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Abstract—The article is devoted to an asymptotic behavior of a multi-agent system with infor-
mation links. We proved that the orthogonal projection method proposed for the regularization
of the consensus protocol is characterized by a pseudoinverse matrix for the introduced auxil-
iary matrix for an arbitrary communication digraph of a multi-agent system. We cosidered the
eigenprojection of the Laplacian matrix corresponding to the communication digraph, in which
the influences on the fixed agent change proportionally. We obtained a number of results that
are of independent importance and can be used in models of multi-agent systems with different
protocols.
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1. INTRODUCTION

Multi-agent systems (MAS) with information links (see [1–5]) are represented by a weighted
communication digraph, and the protocol for matching characteristics for the continuous case is
specified using the Laplacian matrix. Protocols are MAS models for a discrete case, described by
stochastic matrices. The conditions for reaching consensus in such models are determined by the
algebraic properties of the communication digraph or by the invariants (spectrum, eigenprojection,
etc.) of the corresponding matrices. In such models, the existence of a spanning tree is a prerequisite
for consensus or for matching characteristics. The asymptotic behavior of the system, as established
in [6–8], is determined by the eigenprojection of the communication digraphs’ Laplacian matrix. For
a discrete model, the consensus also depends on the limit of the sequence of powers of the stochastic
matrix. For all protocols, if consensus is reached with any initial vector, then the eigenprojection
rank is equal to 1. By definition of regularity [9], a stochastic matrix is regular if the rank of
the limit of the sequence of its powers is 1. If the eigenprojection has rank greater than 1, then
consensus is not reached for every initial vector. In this case, any method that leads to consensus is
called a regularization method. The word “regularization” is related to the fact that the asymptotic
behavior of the system is given by a stochastic matrix of rank 1 under the taken measure. And the
rank of the limit of the sequence of powers of a stochastic matrix is equal to 1 if it is regular.

The first part of the paper presents a graph interpretation of the regularization method of the
consensus protocol—orthogonal projection method. The properties of the projection method are
investigated via the pseudoinverse matrix. According to this method, the space of all possible
initial opinions is an orthogonal projection, i.e. symmetric idempotent matrix is mapped onto the
subspace of the convergence domain of the DeGroot procedure.
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514 AGAEV, KHOMUTOV

In [10] some elements of the graph interpretation of the orthogonal projection method were
considered. However, this concerned only the ratio of the weights of outgoing trees sets on the set
of vertices of the basic bicomponents (the definition is given in the next section) in the resulting
matrix and did not contribute to the justification of the methods application. In [11] a relationship
between the method of orthogonal projection and pseudo-inverse according to Moore–Penrose for
an auxiliary matrix constructed from the Laplacian matrix was given for a system with separate
basic bicomponents (without non-base vertices). In this work, we completely solve the problem
posed in [11]. It is shown that the orthogonal projection method is a natural generalization of the
process of characteristics matching for a system with repeated zero eigenvalues.

In the second part of the article, we study the eigenprojection of the Laplace matrix of the
communication digraph obtained by proportional change of weights of incoming arcs (in general,
all vertices) in the original communication digraph. A simple expression for the projection of the
modified matrix is derived.

2. NECESSARY TERMS AND AUXILIARY RESULTS

Let Γ = (V,E) be a digraph with many vertices V and many arcs E.

Definition 1. A non-empty subset of vertices K of a digraph Γ = (V,E) is called a basic bicom-
ponent if all vertices belonging to K are mutually reachable and there are no arcs (i, j), where
j ∈ K, i ∈ V \K. The set of vertices of all basic bicomponents will be denoted by K. The set of
vertices that do not belong to the basic bicomponents will be denoted by K̄ = V \ K, and we will
call them non-base ones.

For the digraph in Fig. 1a the sets {1, 2}, {3, 4, 5} and {6, 7} are basic bicomponents.

Consider a MAS with a set of agents {1, . . . , n}. Let A be the matrix of links (influences),
A = (aij), where aij—the weight of the influence of the jth agent on ith. We also construct
a communication digraph for the system with the set of vertices V = {1, . . . , n}, in which each
element aij > 0 of the matrix A corresponds to the arc (j, i) with weight aij .

Definition 2. 1) The weight of the digraph G is equal to the weights product of all its arcs:
ε(G) =

∏
(i,j)∈E aji. 2) The weight of the set of digraphs G = {Gi} is equal to the sum of the

weights of all digraphs in the given set, i.e. ε(G) = ∑
i ε(Gi).

Let us assume that the communication digraph, in addition to the basic bicomponents, also
contains non-basic vertices.

Laplacian matrix of the communication digraph plays key role in the theory of multi-agent
systems with information links. It is defined as follows: L = Δ(A)−A, where Δ(A) is a diagonal
matrix with ith diagonal element equal to the sum of the weights of the incoming arcs at the
vertex i. If 0n = (0, . . . , 0)T and 1n = (1, . . . , 1)T—vectors of order n consisting of zeros and ones

Fig. 1. (a) System with three basic bicomponents {1, 2}, {3, 4, 5}, {6, 7}. (b) “Gluing” basic bicomponents
into one vertex 0.
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ON THE PROPERTIES OF ORTHOGONAL PROJECTION METHOD 515

respectively, then L1n = 0n, i.e. L is a singular matrix, and the sum of its row elements is equal to
zero. If the communication digraph is undirected, then L is symmetric, positive semidefinite.

Definition 3. An eigenprojection (see, for example, [12]) of a square matrix A is a idempotent
matrix A�, such that R(A�) = N (Aν) and N (A�) = R(Aν), where ν is the index of L, i.e. is the
smallest number for which rank(Aν) = rank(Aν+1) holds.

We note that the eigenprojection L� for the Laplacian matrix L is a non-negative stochastic
matrix. In the general case L� is not symmetric for an arbitrary Laplacian matrix, i.e. such a
projection is not always orthogonal for a nonsymmetric matrix.

Remark 1. For any Laplacian matrix L indL = 1 and

LL� = L�L = 0n×n. (1)

For any rectangular matrix A ∈ R
m×n exists a unique matrix A+ ∈ R

n×m for which the following
four conditions hold: 1) A+AA+ = A+; 2) AA+A = A; 3) (AA+)∗ = AA+; 4) (A+A)∗ = A+A. The
matrix A+ is called Moore–Penrose pseudoinverse matrix .

Definition 4. Two matrices A = (aij) and B = (bij) are of the same type if the zero elements of
these matrices are in the same positions, i.e. aij = 0 if and only if bij = 0.

In matrix notation, we follow the book [13]. For A, we denote by Aij the submatrix obtained
by deleting the ith row and jth column of A. Also, for a submatrix formed by rows with numbers
from the set α ⊆ {1, . . . , n} and columns with numbers from the set β ⊆ {1, . . . , n}, we take
notation A

(α
β

)
.1

Theorem 1. 1) The eigenprojection L� of the Laplacian matrix L coincides with the normalized
matrix of maximum out-forests Q = (qij) of weighted digraph Γ:

l�ij = qij =
ε(F j→i)

ε(F)
, i, j = 1, . . . , n,

where ε(F) is the weight of the set of all spanning maximum out-forests of the digraph Γ, ε(F j→i)
is the weight of the set of those spanning maximum out-forests, where the vertex j is the root of
one of the outgoing trees, and i reachable from j.

2) If i and j belong to the same basic bicomponent, then the corresponding columns of the
eigenprojection are proportional.

Theorem 2 (matrix tree theorem). The cofactor of any element of the ith row of the Laplacian
matrix is equal to the total weight of the spanning trees outgoing from the ith vertex.

If any column in the Laplacian matrix of a digraph that is replaced by a column of ones, then the
determinant of the resulting matrix will be equal to the weight of the set of all spanning outgoing
trees.

3. INTERPRETATION OF THE ORTHOGONAL PROJECTION METHOD
USING A PSEUDOINVERSE MATRIX

We consider the basic differential model

ẋ(t) = −Lx(t), (2)

where xi(t) is the characteristic of the ith agent.

1 When listing row or column numbers a comma is not put between the indices. In some papers, A
(
α
β

)
denotes the

minor of a submatrix.
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Note that the protocol (2) has been studied by many authors (see, for example, [3–5]). It is
known that if 0 is a simple eigenvalue of the Laplacian matrix L, then for any vector of initial
characteristics x(0) the asymptotic consensus exists and is equal to the limit [6]

lim
t→∞x(t) = L�x(0).

Otherwise for an arbitrary vector of initial values the consensus may not be reached. Further
the question arises: how to change the protocol to obtain consensus for any vector of initial values?
Such a regularization problem arises not only in multi-agent systems, but also in clustering problems
on a disconnected digraph. In this case, after some changes in the original stochastic matrix, the
stationary distribution vector is used to weight the clusters in the spectral clustering problem is
uniquely determined up to a factor.

A few papers on multi-agent systems with a disconnected communication digraph include [7, 10].
In [7] were explored several latent consensus protocols. These protocols are based on the addition
of additional arcs that lead to consensus for any vector of initial characteristics of agents. These
methods are similar to those used in PageRank to rank pages on the Internet. For example, in the
background connected method, a complete graph with small weights is added to the digraph. Such
a protocol has the following representation:

ẋ(t) = −(L+ δD)x(t), (3)

where δ > 0, D = I − 1vT , vi > 0,
∑n

i=1 vi = 1.

In [7] in particular, it is proved that if x(t) is the solution of the system (3), then

lim
δ→+0

lim
t→∞x(t) = 1vTL�x(0).

If v = 1
n1, then

lim
δ→+0

lim
t→∞x(t) = EL�x(0),

where E is the matrix with elements n−1.

Using the regularization by principles similar to PageRank leads to the averaging of the rows of
its eigenprojection.

Another regularization method is the orthogonal projection method, was proposed in [10]. It can
also be applied for the DeGroot xk = Pxk−1 model and the continuous protocol. According to
this method, the space of all possible initial opinions is an orthogonal projection, i.e. symmetric
idempotent matrix S is mapped onto the subspace QL — the region of convergence of the DeGroot
procedure. The image R(S) of the matrix S matches with the linear span of the vectors consisting
of the linearly independent columns of the matrix I − P and the vector of ones. If x0 is the vector
of initial opinions, and x′0 is a transformed vector, then |x′0 − x0| will be minimal, because matrix S
is an orthogonal projection. Some coordinates of the transformed vector may have negative signs,
even if the original vector of initial characteristics was positive. However, P∞S is not only a
stochastic matrix, but also a matrix of 1 rank. Therefore, if the vector of initial values x0 has only
positive coordinates, then the resulting vector P∞Sx0 will also be positive.

The orthogonal projection S onto the subspace QL = R(L) ⊕ Span(1) is represented as

S = UU+ = U(UTU)−1UT , (4)

where U is the matrix of full column rank r and is obtained from L by deleting one column
corresponding to any vertex from each basic bicomponent of the digraph and adding the column 1n
as first.
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3.1. Relationship between the Generalized Inverse Matrix for U
and the Orthogonal Projection Method

A graph interpretation of the orthogonal projection method was partially given in [10] using the
matrices X and Z (see item 3 of Theorem 3 in [10]). In [11] a connection between the generalized
inverse matrix for U and the orthogonal projection method for the class of digraphs without non-
basic vertices was given. In this section, we consider a more general case, assuming that the
communication digraph, in addition to individual basic bicomponents, also contains vertices that
do not belong to the set K. Let us show that the orthogonal projection method is a natural
generalization of the consensus protocol.

Let E10 be a square matrix of order n. The first column of which consists of ones and all other
elements are equal to zero.

Let’s first assume that rank(L) = n− 1. In this case, there is no need for regularization and for
any vector of initial values consensus is reached, and L� = E10U

−1.

If rank(L) < n− 1, then

L�S = L�UU+ = E10U
+, (5)

i.e. in both cases the consensus is uniquely determined by the first row of the generalized inverse
matrix for U : in the first case U−1, and in the second U+. Thus, the following proposition holds.

Proposition 1.

1) If rank(L) = n− 1, then L�S = L�I = E10U
−1.

2) If rank(L) < n− 1, then L�S = E10U
+.

The Proposition 1 postulates that if a consensus is reached in the system, then it is uniquely
determined by the normalized weights of the set of outgoing spanning trees of the communication
digraph. In turn, these weights, according to the matrix tree Theorem 2, are uniquely determined
by the first row of the matrix U−1. By virtue of the Proposition 1, the orthogonal projection
method is a natural generalization of matching characteristics and is defined in the general case
by the first row of the Moore–Penrose pseudoinverse matrix U . It is known that (see, for example,
Appendix A in [14]) elements of a pseudoinverse matrix, as well as for a nonsingular matrix, can
be represented using minors of the original matrix as follows:

u+1i1 =

∑
i2<...<ir

detU

(
i2 . . . ir
2 . . . r

)
detU

(
i1 . . . ir
1 . . . r

)

∑
k1<...<kr

(
detU

(
k1 . . . kr
1 . . . r

))2 . (6)

Using (6), we further characterize the orthogonal projection method and the elements of the
matrix U+ using the forest structure of the communication digraph. To do this, we need the
following assertions, assuming that the matrix L has form (7).

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

L1 0 · · · 0 0
0 L2 · · · 0 0
...

...
...

...
...

0 0 · · · Lv 0
∗ ∗ · · · ∗ LR

⎞
⎟⎟⎟⎟⎟⎟⎠
, (7)

where v is the number of basic bicomponents in the corresponding digraph, ∗ — blocks, which in
the general case are nonzero, LR is a submatrix of L, rows and columns which correspond to all
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non-basic vertices. It is important to note that detLR is equal to the weight of the set of outgoing
spanning trees of the Γξ digraph obtained from Γ by “gluing” of all vertices from K into one vertex ξ
(see [15]). In Fig. 1b there is a digraph by “gluing” of base vertices of the digraph from Fig. 1a.

Proposition 2. 1) The minors detU
(i1...ir
1...r

)
and detU

(i2...ir
2...r

)
are equal to zero if they are obtained

by deleting at least one row corresponding to the vertex from K̄.

2) The minor detU
(i2...ir
2...r

)
is equal to zero if the set {i2, . . . , ir} contains all vertices of one basic

bicomponent.

3) The absolute value of the non-zero minor detU
(i2...ir
2...r

)
is equal to the product of detLR and

the weight of the set of all outgoing forests on K with vertex roots {1, . . . , n} \ {i2, . . . , ir}.
Proposition 3. Let {j1, . . . , jms}—the set of all vertices of some basic bicomponent s contained

in {i1, . . . , ir}, and let it contain no vertices of other basic bicomponents. Then:

1) ∣∣∣∣∣detU
(
i1 . . . ir
1 . . . r

)∣∣∣∣∣ =
ms∑
p=1

∣∣∣∣∣detU
(

Kp

2 . . . r

)∣∣∣∣∣ , (8)

where Kp = (i1 . . . ir) \ jp, p = 1, . . . ,ms;

2) detU
(jp Kp

1...r

) �= 0 and detU
(Kp

2...r

) �= 0, p = 1, . . . ,ms, have the same sign.

Note that (i1 . . . ir) \ jp means that element jp has been removed from the ordered set (i1 . . . ir).
And the view jpKp indicates that the element jp has been added to the left of the ordered set Kp.

Using the Propositions 2 and 3, one can prove the following theorem, which was first proved
in [10] for a system without non-basic agents.

Theorem 3. For a system with an arbitrary communication digraph, the sum of the elements of
the matrix first row of U+ is equal to 1:

n∑
i=1

u+1i = 1.

So, the method of orthogonal projection to MAS with any communication digraph and vector
of initial values x(0) leads to consensus, and the consensus is determined by the product

(u+11, . . . , u
+
1n)(x1(0), . . . , xn(0))

T .

In particular, if the communication digraph contains a spanning tree, then in this case the
matrix U will be square, nonsingular, and, according to (6), we have

u+1i = u−1
1i =

∣∣∣detU((1...n)\i
2...n

)∣∣∣ detU
(detU)2

=

∣∣∣detU((1...n)\i
2...n

)∣∣∣
detU

= l�1i.

The last equality follows from Theorem 1, according to which |detU((1...n)\i
2...n

)| coincides with the
algebraic complement of any element of the ith row of the Laplacian matrix of the communication
digraph.

Proposition 4. If i1 and j1 belong to the same base component, then
u+
1i1

u+
1j1

=
l�1i1
l�1j1

.

Using the Proposition 3, expression of (6) can be represented as

Σ =
n∑

i1=1

∑
i2<...<ir

detU

(
i2 . . . ir
2 . . . r

)
detU

(
i1 . . . ir
1 . . . r

)
=

∑
i1<...<ir

(
detU

(
i1 . . . ir
1 . . . r

))2

=
v∑

s=1

qs∑
i=1

�2si,

where qs = (m1m2 · · ·mv)/ms, s = 1, . . . , v.
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For each basic bicomponent s with the vertex set Ns, the number �si is equal to the product of
the weight of the set of all trees in the bicomponent s and the weight of the maximum out-forests
with fixed vertices.

Let P1 = {1, . . . ,m1} be the set of vertices of the first basic bicomponent. According to the
expression (6),

W1 =
m1∑
i=1

u+1i = D−1
m1∑
i=1

∑
Ki

detU

(
Ki

2 . . . r

)
detU

(
iKi

1 . . . r

)

= D−1
∑

m1+1<...<ir

(
detU

(
P1 im1+1 . . . ir

1 . . . r

))2

= D−1
q1∑
i=1

�21i, (9)

where Kt = (1 . . . m1im1+1 . . . ir) \ t, t = 1, . . . ,m1. We recall that in (9), for each basic bicompo-
nent s, the number �si is equal to the product of the weight of the set of all trees of the basic
bicomponent s and the product of the weights of all trees with fixed roots from the remaining basic
bicomponents, and the block definer LR. Using (9), we can determine the ratio of the sums of
weights in different bicomponents.

If a digraph consists of one basic bicomponent with a set of vertices m1 = n, then from (9), by
virtue of

∑n
i=1 detU

(N\i
2...n

)
= detU

(1...n
1...n

)
= detU follows

W1 = D−1
n∑

i=1

detU

(
N \ i
2 . . . n

)
detU =

detUdetU(
detU

)2 = 1.

4. AN EXPLICIT EXPRESSION FOR THE EIGENPROJECTION OF THE PRODUCT
OF A POSITIVE DIAGONAL MATRIX AND THE LAPLACIAN

As noted in the introduction, the asymptotic behavior of many MAS models is determined
by the properties of the eigenprojection of the Laplacian matrix of the communication digraph.
The kth column characterizes the “importance” of the kth agent in the final consensus. For a
strongly connected communication digraph, the larger the value of 	�1k, the stronger the influence
of the kth agent on the final value. We consider the following problem: if the influences of other
agents on the kth agent change proportionally, how will the eigenprojection change and can the
eigenprojection of the resulting matrix be expressed in terms of the eigenprojection of the original
matrix? Moreover, if the influences on the kth agent change τk times, then the Laplacian matrix M
of the digraph with new weights will be equal to TL, where L is the matrix of the digraph before
changing its weights, T = diag(τ1, . . . , τn).

In this section, we prove that the eigenprojection M� can be represented as L�D, where D is
diagonal matrix. According to the Theorem 1, the matrices L� and M� are of the same type.

If rankL� = 1, then there always exists a positive diagonal matrix D such that M� = L�D.
However, if rankL� > 1, then the existence of a diagonal matrix is not obvious. Moreover, in the
first case, if M� is not known, then finding D is not a trivial problem.

Theorem 4. If M = TL, where T = diag(τ1, . . . , τn) is a positive diagonal matrix and L is an
arbitrary Laplacian matrix, then there exists a nonnegative diagonal matrix D for which:

M� = L�D. (10)

Corollary 1 (from the theorem 4). If the communication digraph is strongly connected and T =
diag(l�11, . . . , l�1n), then:

1) for the eigenprojection of the matrix M = TL we have M� = 1
n11

T;

2) matrix TL is balanced.
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520 AGAEV, KHOMUTOV

Fig. 2. Two forests (a) and (b), consisting of three outgoing trees with roots 2, 4 and 6.

Fig. 3. Two forests (a) and (b), consisting of three outgoing trees with roots 2, 4, and 7.

Example 1. Consider a multi-agent system with a communication digraph shown in Fig. 1. We
also consider the matrices L0

R and U , the first of which corresponds to a digraph with basic bicom-
ponents “glued” to the vertex 0:

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0 0 0 0
1 3 0 0 0 0 0 0 0 0
1 0 −4 −1 0 0 0 0 0 0
1 0 2 0 0 0 0 0 0 0
1 0 −4 4 0 0 0 0 0 0
1 0 0 0 −3 0 0 0 0 0
1 0 0 0 2 0 0 0 0 0
1 −2 −3 0 0 5 0 0 0 0
1 0 −1 0 0 0 3 −2 0 0
1 0 0 0 0 0 −1 1 0 0
1 0 0 0 −4 0 0 0 4 0
1 0 0 −2 −2 0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; L0
R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
−5 5 0 0 0 0
−1 0 3 −2 0 0
0 0 −1 1 0 0
−4 0 0 0 4 0
−4 0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us find out what quantities make up the element u+16 of the matrix U+. The sum in the
numerator from the expression (6) for u+16 contains six nonzero terms, each of which is the product
of two minors. One of the terms is

detU

(
1 3 5 7 . . . 12

2 3 . . . 10

)
detU

(
6 1 3 5 7 8 . . . 12

1 2 . . . 10

)
.

According to item 3 of the Proposition 2, the absolute value of the non-zero minor
detU

(1 3 5 7 8 ... 12
2 3 ...10

)
equals the product of the weight of the set of all outgoing forests by K with

roots {2, 4, 6} = {1, . . . , 12}\{1, 3, 5, 7, 8, . . . , 12} on detLR = 80.

Figures 2a and 2b show both forests on the set of vertices K = {1, . . . , 7} coming from the roots
2, 4, 6. The weight of the first forest is 8, the second is 32, i.e. the sum of the weights of these
forests is 40. If this number is multiplied by the weight of the tree shown in Fig. 1b, i.e. by 80, we
get detU

(1 3 5 7 8 ...12
2 3 ... 10

)
= 40× 80 = 3200.
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The minor has a similar graph interpretation detU
(1 3 5 6 8 ... 12

2 3 ... 10

)
= −60× 80 = −4800, whose ab-

solute value is equal to the product of the weight of the set of all outgoing forests by K with roots
{1 . . . 12} \ {1 3 5 6 8 . . . 12} = {2 4 7} on detLR = 80.

Figure 3 shows both forests coming from the roots {2, 4, 7}: the weight of the first forest is 12,
and the second is 48, i.e. the sum of the weights of the two forests is 60. So, detU

(1 3 5 7 8 ...12
2 3 ... 10

)
=

−60× 80 = −4800.

On the other hand, if we apply the Proposition 3 to the basic bicomponent {6, 7}, then we get:

∣∣∣detU
(
6 1 3 5 7 8 . . . 12

1 2 . . . 10

)∣∣∣ = ∣∣∣detU
(
7 1 3 5 6 8 . . . 12

1 2 . . . 10

)∣∣∣
=

∣∣∣detU
(
1 3 5 7 8 . . . 12

2 3 . . . 10

)∣∣∣+ ∣∣∣detU
(
1 3 5 6 8 . . . 12

2 3 . . . 10

)∣∣∣ = 3200 + 4800 = 8000.

5. CONCLUSION

In this paper, we obtain a new representation of the orthogonal projection method using the
U+ matrix, previously presented only for a narrow class of communication digraphs. It is shown
that the projection method is a natural generalization of the consensus protocol and is represented
by elements of the pseudoinverse matrix U+. It is established that the eigenprojection of the
matrix TL, where T is a positive diagonal matrix, can be represented as (TL)� = L�D, where D
is a positive diagonal matrix. It is proved that if the digraph is strongly connected, then all the
diagonal elements of the diagonal matrix D are equal. From the main results, as a corollary, a
simple method for regularizing an arbitrary digraph is obtained.

APPENDIX

Proof of Proposition 2. 1) The matrix U has the following form:

U =

⎛
⎜⎜⎜⎜⎝

1 l12 · · · l1k′ 01,n−k
...

...
. . .

. . .
...

1 lk2 · · · lkk′ 01,n−k

1n−k,1 ∗ ∗ ∗ LR

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 U1

1
. . .

... Uv

1n−k,1 ∗ ∗ LR

⎞
⎟⎟⎟⎟⎟⎠ ,

where k′ = k − v + 1, k =
∑v

i=1 mi (v is a number of basic bicomponents), and the matrix LR is
square and nonsingular. Assume that the mentioned minor was obtained by deleting rows among
which there is at least one row with a number from the set {k + 1, . . . , n}. Then the submatrix
U
(i1...ir
1...r

)
will have a block-triangular form, and its right lower square block LR′ contains a zero row.

Therefore detLR′ = 0 and detU
(i1...ir
1...r

)
= 0.

2) Let the set {i2, . . . , ir} contain all vertices {j1, . . . , jms} of one sth basic bicomponent. Then
the submatrix with rows {j1, . . . , jms} contains ms − 1 nonzero columns. The minor detU

(i2...ir
2...r

)
consists of terms, each of which is the product of r − 1 submatrix elements taken from different
rows and columns. Therefore, each term contains a zero factor and the minor detU

(i2...ir
2...r

)
is equal

to zero.

3) If the minor detU
(i2...ir
2...r

)
is different from zero, then according to item 2, the set {i2, . . . , ir}

consists of ms − 1 rows (s = 1, . . . , v) from each basic bicomponent and rows corresponding to
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vertices from K̄. Obviously, the minor is equal to the determinant of the block-diagonal matrix, i.e.

detU

(
i2 . . . ir
2 . . . r

)
= det

⎛
⎜⎜⎜⎜⎝

U ′
1

. . . 0
U ′
v

∗ LR

⎞
⎟⎟⎟⎟⎠ ,

where the matrix U ′
i is obtained from Ui by deleting one ikth row. According to the matrix tree

theorem, the determinant of the matrix U ′
i is equal to the minor of any element of the ikth row of Ui

and its absolute value is equal to the sum of the weights of all outgoing trees from the ikth vertex
of the ith basic bicomponent. It is true for any block U ′

t .

Thus, the absolute value of the non-zero minor detU
(i2...ir
2...r

)
is equal to the product of detLR

and the weight of the set of all outgoing forests on K with roots {1, . . . , n}\{i2, . . . , ir}.
Proof of Proposition 3. 1) Without loss of generality, we assume that the vertices are numbered

as jp = p, p = 1, . . . ,ms. Let {i1, . . . , ir} be a subset {i1, . . . , ir′}, where r′ = r − |K̄|, is a subset of
the base vertex set. Consider the determinant detU

(1...ms...ir
1...r

)
and represent it in block form as

det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 l12 . . . l1ms 01,r′−ms 0
...

...
. . .

...
...

...
1 lms2 · · · lmsms 01,r′−ms 0

1r′−p,1 0r′−p,1 · · · 0r′−p,1 Qr′−ms 0
∗ ∗ ∗ ∗ ∗ LR

⎞
⎟⎟⎟⎟⎟⎟⎠

= det

⎛
⎜⎝ Qms 0 0

∗ Qr′−ms 0
∗ ∗ LR

⎞
⎟⎠ .

According to the matrix tree Theorem 2, the algebraic complement of the first element of any
kth row of the block Qms is equal to the sum of the weights of the trees outgoing from the vertex k.
Therefore, the determinant of the matrix Qms is equal to the sum of the weights of all outgoing

trees of the basic bicomponent with the vertex set {1, . . . ,ms} and
∣∣∣detU(1...ms...ir

1...r

)∣∣∣ the product

of the sum of weights of all outgoing trees of the basic bicomponent with vertices {1, . . . ,ms}
and |detQr′−ms |, which is equal to the sum of the weights of the maximum outgoing forests on
K \ {1 . . . ms} with vertices: K\{i1, . . . , ir′}, and detLR. Thus, the equality (8) is satisfied.

2) We show that the signs of minors detU
(jp Kp

1...r

) �= 0 and detU
(Kp

2...r

) �= 0, p = 1, . . . ,ms, is same
as.

Note that detU
(i1...ir
1...r

)
=

∑ms
k=1(−1)1+k+ldetU s

k1ξ = (−1)lζξ, where l is a number of rows in

U
(i1...ir
1...r

)
up to sth basic bicomponent, U s = (1msUs), ζ > 0 is a weight of the set of all outgoing

trees in sth basic bicomponent, ξ is a product of determinants of other blocks. Since U
(jp Kp

1...r

)
differs

from U
(i1...ir
1...r

)
by a permutation of one row, their determinants can only differ in sign, and we have

detU

(
jpKp

1 . . . r

)
= detU

(
i1 . . . ir
1 . . . r

)
(−1)l+p−1 = (−1)2l+p−1ζξ,

where p is the row number in the sth block.

So, the sign of detU
(jp Kp

1...r

)
is equal to (−1)p−1ξ. It can be easily established that detU

(Kp

2...r

)
has

the sign (−1)p+1ξ.

Proof of Theorem 3. Due to (6), the sum of the elements of the first row U+ can be written as

∑
i1∈N

u+1i1 =
ΣK +ΣK̄

D
, (A.1)
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where ΣK corresponds to elements from K, ΣK̄ to vertices from K̄ = N \ K and

D =
∑

i1<...<ir

(
detU

(
i1 . . . ir
1 . . . r

))2

.

According to item 1 of the Proposition 2, if the set {i1, . . . , ir} does not contain all vertices from K̄,
then the corresponding term detU

(i1...ir
1...r

)
in D representation is equal to zero. Also, by virtue of

item 1 of the Proposition 2, we have

ΣK̄ =
∑
i1∈K̄

∑
i2<...<ir

detU

(
i2 . . . ir
2 . . . r

)
detU

(
i1 . . . ir
1 . . . r

)
= 0.

Note that ΣK and D include the factor detLR. The proof that
ΣK
D is equal to 1 is given in [11].

Proof of Proposition 4. Let us prove the assertion using the representation u+1k1 . Indeed, all

corresponding factors detU
(i1...ir
1...r

)
, detU

(j1...jr
1...r

)
in the expression (6) for u+1i1 and u+1j1 differ only

in sign, while detU
(i2...ir
2...r

)
and detU

(j2...jr
2...r

)
are weights of outgoing trees from i1 and j1.

Proof of Theorem 4. Let us prove the theorem constructively, i.e. we construct a diagonal
matrix D. Without loss of generality, we assume that the Laplacian matrix L has a block-triangular
form, and for L we also construct an auxiliary matrix BL (A.2), which is obtained from L by
replacing the first column in each block Ls corresponding to the basic bicomponent s per column
of ones:

BL =

⎛
⎜⎜⎜⎜⎜⎜⎝

BL
1 0 · · · 0 0

0 BL
2 · · · 0 0

...
...

...
...

...
0 0 · · · BL

v 0
∗ ∗ · · · ∗ LR

⎞
⎟⎟⎟⎟⎟⎟⎠
, (A.2)

the diagonal blocks BL
s , s = 1, . . . , v, for the matrix BL are defined as

BL
s =

⎛
⎜⎜⎜⎜⎝

1 ls12 . . . ls1ms

1 ls22 . . . ls2ms
...

...
. . .

...
1 lsms2 . . . lsmsms

⎞
⎟⎟⎟⎟⎠ . (A.3)

Similarly to BL and BL
s , we define matrices BM and BM

s for M .

Note that the ith row M is obtained by multiplying the analogous row L by τi. Let us define
an eigenprojection M� according to item 1 of the Theorem 1:

m�
ij =

ε(F j→i)

ε(F)
. (A.4)

According to the Theorem 2, for each sth basic bicomponent, the sum of the weights of all
outgoing trees (on the set of all vertices from the given basic bicomponent) is equal to det(Bs).
Therefore ε(F) = det(BM).

Let the vertex i be not reachable from j in any maximal outgoing forest. Since the graphs
corresponding to the Laplacian matrices L and M =TL have the same structure, then m�

ij = l�ij =0.
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We consider the case when i is reachable from j in at least one maximal out-forest and j is a
vertex from the sth basic bicomponent. Denote by {Γk(V,Ek)} the set of all spanning subgraphs,
which is obtained from the set of all maximal outgoing spanning digraphs in which i is reachable
from the root vertex j, with the addition of all missing arcs from basic bicomponents. Let BLk

and BMk
be the corresponding matrices of the resulting digraphs constructed by analogy with BL

and BM . The diagonal blocks BLk
and BMk

, which correspond to the basic bicomponents, match
with the similar blocks of the matrices BL and BM , respectively. Obviously, the number ε(F j→i)
for the digraph corresponding to the matrix M is equal to the sum of the algebraic complements
of the elements (j, i′) of the BMk

matrices, i.e. ε(F j→i) =
∑

k B
Mk

ji′ , where i′ ∈ {1, . . . , n} is the

column number BMk
, which corresponds to the number of a column of ones in the submatrix

corresponding to the basic bicomponent s.

Let j′ ∈ {1, . . . ,ms} be the row number of the block with the number s that matches the row j.

Unlike i′, the number j′ points to the row of the block s. Then due to BM
q = BMk

q for all q
and k we get

m�
ij =

ε(F j→i)

ε(F)
=

∑
k

detBMk

ji′

detBM
=

v∏
q=1,q 	=s

detBM
q

∣∣∣∣∣detBM
s

(
(1 . . . ms) \ j′

2 . . . ms

)∣∣∣∣∣
∑
k

detMk
R

detMR

v∏
q=1

detBM
q

=

∣∣∣detBM
s

((1...ms)\j′
2...ms

)∣∣∣∑
k

detMk
R

detMRdetBM
s

.

Note that Lk
R and Mk

R are blocks corresponding to non-basic vertices in the matrices BLk

and BMk
respectively. Next, we represent the resulting expression through the matrix L:

m�
ij =

ms∏
i=1,i 	=j′

τi

∣∣∣∣∣detLM
s

(
(1 . . . ms) \ j′

2 . . . ms

)∣∣∣∣∣
∑
k

detLk
R

ms∏
i=1

τi

ms∑
p=1

1

τp
detBL

s

(
(1 . . . .ms) \ p

2 . . . ms

)
detLR

=

∣∣∣detLM
s

((1...ms)\j′
2...ms

)∣∣∣∑
k

detLk
R

τj

ms∑
p=1

1

τp
detBL

s

(
(1 . . . ms) \ p

2 . . . ms

)
detLR

.

Multiply the denominator and numerator by
∏v

i=1 det(B
L
i ). According to the matrix tree theo-

rem, this number is nonzero and is equal to the weight of the set of all outgoing spanning forests
in a digraph that consists of only basic bicomponents. Then:

m�
ij =

∣∣∣detLM
s

((1...ms)\j′
2...ms

)∣∣∣∑
k

detLk
R detBL

s

∏
q 	=s

detBL
q

τj

ms∑
p=1

1

τp
detBL

s

(
(1 . . . .ms) \ p

2 . . . ms

)
detLR

v∏
q=1

detBL
q

.

Note that in the last fraction

l�ij =

∣∣∣detLM
s

((1...ms)\j′
2...ms

)∣∣∣∑
k

detLk
R

∏
q 	=s

detBL
q

detLR

v∏
q=1

detBL
q

.
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Then

m�
ij = l�ij

detBL
s

τjdetCs
, (A.5)

where the matrices Cs, s = 1, . . . , v, are defined as follows:

Cs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
τs1

ls12 . . . ls1ms

1
τ s2

ls22 . . . ls2ms

...
...

. . .
...

1
τ sms

lsms2 . . . lsmsms

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.6)

We construct two diagonal matrices F = diag(f1, . . . , fn) and H = diag(h1, . . . , hn) as follows:
ft = detBL

s and ht = detCs if the vertex t belongs to the sth basic bicomponent. For all other
diagonal elements of the matrices F and H we set ft = ht = 1.

Then

M� = L�T−1FH−1 = L�D. (A.7)

Note that in (A.5) no requirements are imposed on the vertex i. In particular, it may belong to
some basic bicomponent.
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