casting series indicating the start

time of casting, the number of heats, and the series identifiers;
[2] request for parameters of the daily task by series identifiers (steel grade, casting cycle, rec-

ommended technological route for out-of-furnace processing);
[3] transfer of the daily task parameters from external systems to the database;
[4] transfer of the daily task parameters from the database to the User WEB interface;
[5] request for calculation of the forecast schedule, transfer of a set of casting series indicating

the start of casting, the number of heats, and the parameters of the daily task;
[6] request for reference information on allowed holds for grades and statistics of energy resource

consumption depending on the processing duration (forming the target function coefficients);
[7] transfer of reference information from the database to the forecast scheduling module;
[8] transfer of the forecast schedule parameters (list of heats indicating the grade, hold, end

time of blowing in the converter and start of casting, recommended technological route for
out-of-furnace processing);
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[9] request for reference information (alternative technological routes for out-of-furnace process-
ing, processing duration on each machine depending on the grade and hold, duration of
steel-ladle transportation with a heat between shop floor units);

[10] transfer of reference information from the database to the operational scheduling module;
[11] transfer of the results of the forecast and operational scheduling calculation (full processing

route of each heat in the daily task indicating the start and finish time of processing at each
unit, including the converter and continuous casting machine);

[12] saving the results of the forecast and operational scheduling calculation for subsequent display
(upon request) and analysis.

The computational experiment was carried out on a personal computer with Intel Core m3
1.2 GHz, 8Gb 1867 MHz LPDDR3, macOS 10.13.6. The source data were the actual production
scenarios implemented at converter shop floor of the Novolipetsk Metallurgical Entherprise (Lipetsk,
Russia). For each fixed daily task (for months of 2020 and 2021), an optimized out-of-furnace
processing schedule (operational schedule) was proposed, and the weighted-average costs for each
type of energy resource consumption were compared in monetary equivalent. The results of the

Table 1. May, 2020

Date F1 F2 Δ, % t, sec Date F1 F2 Δ, % t, sec
01 1961.6 1852.1 5.58 7.11 02 1859.8 1759 5.42 5.20
03 1730.9 1690.2 2.35 3.22 05 1953.4 1843.8 5.61 6.64
06 1816.3 1627.7 10.38 3.92 07 1894.8 1835 3.16 4.64
08 1893.3 1832.8 3.20 9.25 09 1801.9 1717.2 4.70 8.69
10 2162.4 1823.8 15.66 60.75 11 1673.3 1251.6 25.20 1.08
12 1426.8 1101.8 22.78 0.55 13 2921.7 1131.3 61.28 0.74
14 1632.0 931.5 42.92 0.44 15 1364.2 1080.5 20.80 0.88
16 1434.8 1086.9 24.25 0.50 17 1488.4 1133.2 23.86 0.42
18 1527.8 1283.7 15.98 0.74 19 1641.3 1233.4 24.85 0.51
20 1781.4 1383 22.36 0.52 21 1877.2 1704.7 9.19 2.65
22 1820.3 1723.2 5.33 16.07 24 1990.7 2065.5 –3.76 33.47
25 1787.1 1632.2 8.67 34.85 26 1887.2 1925.6 –2.03 10.34
27 1905.0 1770.6 7.06 3.94 28 2136.1 1982.8 7.18 3.71
29 1887.9 1990.8 –5.45 25.17 30 2017.1 1891.7 6.22 26.67
31 2052.3 1935.3 5.70 15.39

Table 2. June, 2020

Date F1 F2 Δ, % t, sec Date F1 F2 Δ, % t, sec
01 2297.0 2205.9 3.97 23.05 02 1952.1 1833.3 6.09 16.67
03 2291.1 1815.4 20.76 7.52 04 2045.3 1659.5 18.86 10.29
05 1997.5 2005.2 –0.39 24.68 06 1915.3 1880.5 1.82 4.63
07 1942.8 2044.4 –5.23 6.93 08 1599.5 1321.3 17.39 5.67
09 1648.8 1299.8 21.17 3.79 10 1786.3 1535.1 14.06 5.11
11 2228.7 1903.2 14.60 32.12 12 1723.8 1507.4 12.55 2.69
13 1483.7 1228 17.23 0.66 14 1554.5 984.9 36.64 0.46
15 1195.7 1030.9 13.78 0.67 16 1104.1 873.9 20.85 0.71
17 1461.5 1123.6 23.12 0.55 18 918.9 748.1 18.59 0.67
19 1692.3 1439.8 14.92 1.71 20 1959.7 1790.9 8.61 20.54
21 1956.8 1566.8 19.93 3.37 22 2305.3 2126.6 7.75 23.25
23 1986.4 1567.8 21.07 24.78 24 1839.5 1807.7 1.73 41.31
25 1732.3 1556 10.18 7.64 26 1721.3 1742.4 –1.23 22.03
27 1921.4 1691.6 11.96 4.98 28 1679.7 1424.8 15.18 13.14
29 1831.0 1462.7 20.11 3.86 30 1963.9 1503.8 23.43 4.13
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computational experiment are partially presented in Tables 1 and 2, where the following notations
have been used.

— The column “Date” indicates the day of the month for which the daily task was recorded
and a comparison was made between the production costs in the actual scenario and in the
optimized scenario obtained using the developed LIP model.

— The columns “F1” and “F2” provide the objective function values of the actual and optimized
scenarios, respectively — the total production costs of all heats of the daily task by resource
types in monetary equivalent (in hundreds of rubles). These values are calculated for each
heat, based on its processing route and taking into account the specified average costs (for
example, the electrode consumption during the heating of low-alloyed steel heat in the furnace-
ladle unit is 25 kg, which is equivalent to 4644.2 rubles in monetary terms).

— The column “Δ,%” indicates the difference between the values of “F1” and “F2”, i.e. if the
value in the “Δ, %” column is negative, then the functional value achieved in the optimized
scenario is greater than that for the actual scenario (this is explained by the fact that some
technological constraints of the model may be violated in the actual scenarios, which essen-
tially leads to a different formulation of the problem in terms of regulatory and reference
information).

— The column “t, sec” indicates the CPU time in seconds spent on finding the solution for the
optimized scenario.

Similar calculations were performed for the periods from August to December 2020 and from
January to April 2021. Table 3 presents the summarized results for each month of the considered
period with the average value of the parameter “Δ, %”, where:

— the column “Month” indicates the month of the considered period from 2020–2021;

— the column “Avg, %” provides the values of the objective function improvement in average,
calculated as the arithmetic mean of all “Δ, %” values in the indicated month.

Table 3. Results of computational experiment

Month Avg, % Month Avg, % Month Avg, %
2020, May 13.05 2020, June 13.65 2020, July 9.76
2020, August 8.81 2020, September 11.10 2020, October 18.09
2020, November 9.64 2020, December 19.16 2021, January 9.39
2021, February 13.58 2021, March 10.59 2021, April 18.15

As shown in Table 3, the developed LIP model as a mathematical ware of the optimal planning
module for flow production scheduling system provides a significant improvement in the quality
of objective function on real-world data — up to 19.16% on average (the maximum value in the
“Avg, %” column in Table 3). The economic effect is achieved by redistributing the machines of
the shop floor among the jobs, which in turn leads to the preferential selection of the main GTR
for processing. In other words, in the actual scenario, the jobs assigned to alternative GTRs were
processed by the main GTR in the optimized scenario. This results in a higher overall energy
efficiency indicator for the daily task in the optimized scenario. It is also worth noting that not
only the quantitative factor is important (when the number of jobs processed by the main GTR
in the optimized scenario is greater than in the actual), but also the qualitative — if one of the
two fixed jobs needs to be assigned to an alternative GTR, the priority is given to the option for
which the total resource consumption is less (taking into account the grade of each job). At the
same time, the computational costs are quite acceptable in terms of the operational efficiency of
the system (the values in the “t, sec” column in Tables 1, 2). Thus, a high efficiency of the system
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implementation as a whole, and in particular, the operational scheduling module based on the
developed LIP model, can be expected in the practice of operating flow production.

5. CONCLUSION

In the paper, the problem of optimal planning for flow production scheduling at the operational
scheduling stage was studied using the example of the out-of-furnace department of a converter shop
floor in the iron metallurgy industry. To solve this problem, a LIP model was proposed, which fully
describes all technological features of the processes under consideration while allowing for flexible
configuration and modification of the system constraints and objective function. The software
implementation of the proposed model formed the basis of the operational scheduling module for the
optimal planning system for flow production, which was used to conduct a large-scale computational
experiment on real-world data. The results of the computational experiment demonstrate the high
effectiveness of the proposed approach and the potential for achieving significant economic benefits
from the implementation of the system in the practice of flow production operation.

Further development of the topic is primarily associated with equipping the developed model
with additional functionality to improve the quality of the obtained solutions by increasing the
processing time of requirements on each machine within acceptable intervals. Another functionality
that also requires development and implementation in the developed model is related to the search
for maximally feasible subsystems of constraints with priorities in conditions of infeasible model in
its original formulation.

The continuation of the proposed approach to modeling production problems using LIP methods
is the study of related problems in shop floor logistics, including transport planning and crane
management. In such problems, the system of constraints in the original formulation is also often
infeasible. In this regard, the planned methods for forming maximally feasible subsystems of
constraints with priorities, which are intended for research and development, can also find wide
and effective application.
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