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Abstract—For a dynamic system given by first-order ordinary differential equations, the prob-
lem of identification of periodic regimes is investigated. This problem is the establishment the
periodicity of an arbitrary solution via the periodicity of the observed value of solution. The
conditions under which the problem of identification of periodic regimes is solvable are found.
Formulated and proven theorems supplement the well-known results on the observability of
dynamic systems.
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1. INTRODUCTION

Consider a dynamic system given by first-order ordinary differential equations

dx

dt
= F (t, x), x ∈ R

n, (1)

where R
n is the euclidean space of n-dimensional vectors with real coordinates, n � 2, F (t, y) :

R
1+n �→ R

n is a continuous mapping and ω-periodic in t, ω > 0. We call the periodic regime
an arbitrary ω-periodic solution x(t) = (x1(t), . . . , xn(t)), x(t+ ω) = x(t), t ∈ R of the system of
Eqs. (1). The behaviour of the solutions of the dynamic system (1) in many cases is related to
the existence of periodic regimes. In general, it is difficult to find periodic regimes analytically or
numerically. Therefore, it seems relevant to find the periodic regimes of the dynamic system (1)
using the so-called observed values Cx(t), where C is a given non-zero matrix of the size m× n.
The establishment the ω-periodicity of an arbitrary solution x(t) through the ω-periodicity of the
observed value Cx(t) is called the problem of identification of periodic regimes in the dynamic
system (1).

In the control theory, the problem of observability, which consists of uniquely determining x(t)
from the observed value Cx(t), has been largely studied for linear systems (see, for example, [1, 2]).
But the problem of identification of periodic regimes in the linear and non-linear dynamic systems
has not been investigated. One can give examples of linear and non-linear systems with no periodic
regimes, although the observed values are periodic. In this paper the conditions under which
the problem of identification of periodic regimes in the dynamic system (1) is solvable are found.
Formulated and proven theorems supplement the well-known results on the observability of dynamic
system.

Some papers are devoted the research of the periodic solutions of systems of ordinary differential
equations. Among them, one can mention monographs [3, 4] which have similar ideas to the those of
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authors and present fundamental methods for research bounded and periodic solutions of systems of
ordinary differential equations. In [5–7] conditions for the existence of periodic regimes in dynamic
models of the control theory were studied.

2. MAIN RESULTS

We investigate the problem of identification of periodic regimes for the system of ordinary
differential equations of the form

dx

dt
= Ax+ f(t, Cx), x ∈ R

n. (2)

Here n � 2, A is a square matrix of order n, C is a matrix of size m× n, f(t, y) : R1+n �→ R
n is a

continuous mapping, ω-periodic in t.

Introduce the matrix
B = [C;CA; . . . ;CAn−1], (3)

which is composed of rows of matrices C,CA, . . . , CAn−1.

The following is true.

Theorem 1. Let the rank of the matrix B defined by the formula (3) be n:

rank (B) = n. (4)

Then for an arbitrary solution of the system of Eqs. (2) the ω-periodicity of Cx(t) implies the
ω-periodicity of x(t).

The condition (4) in control theory is called the complete observability condition for a pair of
matrices (A,C) [2].

As an example, consider the following system of three ordinary differential equations:

dx1
dt

= x2 + f1(t, Cx),
dx2
dt

= x3 + f2(t, Cx),
dx3
dt

= f3(t, Cx), (5)

where x(t) = (x1(t), x2(t), x3(t))

, C = (c1, c2, c3), f(t, y) = (f1(t, y), f2(t, y), f3(t, y))


 : R4 �→ R
3

is a continuous mapping, ω-periodic in t.

Compose the matrix of coefficients of the system of Eqs. (5):

A =

⎛
⎜⎝ 0 1 0

0 0 1
0 0 0

⎞
⎟⎠ .

For the matrix B = [C;CA;CA2] the condition rank (B) = 3 is satisfied only for c1 �= 0. Hence,
according to the Theorem 1, if c1 �= 0, then for an arbitrary solution of the system of Eqs. (5),
the ω-periodicity of the observed value c1x1(t) + c2x2(t) + c3x3(t) implies ω-periodicity of the so-
lution x(t) itself. Existence of ω-periodic solutions depends on the given functions f1(t, y), f2(t, y),
f3(t, y). For example, assuming ω = 2π, we set

f1(t, y) = −2 cos tϕ1(y), f2(t, y) = −2 sin tϕ2(y), f3(t, y) = cos tϕ3(y),

where ϕk(y) = 1 for |y| � |c1|+ |c2|+ |c3|, k = 1, 2, 3. In this case, the vector function x0(t) =
(− sin t, cos t, sin t)
 is a 2π-periodic solution of the system of Eqs. (5).

Let’s find conditions whereby the system of Eqs. (2) has at least one solution with ω-periodic
observed value Cx(t). Obviously, such a solution exists if the system of equations has an ω-periodic
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solution. From Theorem 13.4, proved in the monograph [8, p. 77–80], it follows that the system
of Eqs. (2) has an ω-periodic solution if the matrix A does not have purely imaginary eigenval-
ues that are multiples of i2π/ω, and the mapping f(t, y) satisfies the condition |y|−1|f(t, y)| ⇒ 0
for |y| → ∞. Of interest are the cases when there exists a non-ω-periodic solution x(t) with an
ω-periodic observed value Cx(t).

Consider the system of linear ordinary differential equations

dx

dt
= Ax+ g(t), x ∈ R

n, (6)

where the vector-function g(t) is assumed to be given, continuous and ω-periodic.

The following is true.

Theorem 2. The system of Eqs. (6) has a unique solution with ω-periodic observed value Cx(t)
if and only if conditions (4) and

det
(
eωA − E

)
�= 0 (7)

are satisfied, where eωA is matrix exponent, E is the identity matrix of order n.

Note that under the condition (7) the system of equations

dx

dt
= Ax, x ∈ R

n, (8)

does not have a non-zero ω-periodic solution [4]. Therefore, from Theorem 2 it follows that if
the condition (7) is satisfied and the condition (4) is violated, then the system of Eqs. (8) has a
non-ω-periodic solution x(t) with ω-periodic observed value Cx(t).

Now consider the system of the form

dx

dt
= Ax+G(t, x), x ∈ R

n, (9)

where the mapping G(t, y) : R1+n �→ R
n is continous, ω-periodic in t and satisfies Lipschitz condi-

tion

|G(t, y1)−G(t, y2)| � L|y1 − y2|, y1, y2 ∈ R
n,

with the constant L � 0 that does not depend on t, y1, y2. From the general properties of solutions
to systems of ordinary differential equations [9, Ch. 2, §3] it follows that an arbitrary solution x(t)
of the system of Eqs. (9) is defined for all t ∈ (−∞,+∞).

The following is true.

Theorem 3. Lets condition (4) holds. Then

1) there exists a number M > 0 which depends only on matrices A, C and such that for any
vector-function z(t) ∈ C1 ([0, 1];Rn) the inequality

max
0�t�1

|z(t)| � M

(
max
0�t�1

∣∣∣∣dz(t)dt
−Az(t)

∣∣∣∣+ max
0�t�1

|Cz(t)|
)

(10)

holds;
2) if LM < 1, the for an arbitrary solution x(t) of the system of Eq. (9) for any a ∈ R the

following inequality is true

max
a�t�a+1

|x(t+ ω)− x(t)| � (1− LM)−1 M max
a�t�a+1

|Cx(t+ ω)− Cx(t)|. (11)
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The proofs of the Theorems 1–3 are given in the Appendix.

By using the results from the book [1, ch. 4], the given theorems can be generalized under the
assumptions that the matrices A and C continuously depend on t and are ω-periodic.

APPENDIX

Let us verify the validity of the following lemma.

Lemma 1. For an arbitrary vector u ∈ R
n the identity CetAu ≡ 0, t ∈ (t1, t2) is equivalent to

Cu = 0, CAu = 0, . . . , CAn−1u = 0. (A.1)

Proof of Lemma. Let the identity CetAu ≡ 0, t ∈ (t1, t2) holds. Let’s check that CetAu ≡ 0,
t ∈ R. To do this, it suffices to show that for any v ∈ R

m the function ϕ(t) = 〈CetAu, v〉 is identically
equal to zero on R.

Let’s find the derivatives of the function ϕ(t): ϕ(k)(t) = 〈CAketAu, v〉, k = 1, 2, . . . . Next, we
use the fact that according to the Hamilton–Cayley theorem [10, p. 93] matrix A satisfies its char-
acteristic equation

An + q1A
n−1 + . . . + qn−1A+ qnE = O,

where
λn + q1λ

n−1 + . . .+ qn−1λ+ qn ≡ det(λE −A).

From here it follows that function ϕ(t) satisfies the linear homogeneous differential equation

y(n)(t) + q1y
(n−1)(t) + . . .+ qn−1y

′(t) + qny(t) = 0, t ∈ Rn.

For this equation, only the zero solution can vanish identically on some interval. Since accord-
ing to the condition ϕ(t) ≡ 0, t ∈ (t1, t2), so ϕ(t) ≡ 0, t ∈ R. Therefore, the identity CetAu ≡ 0,
t ∈ R holds. Differentiating this identity k times and setting k = 0, 1, . . . , n − 1, t = 0, we obtain
equalities (A.1).

Conversely, if equality (A.1) holds, then from the Hamilton–Cayley theorem follows that
CAku = 0 for any integer k � 0. Hence, by the definition of the matrix exponent, we derive
CetAu ≡ 0, t ∈ R. The lemma is proven.

Proof of Theorem 1. Let’s condition (4) holds and x(t) be a solution of the system of Eq. (2)
satisfying the conditions

Cx(t+ ω) = Cx(t), t ∈ (−∞,+∞). (A.2)

We solve the system of Eqs. (2) with respect to x(t), assuming that the vector-function f(t, Cx(t))
is given:

x(t) = etA

⎛
⎝x(0) +

t∫
0

e−sAf(s, Cx(s))ds

⎞
⎠ . (A.3)

Given this equality, condition (A.2) takes the following form:

CetA

⎛
⎝(

eωA − E
)
x(0) +

t+ω∫
0

e(ω−s)Af(s, Cx(s))ds−
t∫

0

e−sAf(s, Cx(s))ds

⎞
⎠ = 0.

It is easy to verify that

d

dt

⎛
⎝ t+ω∫

0

e(ω−s)Af(s, Cx(s))ds−
t∫

0

e−sAf(s, Cx(s))ds

⎞
⎠

= f(t+ ω,Cx(t+ ω))− f(t, Cx(t)) = 0, t ∈ (−∞,+∞).
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Consequently

t+ω∫
0

e(ω−s)Af(s, Cx(s))ds−
t∫

0

e−sAf(s, Cx(s))ds ≡
ω∫
0

e(ω−s)Af(s, Cx(s))ds,

and we obtain the equality

CetA

⎛
⎝(

eωA − E
)
x(0) +

ω∫
0

e(ω−s)Af(s, Cx(s))ds

⎞
⎠ = 0, t ∈ (−∞,+∞).

From here by virtue of the Lemma we obtain:

B

⎛
⎝(

eωA − E
)
x(0) +

ω∫
0

e(ω−s)Af(s, Cx(s))ds

⎞
⎠ = 0. (A.4)

Thus, for the solution x(t) of the system (2) from (A.2) follows (A.4) and

f(t+ ω,Cx(t+ ω)) = f(t, Cx(t)), t ∈ (−∞,+∞). (A.5)

The converse is also true, if (A.4) and (A.5) hold for the solution x(t) of the system of Eqs. (2),
then (A.2) holds.

Since rank (B) = n, therefore (A.4) is possible if only under the condition

(
eωA − E

)
x(0) +

ω∫
0

e(ω−s)Af(s, Cx(s))ds = 0. (A.6)

From (A.3) and (A.6) it follows ω-periodicity of x(t).

Theorem 1 is proven.

Proof of Theorem 2. Above it was shown that for the solution x(t) of the system of Eqs. (2),
condition (A.2) is equivalent to the conditions (A.4) and (A.5). Assuming f(s, Cx(s)) ≡ g(s)
in these conditions, it follows that the system of Eqs. (6) has a unique solution with ω-periodic
observed value Cx(t) if and only if the system of algebraic equations

B

⎛
⎝(

eωA − E
)
x(0) +

ω∫
0

e(ω−s)Ag(s)ds

⎞
⎠ = 0

has a unique solution with unknown x(0) ∈ R
n. But this is possible only under the condition

rank
(
B

(
eωA − E

))
= n.

This condition, according to the definition and the general properties of the rank of a matrix, is
equivalent to the conditions (4) and (7).

Theorem 2 is proven.

Proof of Theorem 3. Suppose the inequality (10) doesn’t hold. Then there is an infinite sequence
of vector-functions zj(t) ∈ C1 ([0, 1];Rn), j = 1, 2, . . . such that

max
0�t�1

|zj(t)| > j

(
max
0�t�1

∣∣∣∣dzj(t)dt
−Azj(t)

∣∣∣∣+ max
0�t�1

|Czj(t)|
)
, j = 1, 2, . . . .
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Consider the vector-functions

vj(t) = r−1
j zj(t), t ∈ [0, 1], j = 1, 2, . . . ,

where rj is the maximum of the function |zj(t)| on the interval [0, 1]. For these vector-functions we
have:

1 = max
0�t�1

|vj(t)| > j

(
max
0�t�1

|v′j(t)−Avj(t)|+ max
0�t�1

|Cvj(t)|
)
, j = 1, 2, . . . .

Passing to the limit along a uniformly convergent subsequence of the vector-functions vj1(t),
vj2(t), . . . , as a limit we obtain the function v(t) ∈ C1 ([0, 1];Rn) such that

max
0�t�1

|v(t)| = 1, v′(t)−Av(t) ≡ 0, Cv(t) ≡ 0.

From here it follows that

v(t) ≡ etAv(0), v(0) �= 0, CetAv(0) ≡ 0.

By virtue of the Lemma from the last identity it follows that the system of Eqs. (A.1) has a non-zero
solution, which contradicts the condition rank (B) = n. The inequality (10) is proven.

Let LM<1 and x(t) be an arbitrary solution of the system of Eqs. (9). Substituting x(t+a+ω)−
x(t+ a) in (10) instead of z(t), we get

max
a�t�a+1

|x(t+ ω)− x(t)|

� M

(
max

a�t�a+1
|G(t, x(t+ ω))−G(t, x(t))| + max

a�t�a+1
|Cx(t+ ω)− Cx(t)|

)
.

Further, by using the Lipschitz condition

max
a�t�a+1

|G(t, x(t+ ω))−G(t, x(t))| � L max
a�t�a+1

|x(t+ ω)− x(t)|,

we obtain the inequality (11).

Theorem 3 is proven.
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