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Abstract—A new mathematical model of transportation along the transport network repre-
sented by an undirected multigraph is formulated. A new criterion for the optimality of cargo
carriages schedule is proposed. The criterion in addition to the time characteristics of trans-
portation includes their cost, the number of undelivered cargoes. The problem to find the
optimal schedule is formulated as a problem of mixed integer linear programming. Various
variants of the algorithm for searching for an approximate solution to the problem are pro-
posed. Informative examples are considered.
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1. INTRODUCTION

Problems to find the optimal route and time of movement along the transport network, taking
into account various restrictions on bandwidth, carriage time and cost have long attracted the
attention of researchers. In such problems, an (un)directed (multi)graph is often used to model
a transport network. Studies devoted to finding the optimal schedule for movement of cargoes
between the vertices of the graph can be divided into two categories based on the fixed time of
carriage.

In the classical formulations of the vehicle routing problem [1, 2] and the problem to find a
route through the points of sale of goods (traveling purchaser problem) [3] movement between the
vertices of the graph can be carried out at any time. In the English-language literature on railway
topics, the travel time between the nodes of the transport network is often not given. This time
is determined when constructing the schedule [4–9]. [4, 5] considers a single-track railway. [6, 7]
considers the problem of constructing a schedule for railway networks of a general form with a
fixed set of routes for trains. As well as in [6, 7], in [8] a general railway network was considered.
However, a somewhat more complex method for generating a schedule was proposed, involving
an iterative procedure in which the set of routes for trains and the time of their movement along
railway network were modified in series. In [9], the problem to find route of trains and time of their
movement along the railway network was solved simultaneously. Time in [9] was assumed to be
discrete, which can lead to a very large dimension of the problem.

In fact, it is proposed that a certain vehicle is instantly ready to transport a cargo/customer
from one vertex to another in problems with a non-fixed time of movement from vertex to vertex.
However, in real life this is not always possible. So, for example, regular rail and air carriages
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are carried out according to the schedule, while irregular ones may simply be unavailable. And
in view of traffic jams on roads that occur, for example, in the morning and in the evening,
the duration of the trip between vertices is not the same. In other words, the capacity of the
edges/arcs of the transport network graph depends on time. In this regard, this paper considers
the problem statement in which movement between the vertices of the multigraph is possible only
at predetermined time intervals.

We single out [10–16] among publications devoted to the formation of a carriages schedule, when
movement between vertices is carried out according to some predetermined schedule. In [10], the
problem of the simultaneous formation of the schedule and routes for movement of cars, trains along
a general railway network was considered. We note that in [10] problem statements with non-fixed
time of movement between vertices were also proposed. Time in [10], as well as in [9], was assumed
to be discrete. In [11], among other things, the problem of moving cars, which are transported
by trains with a fixed departure time, between two railway stations was studied. In [12, 13] the
problem of minimizing the fleet of locomotives required for the carriage of trains was considered.
In [14], the problem of track possession – a period of time in which some sections of the railway
track are closed for repair work, was studied. In [14], the schedule of trains, its routes along the
railway network, and the time interval for repair work were built at the same time. Due to the
large dimension of the problem formulated in [14], the search for its solution took a long time.
Therefore, in [15] the model of movement along the multigraph of the railway network from [14]
has been improved. In [16], the track possession problem was formulated in a new formulation on
the base of the carriage model from [15]. Algorithms for the finding of an approximate solution for
this problem were proposed.

It should be highlighted that in statements from [11–16] there is a problem associated with the
finiteness of the time interval for which the schedule is built (hereinafter referred to as the planning
horizon). Within this period of time, it is necessary to have time to deliver all cargoes. However,
this is not always possible due to a lack of carriage capacity within the planning horizon. (in other
words, there is no one to transport), and because the need for carriage arises shortly before the
end of the planning horizon (in other words, there is not enough time). Thus, the solution of
the problem to find the optimal schedule may not exist, since there will be undelivered cargoes.
At the same time, the need for the delivery of cargoes does not disappear. This problem was raised
in [10], where it was proposed to expand the planning horizon, or to abandon the restriction on
the arrival of all cargoes within the planning horizon. The first approach leads to an increase in
the dimension of the optimization problem, and the second approach can lead to the fact that the
cargo will be delivered to the point, from which it is almost impossible to get to the destination
station. Therefore, it is relevant to develop a mathematical model of movement along the graph of
the transport network, which would take into account the possibility of the cargo to be in motion
even after the end of the planning horizon, if the expected travel time is acceptable. Such a model
is formulated in this paper. As in [9, 10], the mathematical model of carriages along the transport
network in present paper allows any kind of graph, the time of movement and the route of movement
are searched simultaneously, while fixing the route of movement of the cargo is not necessary.

In addition to the new mathematical model of carriages along the transport network multigraph,
a criterion of optimality is proposed, which takes into account various aspects of carriage: cost,
carriage time, the amount of undelivered cargoes. The problem of finding optimal schedule is
formulated as a problem of mixed integer linear programming. An algorithm to find an approximate
solution to the problem is proposed and discussed. With illustrative examples comparison of various
variants of the proposed algorithm is carried out.
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2. BASIC DESIGNATIONS AND ASSUMPTIONS

Let us consider a transport network represented by an undirected multigraph G =< V,E >,
where V is a set of vertices (cities, railroad stations, plants, airports, seaports) and E is a set of
edges (highways, railroad tracks, seaways, airways), connecting these vertices. Let |V | =M � 2. By
renumbering vertices of multigraph G from 1 toM , we compose a set of indices V ′ = {1, 2, . . . ,M}.
Each element of this set uniquely determines the vertex of multigraph G.

We will count the time in minutes relative to a certain moment of reference. By the planning
horizon we mean the time interval [0, Tmax.), for which the timetable is scheduling. If the timetable
is scheduled on a day (1440 minutes), then Tmax. = 1440.

Let us have I cargoes (parcels, containers, trains), for each of that there are given:

• index of departure vertex vdep.i ∈ V ′;

• index of arrival (destination) vertex varr.i ∈ V ′;

• time of readiness for departure tdep.i ∈ [0, Tmax.);

• maximal amount of time di, during which the cargo is allowed to be at the departure vertex
from the moment of readiness;

• cargo travel time Ti, i.e. maximal amount of time during which the cargo is allowed to be on
the transport network (excluding time at the departure vertex) computed in minutes;

• mass of the cargo wi ∈ R+.

The cargo is assumed to be indivisible in sense that it can not be sent in parts.

Cargoes carriages between vertices can only be carried out at certain intervals. Let K be a quan-
tity of available movements/transportation (by aircrafts, sea ships, trains, trucks) between vertices.

Each transportation is represented by 7-element row zk
def
=(vbeg.k , vendk , nk, t

beg.
k , tendk ,Wk, Ck), where

vbeg.k ∈ V ′ is the index of starting vertex of the movement, vendk ∈ V ′ is the index of ending vertex

of the movement, moreover vbeg.k and vendk are indices of adjacent vertices in multigraph G, nk is the

number of the track, connecting vertices with indices vbeg.k and vendk , tbeg.k ∈ [0, Tmax.) is starting
time of movement, tendk is ending time of movement, Wk is maximum transportable mass during
transportation, Ck is the transportation cost of unit mass, k = 1,K . Let us designate using Z the
set of all vectors zk, k = 1,K. We renumber elements of set Z from 1 to K. Thus, number from 1
to K determines parameters of transportation uniquely.

When transportation is carried out, the warehouses in which cargoes are stored can be filled.
In addition some operations may be performed with cargoes, for example, repacking. Therefore we
introduce minimal and maximal possible duration of stay at the vertex with index vendk after using
transportation with number k by cargo with number i: tst. min.

i,k and tst. max.
i,k , i = 1, I , k = 1,K .

Obviously, ∀i = 1, I , k = 1,K 0 � tst. min.
i,k � tst. max.

i,k .

For some cargoes, it may be possible to arrive at the destination vertex even after the end
of the planning horizon. However, while movements, it is necessary to take into account the
restriction on the time spent in the transport system. For this purpose, it is necessary to set the
value τm1,m2 that is expected duration (starting from the moment of readiness for departure) of
a cargo carriage from vertex with index m1 to vertex with index m2, m1,m2 = 1,M . Obviously,
τm1,m1 = 0, m1 = 1,M . If historical observations on carriages from vertex with index m1 to vertex
with index m2, are available then as τm1,m2 one can select sample mean by existing observations,
m1,m2 = 1,M . If this data is unavailable then the indicated value can be estimated by an expert.
Also we introduce value ηm1,m2 that designates expected duration from the moment of readiness
for departure till the departure from vertex with index m1 to vertex with index m2. This value is
set by analogy with τm1,m2 , m1,m2 = 1,M .
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3. MATHEMATICAL MODEL OF CARRIAGES ALONG TRANSPORT NETWORK

Let us formulate a mathematical model of movements of the above introduced I cargoes over
the transport network defined by the multigraph G, based on transportation set Z. As the route of
cargo with number i we will understand the chain from transportation numbers used in series by
this cargo, i = 1, I . As consequence one can determine the chain of vertices traversed in series by
this cargo using the route. We limit the maximal quantity of transportation in the route during the
planning horizon by some predetermined value J . As jth phase of the route of ith train we will mean
movement of this train when there is used jth transportation in the route, i = 1, I , j = 1, J + 1.
We will name the vertex intermediate for ith cargo if it’s neither the vertex of departure nor the
vertex of arrival for that, i = 1, I .

We introduce auxiliary variables δi,j,k, characterizing the usage of kth transportation by cargo
with number i at jth phase, i = 1, I , j = 1, J + 1, k = 1,K . Variable δi,j,k is equal to zero, if
transportation with number k is not used by ith cargo at jth phase, and to zero, otherwise

Now we formulate the control set.

By the definition of variable δi,j,k we have

δi,j,k ∈ {0, 1}, i = 1, I, j = 1, J + 1, k = 1,K. (1)

We use constraints from [15, 16], that set movement only on adjacent vertices of the graph G

K∑
k=1

δi,j,kv
end
k �

K∑
k=1

δi,j+1,kv
beg.
k +

(
1−

K∑
k=1

δi,j+1,k

)
M3, i = 1, I, j = 1, J − 1, (2)

K∑
k=1

δi,j,kv
end
k �

K∑
k=1

δi,j+1,kv
beg.
k −

(
1−

K∑
k=1

δi,j+1,k

)
M, i = 1, I, j = 1, J − 1. (3)

According to [15] if for some ĩ ∈ {1, . . . , I} and some j̃ ∈ {1, . . . , J} it is true that

K∑
k=1

δ̃i,j̃,k = 0, then
K∑
k=1

δ̃i,j+1,k = 0, j = j̃, J .

If

K∑
k=1

δ̃i,j̃,k = 1, then
K∑
k=1

δ̃i,j̃+1,k = 0 or
K∑
k=1

δ̃i,j̃+1,k = 1.

Since there can be no more than J phases for movement, we introduce constraint

I∑
i=1

K∑
k=1

δi,J+1,k = 0. (4)

Since the cargo is indivisible, at any phase (including the first one) we can use a maximum of
one transportation

K∑
k=1

δi,1,k � 1, i = 1, I. (5)

If carriage is performed, it must be carried out from corresponding departure vertex

K∑
k=1

δi,1,kv
beg.
k = vdep.i

K∑
k=1

δi,1,k, i = 1, I. (6)
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The cargo may not be sent if the time of readiness for departure, plus the maximum duration
of time spent at the departure vertex, is outside the planning horizon. Otherwise, we need to send
the cargo no later than the maximum duration of time at the departure vertex from the moment
of readiness. Therefore, we impose constraints

K∑
k=1

δi,1,kt
beg.
k +

(
1−

K∑
k=1

δi,1,k

)
Tmax. � tdep.i + di, i = 1, I. (7)

We will introduce constraints in order to send the cargo not earlier than the moment of readiness

tdep.i �
K∑
k=1

δi,1,kt
beg.
k +

(
1−

K∑
k=1

δi,1,k

)
Tmax., i = 1, I. (8)

Further we prohibit the cargo to leave the vertex and enter the vertex more than once

J+1∑
j=1

∑
k:vbeg.

k
=m,1�k�K

δi,j,k � 1, i = 1, I, m = 1,M, (9)

J+1∑
j=1

∑
k:vend

k
=m,1�k�K

δi,j,k � 1, i = 1, I, m = 1,M. (10)

Departure at intermediate vertices of the route should not occur before arrival at these vertices.
Therefore, taking into account the restrictions on the minimum and maximum parking time, we
have

K∑
k=1

δi,j,k(t
end
k + tst. min.

i,k ) �
K∑
k=1

δi,j+1,kt
beg.
k +

(
1−

K∑
k=1

δi,j+1,k

)
T , i = 1, I, j = 1, J − 1, (11)

where

T = max
i∈{1,...,I},k∈{1,...,K}

tendk + tst. min.
i,k ,

∑
k:1�k�K,vend

k
�=varr.i

δi,j,k(t
end
k + tst. max.

i,k ) �
K∑
k=1

δi,j+1,kt
beg.
k , i = 1, I, j = 1, J − 1. (12)

Constraints (11) are identical to constraints from [15, 16], however, it has been replaced 2Tmax. for T .
This replacement is required due to the fact that in the transportation model under consideration
for some k ∈ {1, . . . ,K} it may be tendk > Tmax.. Constraints (12) are identical to ones from [15, 16]
taking into account the fact that parking time control is required only at intermediate vertices.

[15, 16] did not take into account the fact that the cargo is not obliged to arrive at the destination
vertex within the planning horizon. Therefore, if it is supposed that the cargo will be at some
intermediate vertex at the end of the planning horizon, it is necessary to guarantee the admissibility
of such a parking

∑
k:1�k�K,vend

k
�=varr.i

δi,j,k
(
tendk + tst. max.

i,k − Tmax.

)
+ Tmax.

K∑
k=1

δi,j+1,k � 0, i = 1, I, j = 1, J . (13)
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It is also necessary to prohibit the further movement of cargo after arrival at the destination. To
this end, we introduce restrictions

∑
k:1�k�K,vend

k
=varr.i

δi,j,k � 2

(
1−

K∑
k=1

δi,j+1,k

)
, i = 1, I, j = 1, J . (14)

Let T̂i,j be amount of time spent cargo with number i in jth (in series) intermediate vertex of
its route within the planning horizon

T̂i,j =
K∑
k=1

δi,j+1,k

(
tbeg.k − Tmax.

)
+

∑
k:vend

k
�=varr.i ,tend

k
<Tmax.,1�k�K

δi,j,k
(
Tmax. − tendk

)
, i = 1, I, j = 1, J . (15)

For the convenience of formulating the mathematical model, we also set T̂i,J+1 = 0.

Let us introduce new variables Fi. These variables characterize the expected amount of time,
required before arrival at the destination vertex for cargo with number i after the end of the
planning horizon

Fi
def
= τ

vdep.i ,varr.i
+

J∑
j=1

K∑
k=1

δi,j,k

(
τvend

k
,varr.i

− τ
vbeg.
k

,varr.i

)

+
J∑

j=1

∑
k:tend

k
�Tmax.,1�k�K

δi,j,k
(
tendk − Tmax.

)
, i = 1, I. (16)

Movement of cargoes must be carried out taking into account the expected time before arrival
at the destination. For example, long stays at intermediate vertices in a route should be possible
when such a strategy does not lead to the fact that the time spent by the cargo in the transport
system will be exceeded. In this regard, we introduce constraints

Fi +
J∑

j=1

∑
k:tend

k
<Tmax.,vendk

=varr.i ,1�k�K

δi,j,k
(
tendk − Tmax.

)

+
K∑
k=1

δi,1,k
(
Tmax. − tbeg.k

)
� Ti +

(
1−

K∑
k=1

δi,1,k

)
η
vdep.i ,varr.i

, i = 1, I. (17)

If there is a need to specify rigidly the set of vertices intersected by the cargo, one can add the
appropriate constraints from [15].

Now we introduce variables ωi, characterizing whether the cargo with number i arrived to a
destination within the horizon planning: 0 — arrived, 1 — not arrived

ωi = 1−
J∑

j=1

∑
k:tend

k
<Tmax.,vendk

=varr.i ,1�k�K

δi,j,k, i = 1, I. (18)

Let us comment introduced variables. For this purpose we consider cargo with number i∗ ∈
{1, . . . , I}.

At first, we will comment (13)–(15). To do this, we first note that several cases are possible (we
choose j∗ ∈ {1, . . . , J}):
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502 IGNATOV

1) j∗th phase is not used for movement of cargo with number i∗;
2) j∗th phase is used for movement of cargo with number i∗, the cargo did not arrive at the

destination, j∗ + 1th phase is not used;
3) j∗th phase is used for movement of cargo with number i∗, the cargo did not arrive at the

destination, j∗ + 1th phase is used;
4) j∗th phase is used for movement of cargo with number i∗, at the end of this phase the cargo

arrived within the planning horizon or will arrive after the end of the planning horizon at the
destination.

In case 1)
K∑
k=1

δi∗,j∗,k = 0. Due to constraints (1)

∑
k:1�k�K,vend

k
�=varr.

i∗

δi∗,j∗,k =
∑

k:1�k�K,vend
k

=varr.
i∗

δi∗,j∗,k = 0,

and because of constraints (2), (3) it is true that
K∑
k=1

δi∗,j∗+1,k = 0. Therefore (13), (14) are satisfied.

Value T̂i∗,j∗ will be equal to zero.

In case 2) ∑
k:1�k�K,vend

k
�=varr.

i∗

δi∗,j∗,k = 1,
∑

k:1�k�K,vend
k

=varr.
i∗

δi∗,j∗,k = 0,

K∑
k=1

δi∗,j∗+1,k = 0.

Constraint (14) is satisfied, since its left side will be equal to zero, and the right — to two. If the
cargo, having not arrived at its destination, is in movement at the end of the planning horizon,
then constraint (13) will be satisfied automatically. This fact is connected with ending time of a
transportation will not be less than Tmax.. At the same time value T̂i∗,j∗ will be equal to zero, that
is reasonable, since the stop (if this one will be) in j∗th intermediate (in series) vertex will occur
after the end of the planning horizon. If the cargo, having not arrived at its destination, stays at
the end of the planning horizon, then constraint (13) will ensure the admissibility of such stay at
least until the end of the planning horizon. Variable T̂i∗,j∗ will be equal to the parking time in j∗th
intermediate (in series) vertex during the planning horizon.

In case 3) ∑
k:1�k�K,vend

k
�=varr.

i∗

δi∗,j∗,k = 1,
∑

k:1�k�K,vend
k

=varr.
i∗

δi∗,j∗,k = 0,

K∑
k=1

δi∗,j∗+1,k = 1.

Constraint (14) is satisfied, since its left and right side will be equal to zero. Constraint (13) will
be satisfied by definition, due to for all i = 1, I , k = 1,K by basic assumptions tendk + tst. max.

i,k � 0.

Value T̂i∗,j∗ will be equal to the difference between departure and arrival time in j∗th intermediate
(in series) vertex.

In case 4) ∑
k:1�k�K,vend

k
�=varr.

i∗

δi∗,j∗,k = 0,
∑

k:1�k�K,vend
k

=varr.
i∗

δi∗,j∗,k = 1.
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Due to constraints (2), (3)
K∑
k=1

δi∗,j∗+1,k can be equal to zero or one. Constraints (13) are satisfied

in any of mentioned variants. If
K∑
k=1

δi∗,j∗+1,k is equal to zero, then constraint (14) is satisfied.

Value T̂i∗,j∗ will be equal to zero that corresponds to the sense of the introduced variable, since the

cargo will have only j∗ − 1 intermediate vertices. If
K∑
k=1

δi∗,j∗+1,k is equal to one, then constraint (14)

is not satisfied. So this variant is not allowable. It is meaningful, because in case of arriving in the
destination there is no reason in the further carriage.

Now we discuss (16)–(18). If cargo with number i∗ is not departed from the departure vertex,

then
K∑
k=1

δi∗,1,k = 0. Consequently, from constraints (2), (3) we obtain
K∑
k=1

δi∗,j,k = 0, j = 2, J .

It means, value Fi∗ will be equal to the expected duration of the carriage from the departure vertex
to the destination vertex. If precisely j ∈ {1, . . . , J} transportation will be used, then summation
of the first and second component Fi∗ will give τvend

k∗ ,varr.
i∗

, where k∗ is the number of jth (in series)

transportation of cargo with number i∗. In other words, we will get the expected duration that
is needed for the cargo to arrive in the vertex with index varr.i∗ from the vertex with index vendk∗ .
If the cargo after the end of the planning horizon is in movement, then the third component of Fi∗

will be non-zero and will characterize amount of time for the arriving of the cargo in vertex with
index vendk∗ after the end of the planning horizon.

If the cargo has not departed within the planning horizon, then the second and third components
of the left side of inequality (17) would be equal to zero. In this case, it is required that the expected
duration of carriage from the departure vertex to the destination vertex would be no greater than
the allowable time spent on the graph in sum with the expected time from the moment of readiness
to the moment of departure. If the cargo is departed and delivered within the planning horizon,
then Fi∗ = 0, and summation of the second and third components of the left side of the inequality
will produce duration between the moment of departing and the arrival moment. If the cargo is
departed but not delivered, then the second component of inequality (17) will be equal to zero, and
value Fi∗ will be summed with duration of being on the transport network after departing from
the departure vertex.

If at some phase the cargo with number i∗ has arrived in the destination, and the phase was
finished before the end of the planning horizon, then ω∗

i = 1. Otherwise, ω∗
i = 0.

The need in not exceeding of the maximum allowable mass, when transportation with number k
is used, imply restrictions

I∑
i=1

J+1∑
j=1

δi,j,kwi �Wk, k = 1,K. (19)

Let us note, that constraints (1)–(19) may be inconsistent, which means that the set of ad-
missible strategies given by these restrictions is empty. Such a case may arise, for example, when
transportation between vertices is too slow. To ensure consistency of constraints (1)–(19), one can
demand conditions

tdep.i + di � Tmax., τ
vdep.i ,varr.i

� Ti + η
vdep.i ,varr.i

, i = 1, I. (20)

If these conditions are true, then each cargo has the opportunity to stay at the departure vertex
within the planning horizon. However, even if the conditions (20) are violated, this does not mean
that the constraints (1)–(19) are necessarily inconsistent.
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4. THE CRITERION FOR CARGOES SCHEDULING

Let us construct the criterion for searching of the optimal schedule

c1

I∑
i=1

J+1∑
j=1

K∑
k=1

δi,j,k
(
min{tendk , Tmax.} − tbeg.k

)
︸ ︷︷ ︸

the total time in movement
during the planning horizon

+ c2

I∑
i=1

J+1∑
j=1

T̂i,j︸ ︷︷ ︸
the total

parking time
in interme-

diate vertices

+ c3

I∑
i=1

(
K∑
k=1

δi,1,kt
beg.
k +

(
1−

K∑
k=1

δi,1,k

)
Tmax. − tdep.i

)
︸ ︷︷ ︸

the total parking time in departure vertices
from the time of readiness for departure

+ c4

I∑
i=1

J+1∑
j=1

K∑
k=1

δi,j,kwiCk︸ ︷︷ ︸
the total cost

of transportation

+c5

I∑
i=1

Fi︸ ︷︷ ︸
the total
expected
time till
delivery

+ c6

I∑
i=1

ωi︸ ︷︷ ︸
the total

quantity of
undelivered

cargoes during
the planning

horizon

→ min
δi,j,k,T̂i,j�0,T̂i,J+1=0,Fi�0,ωi∈{0,1},i=1,I,j=1,J+1,k=1,K

,

(21)

with subject to constraints (1)–(19), where c1, c2, c3, c4, c5, c6 are some non-negative values. Note
that, on the one hand, the requirement that variables Fi, T̂i,j are non-negative is unnecessarily, since
these variables are non-negative by definition, i = 1, I , j = 1, J . Furthermore, due to constraints
(16), (17) these variables are unnecessary itself. They can be substituted for other variables taking
part in the optimization and more, such replacement will lead to an integer linear programming
problem. However, on the other hand, the direct presence of these variables and the condition on
their non-negativity makes it possible in some problems to speed up the search for the optimal
solution. And, in addition, the use of these variables allows us to make the form of the criterial
function more concise and understandable.

We will mean the multiplier of cr in (21) as rth criterion component , r = 1, 6.

We obtain the palette of various applied problems using various values of c1, c2, c3, c4, c5, c6.
We have the problem to minimize the quantity of undelivered goods during the planning horizon or,
in other words, the problem to maximize the quantity of delivered goods, when c1 = . . . = c5 = 0,
c6 = 1. We get the problem to minimize the total cost of transportation when c1 = c2 = c3 = c5 =
c6 = 0, c4 = 1. We obtain the problem to minimize the total expected time till delivery to respective
destination vertices when c1 = c2 = c3 = c4 = c6 = 0, c5 = 1. We get the problem to minimize
total elapsed and expected remaining travel time in case of c1 = c2 = c3 = c5 = 1, c4 = c6 = 0.
We have the problem to minimize the total time spent in movement and stays during the planning
horizon when c1 = c2 = c3 = 1, c4 = c5 = c6 = 0. It is possible to use other combinations of numbers
c1, . . . , c6 [15]. It should be noted that not all criterion components have the same dimension and
order of values: the first, second, third, fifth components are measured in minutes, the fourth
is in cost units, the sixth is in pieces. To take into account the different nature of the criterion
components, for example, additional restrictions on their values can be introduced. For example,
the number of delivered cargoes must be at least 10. Some restrictions arise from the logic of a
particular problem. For example, the budget constraint — the total cost of transportation should
not exceed the available budget. It can be introduced additionally.
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It also should be noted that the introduced mathematical model of carriages is primarily intended
for the problem to transport certain goods (parcels, containers) by various vehicles (airplanes,
trains, etc.). Namely, the presented model allows “binding” this or that cargo to this or that
vehicle and assigning the time of transportation to the cargo. At the same time, the introduced
model can also be used to form a schedule for carriages of vehicles themselves. So, for example
it is possible to generate, using the proposed model, a schedule for carriages of freight trains: in
the terminology of this article, a freight train will become a cargo, a locomotive will become a
vehicle, and the concept of transportation will be synonymous with “subthread”. The mass of the
train will be set to one, as well as the maximum mass for a particular transportation. At the same
time, the proposed model can be used for other transport sectors, adding, if necessary, certain
restrictions from a specific subject area. Hence, we summarize that the proposed mathematical
model of carriages along the graph and the criterion form a universal problem statement of cargo
carriages.

5. THE ALGORITHM TO FIND THE INITIAL/APPROXIMATE SOLUTION

In view of the possible high dimension of the problem (21) with subject to constraints (1)–(19)
we propose the following algorithm for finding the initial/approximate solution of the problem.
The algorithm is based on the sequential solution of the problem (21) with constraints (1)–(19) for
some subset of cargoes

1. Set of cargoes numbers is split into S non-overlapping subsets Is, i.e. {i ∈ N : i � I} =
S⋃

s=1
Is,

and besides ∀s1 ∈ 1, S, s2 ∈ 1, S: s1 �= s2 Is1
⋂ Is2 = ∅.

2. Parameter s is initialized by 1.

3. The problem

c1
∑
i∈Is

J+1∑
j=1

K∑
k=1

δi,j,k
(
min{tendk , Tmax.} − tbeg.k

)
+ c2

∑
i∈Is

J+1∑
j=1

T̂i,j

+ c3
∑
i∈Is

(
K∑
k=1

δi,1,kt
beg.
k +

(
1−

K∑
k=1

δi,1,k

)
Tmax. − tdep.i

)

+ c4
∑
i∈Is

J+1∑
j=1

K∑
k=1

δi,j,kwiCk + c5
∑
i∈Is

Fi

+ c6
∑
i∈Is

ωi → min
δi,j,k ,T̂i,j�0,T̂i,J+1=0,Fi�0,ωi∈{0,1},i∈Is,j=1,J+1,k=1,K

,

(22)

with subject to constraints (1)–(18) and constraints

∑
i∈Is

J+1∑
j=1

δi,j,kwi �Wk −
∑

i∈
s−1⋃
p=1

Ip

J+1∑
j=1

δ̃i,j,kwi, k = 1,K (23)

is solved. If solution of this problem exists, then values δ̃i,j,k are set to one, if cargo with number
i at the jth phase uses transportation with number k, and to zero, otherwise, i ∈ Is, j = 1, J + 1,
k = 1,K. Go to step 4. If solution of problem (22) with subject to constraints (1)–(18), (23) does
not exist, then the procedure to find the approximate solution completes unsuccessfully.

4. If s < S, then s is increased by one and there is a jump to step 3. If s = S, then the procedure
to find the approximate solution completes successfully.
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If S = 1, then the proposed algorithm will allow to find the exact solution, since in this case
the problem (21) with subject to constraints (1)–(19) is solved directly. If S > 1, then there is
no guarantee for the solution, obtained by algorithm, be optimal in problem (21) with subject to
constraints (1)–(19). It may turn out in some cases, that the direct solution of problem (21) with
constraints (1)–(19) will be found faster than an approximate solution by algorithm. However, as
it will be shown later in the example, the use of the algorithm in some cases makes it possible to
quickly find a feasible solution in the problem (21) with subject to constraints (1)–(19) with an
acceptable criterion value (of the order 5–10% increase in the value of the criterion relative to the
criterion on the optimal solution).

The example will also demonstrate the case when the algorithm presented above fails, i.e. feasible
solution to the problem (21) subject to constraints (1)–(19) was not found during the algorithm
work. In the general case, the unsuccessful completion of the algorithm can be caused both by the
initial inconsistency of the constraints (1)–(19) and by the specifics of constructing an approximate
solution, when the schedule is searched iteratively for cargo groups. For guaranteed successful
completion of the algorithm, one can require the fulfillment of the conditions (20). Another way
to get a solution on sending at least some amount of cargoes is the use of another algorithm that
differs from the one presented above in that at step 3, in the absence of a solution, the algorithm
does not stop its work. Let us describe two methods for constructing such an algorithm. In the
first method, in the absence of a solution at step 3, the cargoes that failed to build a schedule are
deleted from the carriages list, i.e. there is a denial to carry for these cargoes. A similar approach
has been used, for example, in [4, 7]. The second method is in the use of values Ti, di in problem
(22) with subject to constraints (1)–(18), (23) not as fixed, but as optimization variables, i ∈ Is.
There will be at least one solution in this case — to stay at the departure vertex within the planning
horizon. Note that the proposed modifications, generally speaking, require a change in the initial
data, so they are not used in the example below.

We propose several variants of the proposed algorithm by analogy with [15, 16]. We will name as
algorithm by direction (algorithm 1) such a version of the algorithm when the split at the first step
is based on the principle of being in sets Is of cargoes numbers with the same departure vertices
and the same arrival vertices, s = 1, S. The fewer elements in the set, the smaller the number of
this set. We will name as algorithm by minimal/maximal time (algorithm 2.1/algorithm 2.2) such
a version of the algorithm when at the first step the split is carried out in ascending and descending
order of cargoes readiness moments for departure. Namely, set I1 will consist of cargo number
with the earliest/latest time of readiness for departure, set I2 — with the second/penultimate
and so on.

6. THE EXAMPLE

Let us consider the problem of forming freight carriages on the section of the railway network
from [15, 16]. To presentation brevity we present only values of parameters from the present
statement of the problem, which were not used in constructing the model of carriages along the
graph in [15, 16] in view of the large amount of initial data: Ck = 2, Wk = 1, wi = 1, i = 1, 62,
k = 1, 1249. We set values τm1,m2 as minimal travel time from vertex with index m1 to the vertex
with index m2 when departure occurs after 360 minutes from the point of reference (in fact, at
6.00 AM), m1,m2 = 1, 42. If there is no available transportation, then τm1,m2 is set equal to 4000,
m1,m2 = 1, 42. We will suppose for simplicity that ηm1,m2 = 0, m1,m2 = 1, 42. [15, 16] introduced
only 1, 2, 3 criterion components. Therefore we set c1 = c2 = c3 = 1, c4 = c5 = c6 = 0 for results
comparability of present problem statement and [15, 16]. Criterial functions in (21) and [15, 16]
coincide when c1, . . . , c6 are set in the above manner. Note that although values Wk, wi, i = 1, 62,
k = 1, 1249 in [15, 16] were not used formally, but with such values of these parameters, constraints
for the maximum weight (19) are identical to constraints for maximum quantity of trains using
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the same “subthread” from [15, 16]. Furthermore, values Ck do not participate in optimization in
this case, k = 1, 1249. Thus, the main difference between the present problem statement and its
analogue in [15, 16] is in the fact that arrival in destinations in [15, 16] must occur obligatorily
during the planning horizon, while in the present study this may not happen. Conditions (20) are
broken.

According to the results of the numerical experiment, it turned out that algorithms 1 and 2.1
was completed successfully unlike algorithm 2.2. The optimal value of criterial function in (21) for
solution obtained by means of algorithm 1/algorithm 2.1 is 26 951/27 790. The value of criterion [16]
for solutions by algorithms 1 and 2 from this paper that are analogous to algorithms 1 and 2.1
respectively — 26 951 and 27 755. Both solutions by algorithm 1, and by algorithm 2.1 are such
that every train arrives in the respective destinations during the planning horizon despite of it
was not obligatory. Train routes for algorithms from the present paper and for its analogues
from [16] coincide partially. Some deterioration in the value of criterion (21) for solution by means
of algorithm 2.1 with respect to the value of criterion in [16] by means of algorithm 2 is caused
by the fact that there is a control of time till arrival in the destination in every vertex, traversed
by cargo, in the present problem statement. But the more important reason is the absence of
solution uniqueness of problem (22) subject to constraints. (1)–(18), (23). At the same time the
choice of specific solution at the sth step influences on cargo carriages with the schedule only to be
found next — at s+ 1th, s+ 2th, . . . , Sth steps of any variant of the algorithm. Thus, additional
optimization should be carried out among the optimal solutions in the problem (22) with subject
to constraints (1)–(18), (23). However, the formalization of the criterion for such optimization is
non-trivial and is of separate scientific interest.

Note that if we consider not even all cargoes, but part of them, for example, the first 15 cargoes
(i.e. cargoes with numbers 1, 2, . . . , 15) from the carriage list, then optimal solution in problem (21)
with subject to constraints (1)–(19) for 2 hours of computation is not found. In this regard, for this
example, it is unfortunately impossible to draw a conclusion about the accuracy of the obtained
approximate solution.

The computation time to search for the solution by algorithm 1/algorithm 2.1 is 45.5/9.5 min-
utes. It should be noted the degradation of the solution search time by algorithm 1 in comparison
with [15, 16]. This is due to the fact that within the framework of the problem, additional oppor-
tunities have appeared: not to depart to the destination, not to arrive at the destination at the
end of the planning horizon. At the same time, for algorithm 2.1, the computation time increased
insignificantly.

Let us analyze computation time for algorithm 2.1 with respect to the quantity of cargoes planned
to be carried. We choose 5, 10, 15, . . . , 55, 60 first cargoes from the carriage list and calculate for
each the computation time of algorithm 2.1 in minutes.

Table 1. The computation time of algorithm 2.1 in minutes

Quantity of cargoes to be carried 5 10 15 20 25 30 35 40 45 50 55 60

The computation time of algorithm 0.71 1.51 2.65 3.13 4.16 4.8 6.97 6.73 7.28 8 8.5 9.1

As follows from the presented results, an increase in the number of cargoes does not necessarily
result to an increase in the computation time. It is caused by the fact that adding each new cargo
to the carriage list starts a chain reaction and leads to a complete recalculation of the schedule due
to the fact that, according to algorithm 2.1, the schedule is primarily searched for the cargo with
the minimum time of readiness for departure, and not for the cargo with the minimum number.
The initial carriage list is not sorted by increasing time of readiness for departure. At the same
time, adding every 5 new cargoes for calculation, as a rule, leads to an increase in the algorithm
running time by 0.5-1.5 min.
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Let’s consider another example, which is a model one. Let the transport network has the
following form

1 2 3 4 5 6 7 8 9 10

Multigraph G of the transport network.

The numbering of tracks in the figure is omitted. If two adjacent vertices are connected by two
edges, i.e. two tracks, then edge, represented by a straight line has number 1, otherwise — 2.

Let Tmax. = 1440 minutes. Let us choose some point of reference. Starting from this point of
reference:

• every 60 minutes at the vertex with index 1, 10 cargoes of the same mass in 1 unit appear,
these cargoes need to be transported to the vertex with index 10;

• every 60 minutes some vehicle is departed from the vertex with index m to the vertex with
index m+ 1 using track with number 2; this vehicle can transport no more than 5 units of
mass, transportation cost is 3 per unit of mass, duration of transportation — 120 minutes,
m = 1, 9.

• every 60 minutes some vehicle is departed from the vertex with index m to the vertex with
index m+ 1 using track with number 1; this vehicle can transport no more than 5 units of
mass, transportation cost is 9 per unit of mass, duration of transportation — 60 minutes,
m = 1, 9.

• every 60 minutes some vehicle is departed from the vertex with index m to the vertex with
index m+ 2; this vehicle can transport no more than 5 units of mass, transportation cost is
81 per unit of mass, duration of transportation — 60 minutes, m = 1, 8.

This choice of transportation costs was caused that faster transportation in the same direction
should cost more expensive. The cargo travel time — 1 day.

Let τm1,m2 = 60|m2 −m1|, m1 = 1, 10, m2 = 1, 10. Such choice is caused by the fact that
the transportation duration between adjacent vertices of the multigraph G can be 60 minutes,
m1,m2 = 1, 10. Let ηm1,m2 = 0, m1,m2 = 1, 10.

Considering the above, it turns out I = 240, K = 624. Let di = 180, tst. min.
i,k = 0 and

tst. max.
i,k = 120, i = 1, I , k = 1,K. Since the maximum number of transportation when there is
a need to move from the vertex with index 1 to the vertex with index 10, is equal to 9, then we set
J = 9. Conditions (20) are broken.

Let’s illustrate the work of algorithms 1, 2.1 and 2.2 for various values of c1, c2, c3, c4, c5, c6.
Let us preliminarily note that algorithm 1 produces an exact solution, since in the problem under
study, all cargoes have the same departure vertices and destination vertices.

In Table 2 values of the criterion function in (21) on one or another solution are highlighted by
the bold font.

As follows from Table 2, sometimes the search for an exact solution takes about the same
time as the search for an approximate one. But in some cases (c1 = c2 = c3 = c5 = c6 = 0, c4 = 1;
c1 = c2 = c3 = c4 = c6 = 0, c5 = 1; c1 = . . . = c5 = 0, c6 = 1) the approximate solution is found
many times faster. At the same time the search for an approximate solution stably takes 6–7 minutes
for any of the considered variants of numbers c1, c2, c3, c4, c5, c6. As a rule, algorithm 2.2 is more
accurate than algorithm 2.1. The error of the best of the approximate solutions is on the order of
5–10% relative to the exact one. Since every cheap transportation is long in time, there is a large
total time of transportation and stops in the problem to minimize the total cost of transportation.
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Table 2. Results of the numerical experiment

Solution
Criterion
parameters

Criterion components
Time to find
the solution,

minutes
c1 c2 c3 c4 c5 c6 1 2 3 4 5 6

Exact
1 1 1 0 0 0

61 440 2460 2100 65 151 22 140 50 6.75

Algorithm 2.1 64 200 6000 6600 54 510 29 700 60 7

Algorithm 2.2 63 900 1800 6000 57 990 27 300 55 6,5

Exact
1 1 1 0 1 0

66 000 0 0 73 260 10 800 50 6.85

Algorithm 2.1 71 100 4800 2100 63 645 15 300 65 7

Algorithm 2.2 71 400 0 0 67 365 11 700 55 6.5

Exact
0 0 0 1 0 0

82 740 62 760 33 060 3615 83 160 235 183.5

Algorithm 2.1 76 200 66 300 37 500 3855 84 600 240 6.5

Algorithm 2.2 116 700 34 500 9300 5955 60 000 190 7

Exact
0 0 0 0 1 0

86 940 15 180 1620 60 165 10 800 55 73.15

Algorithm 2.1 87 600 42 600 12 600 47 355 23 700 130 6

Algorithm 2.2 81 300 17 100 0 60 105 11 700 60 6.5

Exact
0 0 0 0 0 1

80 460 13 860 5700 49 209 25 140 50 250.3

Algorithm 2.1 73 500 41 700 30 000 31 200 52 500 125 5.65

Algorithm 2.2 73 800 18 000 6300 49 815 27 900 55 6.25

And, on the contrary, the cost of transportation increases in the problem of maximizing the number
of delivered cargoes. The problem of minimizing the expected remaining time before arriving at
destinations expectedly leads to the fact that most of cargoes (for solutions according to algorithms 1
and 2.2) arrive at the destination vertices within the planning horizon.

Separately, it should be noted that the computation time of the algorithms significantly depends
not only on the size of the constraints matrix, but also on its content. So, for example, sometimes
a certain set of constraints can be deleted from the constraints matrix due to their redundancy. In
this case, the dimension of the problem will be decreased. However, due to the large number of
input data, it is difficult to make an a priori assumption about the number of such exceptions and
the (small) large computation time of the algorithms.

All numerical experiments were carried out using the ILOG CPLEX 12.5.1 mathematical package
on a personal computer (Intel Core i5 4690, 3.5 GHz, 8 GB DDR3 RAM).

7. CONCLUSION

In this paper, we formulated the scheduling problem in the general statement. For this purpose, a
new mathematical model of carriages along the multigraph of the transport network was proposed,
which is given in the form of a system of linear constraints. A universal optimization criterion
was proposed, which makes it possible to obtain important applied problems for various values
of the parameters, for example, the problem of minimizing the total cost of transportation or the
problem of maximizing the quantity of cargoes delivered within the planning horizon. In the work,
algorithms were proposed for finding an approximate solution to the problem. The main idea of
these algorithms is the decomposition of the problem by searching for a schedule sequentially for
some groups of cargoes. The use of such a decomposition does not always lead to an exact or even
acceptable solution. However, due to decomposition in some cases with the order of 1–1.5 million
binary variables, it turned out to be possible in a relatively short time to find an acceptable solution
with an accuracy of 5–10%. A distinctive feature of the proposed model of carriages along the
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multigraph of the transport network is that the arrival of goods is allowed even after the planning
horizon, if it is predicted that the delivery will be completed on time. This circumstance opens the
way to another decomposition — by splitting the planning horizon. Namely, the planning horizon
can be split into several parts and search for the schedule for the cargo carriages can be performed
sequentially on each part of the planning horizon. Such a decomposition may allow the formation
of a schedule for even more cargoes/transportations at a fixed count time.
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