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Abstract—The paper presents a constructive description of the set of all efficient (Pareto-
optimal) investment portfolios in a new setting, where the risk measure named “shortfall prob-
ability” (SP) is understood as the probability of a shortfall of investor’s capital below a pre-
scribed level. Under a normality assumption, it is shown that SP has a generalized convexity
property, the set efficient portfolios is constructed. Relations between the set of mean-SP and
the set of mean-variance efficient portfolios as well as between mean-SP and mean-Value-at-
Risk (VaR) sets of efficient portfolios are studied. It turns out that mean-SP efficient set is a
proper subset of the mean-variance efficient set; interrelation with the mean-VaR efficient set is
more complicated, however, mean-SP efficient set is proved to be a proper subset of mean-VaR
efficient set under a sufficiently high confidence level. Besides a normal distribution, elliptic
distributions are considered as an alternative for modeling the investor’s total return distribu-
tion. The obtained results provides the investor with a risk measure, that is more vivid than
the variance and Value-at-Risk, and with determination of the corresponding set of effective
portfolios.
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1. INTRODUCTION

After a pioneering work by Markowitz [1], where variance was considered as a measure of risk,
another measures of risk, e.g., value at risk (VaR), became a popular extension of this risk man-
agement framework. VaR determines the maximum amount that a portfolio value could lose over
a given period of time with a given probability as a result of changes in market prices or rates
of returns. The concept of VaR is very appealing because it is consistent with the mean-variance
paradigm (see, e.g., [2, 3]) and, from the other hand, the regulators such as The Securities and Ex-
change Commission require registrants to provide quantitative information about market risk with
VaR being one of the disclosure alternatives. However, VaR is still criticized (see, e.g., Rockafellar
et. al [4] and Szego [5] for this argument) with respect to incapability of distinguishing between
“large” and “small” losses lying behind the given threshold. In [6], a class of deviation measures
of risk is suggested and a relationship between deviation measures and coherent risk measures [7]
is established.

The shortfall probability (SP) or, in other terms, the failure probability is used in engineering
applications as a risk measure; see for example Gardoni and Murphy [8, 9]. In [10], it is pointed
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out that the failure probability has a lack of convexity and smoothness as a function of the design
parameters in engineering optimization problems.

Pinar [11], Duffie and Pan [12] assume a joint normal/log-normal distribution of the underlying
market parameters for calculating VaR. A dynamic model of investment optimization under VaR
constraints and with bankruptcy is studied in [13].

Our work differs from previous results in several respects. The main idea of this paper is the
following: despite the lack of convexity and smoothness in engineering optimization problems (see
above [10]), we will show that within the framework of a problem of determining efficient portfolios
in an asset market under normality assumption, SP has a generalized convexity property and a
smooth dependence on a portfolio weight vector. First, we indicate some interesting (in the authors’
opinion) properties of the SP risk measure such as an invariance of a currency unit and generalized
convexity property, and investigate how it relates to variance and VaR measures. Second, we
analytically characterize the mean-SP efficient set, making use of a parametrization by the total
return expectation, and compare it to the mean-variance and mean-VaR efficient sets.

The rest of the paper is organized as follows. Section 2 analyzes a problem of designing the set of
all mean-SP efficient portfolios in a market without a risk-free assert, and compares the result with
the efficient sets of mean-variance and mean-VaR portfolios. Section 3 studies a case of elliptical
multivariate distributions instead of a multivariate normally distribution of the return rates of risky
assets. Section 4 concludes the paper.
The problem of determination of a “best” portfolio from the mean-SP efficient set is beyond the
scope of the paper.

2. EFFECTIVE INVESTMENT PORTFOLIOS IN A MARKET WITH RISKY ASSERTS

Consider a market without a risk-free asset (see, e.g., [11, 14]) in which a stochastic vector of
return rates of risky assets during one stage of investment is R = (R1, . . . , Rn). Let a ∈ Rn denote
a portfolio weight vector of n assets. The typical budget constraint is

∑n
i=1 ai = 1. In this setting,

it means the self-financing of the investor and his/her opportunity of “short sales”, i.e., borrowing
some asserts at the current prices with the aim to invest the money into the others. We assume
that the rates of return follow a normal distribution with a mean vector m = (m1, . . . ,mn) and a
covariance matrix C.

Throughout the manuscript, we use the following natural assumptions:

• vectors m and 1 = (1, . . . , 1) ∈ Rn are linearly independent, i.e., the mean rates of return do
not equal the same value,

• the covariance matrix C is positive definite.

At the end of the stage, the realized wealth (or total return) is a random variable given by

Xa =
n∑

i=1

aiRi.

The objective function the investor wishes to maximize is the mean value of the total return

μ(a)
def
= EXa =

n∑
i=1

aimi,

where mi = E Ri; and the objective function to be minimized is a shortfall probability (SP)

SP [α,Xa]
def
= P{Xa � α}

where α is a prescribed upper bound for the total return.
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The introduced measure of risk SP [α,X] = P{X � α} is not a “coherent” measure of risk
according to Artzner et al. [7], since it does not satisfy the homogeneity property, SP [α, λρX] �=
λρSP [α,X]. Also, the translation invariance property is not satisfied, SP [α,X+c] �= SP [α,X]−c.
However, SP posses an invariance of a currency unit property, i.e., if a capital X is converted
into money γX in another currency with a coefficient γ > 0 then the probability SP [γα, γX] =
P{γX � γα} = SP [α,X] does not change.

Now, we define one of the mostly used measures of risk in modern portfolio theory (see, e.g.,
[14, 15]) and then compare it with the SP measure above.

Definition 1. Value at Risk (VaR) is the rate of return v such that −v is the quantile of
distribution function F (x) = P{X � x} of the order 1 − β with a prescribed level of confidence
β ∈ (0.5, 1). Roughly saying, V aR[β,X] is the root of the equation F (−v) = 1− β.

Remark 1. Some researchers (Artzner et al. [7], Rockafellar et al. [4]) have pointed out the
shortcomings of VaR as a measure of risk. Namely, VaR is not a coherent measure of risk since it
fails to satisfy the subadditivity property, except the case of normality of F (x). Also, VaR provides
no handle on the extent of the losses that might be suffered beyond the threshold amount indicated
by this measure. SP seems to be opposite to VaR in the sense that SP risk measure directly indicates
the value of probability of the investor’s capital fall, but not the value of maximum amount losses
under a given confidence level. This makes SP an alternative to VaR in solving problems of finding
efficient portfolios.

Now, we turn to the framework of normal modeling the distribution of the total return. As is
shown, e.g., in [14], V aR[β,Xa] = xNβ σ(a)−μ(a), where xNβ is the β-order quantile of the standard

normal distribution and the variance is V ar Xa = σ2(a) = aCa′, with a′ being the transpose of row
vector a. In this case, the risk measure V aR[β,X] (see, e.g., [7]) is coherent and, hence, convex:
V aR[β, ρX1 + (1− ρ)X2] � ρV aR[β,X1] + (1− ρ)V aR[β,X2].

Consider

SP [α,Xa] = Φ

(
α− μ(a)
σ(a)

)
,

where Φ(x) is the distribution function of the standard normal stochastic value. One can see that
the argument of Φ(·) coincides, up to the sign, with Sharpe’s ratio (

∑n
1 miai−α)/

√
aCa′, where α

plays the role of the return rate of a “virtual” risk-free assert. Note that a natural assumption in the
model with a risk-free assert is α < mini=1,...,nmi. In this connection, we will show in Proposition 1
that SP has a “generalized” convex property on a definite set of risks (c.f. VaR risk measure).

Definition 2. A function f(x) on a convex set D is called strongly quasi-convex [16] if for any
x1, x2 ∈ D such that x1 �= x2 the inequality f(ρx1 + (1− ρ)x2) < max{f(x1), f(x2)} holds for any
ρ ∈ (0, 1).

For example, the function −φ(x), where φ(x) denotes the density of standard normal distribu-
tion, is strongly quasi-convex on (−∞,∞) but not convex; the function max{−φ(x),−1/(2√π)} is
neither strongly quasi-convex, nor convex.

Define a set of normally distributed random values Dα = {X : EX > α}, in which the relation
X1 �= X2 is understood as P{X1 �= X2} > 0.

Proposition 1. SP [α,X] is strongly quasi-convex on Dα.

Proof. Let risks X1 and X2 belong to Dα and X1 �= X2. Denote μρ = ρEX1 + (1− ρ)EX2 and
σ2ρ = V ar(ρX1 + (1− ρ)X2). Calculate the derivative

d

dρ
Φ((α− μρ)/σρ) =

φ((α − μρ)/σρ)
σ3ρ

[(EX2 − EX1)σ
2ρ

−(α− μρ)(ρV ar X1 − (1− ρ)V ar X2 + (1− 2ρ)cov(X1,X2)],
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where φ(x) denotes the density of standard normal distribution. The term in the square brackets
is an increasing function in ρ as its derivative (μρ − α)V ar(X1 −X2) > 0. The following cases are
possible: First, SP [α, ρX1+(1−ρ)X2] either decreases or increases in ρ on its whole domain (0, 1).
Then, evidently, Definition 2 is met. Second, the function in the square brackets changes the sign
from minus to plus at some point ρ0 ∈ (0, 1). In this case, SP [α, ρX1 + (1− ρ)X2] decreases on the
interval lying left to ρ0 and increases on the interval right to ρ0. By Definition 2.2, SP [α,X] is
strongly quasi-convex. �

Remark 2. Here we compare the investor’s preferences induced by VaR, SP, and variance risk
measure. Since V aR[β,Xa] = xNβ σ(a)−μ(a), inequality V aR(β,Xa1) > V aR(β,Xa2) is equivalent
to

xNβ σ(a
1)− μ(a1) > xNβ σ(a

2)− μ(a2). (1)

For the risk measure SP [α,Xa] = Φ((α− μ(a))/σ(a)), the corresponding inequality, Φ((α− μ(a1))/
σ(a1)) > Φ((α − μ(a2))/σ(a2)), is equivalent to

(α− μ(a1))σ(a2) > (α− μ(a2))σ(a1). (2)

One can see that relation (2) is quite different from (1), which means that the investor’s preferences
with respect to VaR differ from that of SP. Note that the investor’s preferences of another measure
of risk [17], V [Xa] = σ2(a),

σ2(a1) > σ2(a2), (3)

also differ from (2).

Return to the bi-objective optimization problem of maximizing the mean portfolio value and
minimizing SP measure of risk. In the normality framework, it is⎧⎪⎨⎪⎩

μ(a) ≡∑n
i=1 aimi → max,

SP [α,Xa] ≡ Φ(α−μ(a)
σ(a) )→ min,

s.t. a ∈ A = {a ∈ Rn :
∑n

i=1 ai = 1}.
(4)

Definition 3. A portfolio a0 is said to be an efficient portfolio in (4) if there is no portfolio a1

such that μ(a1) � μ(a0), SP [α,Xa1 ] � SP [α,Xa0 ], and at least one inequality holds strict.

Now, we investigate the problem of designing a set ASP of all efficient portfolios in (4). The
next theorem provides a description of ASP as a set of portfolios parametrized by M , a parameter
having sense of a fixed value of the mean of total return,M = μ(a). Further we need some notation:
Let 〈x, y〉 denote the scalar product

∑n
i=1 xiyi of two row vectors x and y, 〈x, y〉C = 〈x, yC−1〉,

||x||2C = 〈x, xC−1〉, and ! = ||1||2C ||m||2C − 〈1,m〉2C .
Theorem 1. The set ASP is not empty if and only if

α <
〈1,m〉C
||1||2C

. (5)

If (5) is met then

ASP = {a(M) =
1

!
[
1||m||2C −m〈1,m〉C +M(m||1||2C − 1〈1,m〉C )

]
C−1}, (6)

where M runs over a semi-infinite interval

M ∈
[
MSP ,∞

)
, with MSP =

||m||2C − α〈1,m〉C
〈1,m〉C − α||1||2C

. (7)
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The proof of Theorem 1 is given in Appendix.

Below we compare this theorem with known descriptions of the set AV of mean-variance efficient
portfolios and the set AV aR of mean-VaR efficient portfolios. The next two statements are just
variations of results in [17] and [14], the expressions for efficient portfolios are now parametrized
by M = μ(a).

Statement 1. The set AV is not empty. It is defined by (6), where M runs over a semi-infinite
interval

M ∈
[
MV ,∞

)
, where MV =

〈1,m〉C
||1||2C

. (8)

Statement 2. The set AV aR is not empty if and only if

β > Φ

(√
D/||1||2C

)
, where D = ||m||2C ||1||2C − 〈1,m〉2C > 0. (9)

If (9) is met, AV aR is defined by (6), with M running over a semi-infinite interval

M ∈ [MV aR,∞), MV aR =
〈1,m〉C
||1||2C

+

√√√√ D

||1||2C

(
(xNβ )2

||1||2C(xNβ )2 −D − 1

||1||2C

)
. (10)

The fact that the mean-SP, mean-variance, and mean-VaR efficient portfolios are defined by the
same formula (6) (with, however, the different ranges of M) has the following explanation: If a
portfolio a∗ is efficient in the sense of any of the three settings above, then a∗ necessarily solves the
problem ⎧⎪⎨⎪⎩

minσ2(a),
μ(a) =M,
a ∈ A = {a ∈ Rn :

∑n
i=1 ai = 1},

(11)

where M = μ(a∗). The necessity evidently follows from the definitions of V aR[β,Xa] =
xNβ σ(a) − μ(a) and V [Xa] = σ2(a). In the case of SP [α,Xa] = Φ((α − μ(a))/σ(a)), we have

M = μ(a) �MSP > α since

〈1,m〉C
||1||2C

<
||m||2C − α〈1,m〉C
〈1,m〉C − α||1||2C

. (12)

Indeed, the denominator 〈1,m〉C −α||1||2C > 0 by virtue of (5). By Cauchy-Schwartz-Bunyakovskii
inequality, we have ||m||2C ||1||2C − α〈1,m〉C ||1||2C > 〈1,m〉2C − α〈1,m〉C ||1||2C . Therefore, the
mean-SP efficient portfolio must solve (11). Problem (11) is studied, e.g. in [14], the optimal
portfolios a∗ = a(M) are given in (6).

Proposition 2. The set ASP of mean-SP efficient portfolios is a proper subset of the set of mean-
variance efficient portfolios, i.e. ASP ⊂ AV .

Proof. Comparing the expressions for the left boundaries in (7) and (8), we have

||m||2C − α〈1,m〉C
〈1,m〉C − α||1||2C

>
〈1,m〉C
||1||2C

(see (12)). Thus, MSP > MV and, hence, ASP ⊂ AV . �
Remark 3. As is known [14], AV aR ⊂ AV . The relation between the sets ASP and AV aR is not

straightforward since the fulfillment of inequality for the left boundaries in (7) and (10),

MSP > (<) MV aR,
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depends on the values of α and β. However, if β is not close to 1 then ASP may be substantially
narrower then AV aR in the sense that MSP > MV aR (see (7), (10) and numerical examples in
Section 3). Also, MSP is essentially large then MV if α is “not small” since, as is easy to verify,
MSP is an increasing function of α.

Remark 4. Consider the limiting cases: β → 1 and α → −∞. From [14, p. 1169, Cor. 4] it
follows that the set of mean-VaR efficient portfolios converges to the set of mean-variance efficient
portfolios when β → 1, i.e. the left boundary MV aR in (10) converges to the left boundary in (8),
MV = 〈1,m〉C/||1||2C . Thus, ASP ⊂ AV aR for a sufficiently large confidence level β < 1. Note also
that

MSP =
||m||2C − α〈1,m〉C
〈1,m〉C − α||1||2C

→MV =
〈1,m〉C
||1||2C

as α→ −∞.

So, in this limiting case, the efficient sets ASP and AV coincide.

Define a mean-SP efficient frontier as a set {(μ(a), SP [α,Xa]), a ∈ ASP} ⊂ R2 on (mean,SP)
space.1

The next proposition shows that the function SP (M) = Φ((α −M)/σ(a(M))), which corre-
sponds to the mean-SP efficient frontier on the interval (7), has a more complicate form than the
convex functions (see [14, 15]) V (M) = σ2(a(M)) and V aR(M) = xNβ σ(a(M)) − M of mean-
variance and mean-VaR cases (see Figs. 1–3 below).

Proposition 3. Let (5) be met. Then, function SP (M) is strongly quasi-convex on (−∞,∞).

Proof. Noting that σ2(a(M)) = (M2||1||2C − 2M〈1,m〉C + ||m||2C)/!2, calculate the derivative

d

dM
Φ((α−M)/σ(a(M))) =

φ((α −M)/σ(a(M))

!2σ3(a(M))
[−!2σ2(a(M))

−(α−M)(M ||1||2C − 〈1,m〉C)],
where φ(x) is the density of standard normal distribution. The term ψ(M) =M(〈1,m〉C−α||1||2C)−
||m||2C + α〈1,m〉C in the square brackets is an increasing function as 〈1,m〉C − α||1||2C > 0 due
to (5). Thus, the derivative of SP (M) is represented as γ(M)ψ(M) with γ(M) > 0 and the
increasing function ψ(M) which changes the sign from minus to plus at the pointMSP = (||m||2C −
α〈1,m〉C )/(〈1,m〉C − α||1||2C ). Then, SP (M) decreases up to the point M = MSP and increases
on the interval right to MSP . By above-given Definition 2, SP (M) is strongly quasi-convex. �

3. EXAMPLES

Now, we illustrate Proposition 3 by a numerical example. Let the number of asserts be n = 2,
the vector of mean rates of returns be m = (1.1, 1.2), and the covariance matrix of the rates of
returns be

C =

(
0.4 0.2
0.2 0.5

)
.

Let the confidence level β = 0.9 and the value of upper bound for the total return α = 0.8.

The efficient sets ASP , AV , and AV aR are not empty since (see (5), (9)) α = 0.8 < 〈1,m〉C/||1||2C =

1.1400 and β = 0.9 > Φ
(√

D/||1||2C
)
= 0.5562. The left boundaries of the intervals in (7), (8),

and (10) are, correspondingly, MSP = 1.1978,MV = 1.1400, and MV aR = 1.1429. One can see
that function SP (M) (see Fig. 1) is strongly quasi-convex but non-convex in distinction to convex
functions V (M) and V aR(M) depicted on Figs. 2–3. Moreover, ASP ⊂ AV aR ⊂ AV as follows
from relations among MSP ,MV , and MV aR. Note also that the value MSP = 1.1978 differs from
MV = 1.1400 and MV aR = 1.1429 approximately by significant %5.

1 In distinction to a widely used notation, here μ (or M = μ) and SP refer, accordingly, to horizontal and vertical
axes. The reason is that this location of coordinate axes allows for a more vivid representation of the frontier curve.
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4. A CASE OF NON-NORMAL TOTAL RETURN

Despite that papers [12, 18] demonstrate that normality assumption is a good approximation
for the total return Xa =

∑n
i=1 aiRi, in order to model a distribution of the total return with

a “heavy” tail different from that in the normal case, we extend our results to the case of so-
called multivariate elliptical distributions [19]. An attractive property of this class of distributions
is that any linear function of elliptically distributed stochastic values has a distribution of the
same kind. Within this framework, consider an arbitrary elliptical distribution F (x) = P (X � x)
(normal distribution, or Laplace, or Bessel, or Exponential Power, or Stable Laws [19]) with the
mean μ and variance σ2 <∞. Following [15], define the standard elliptical distribution as F0(x) =
F (x−μ

σ ) – an elliptical distribution with zero mean and unit variance. Now, SP [α,Xa] = F0((α −
μ(a))/σ(a)) and V aR[β,Xa] = zβσ(a)−μ(a), where zβ is the β-order quantile of F0(x). Therefore,
the theory developed in Section 2 is still valid when the rates of return have a multivariate elliptical
distribution, except with zβ instead of the quantile xNβ and the standard elliptical distribution F0(x)
instead of the standard normal distribution Φ(x).

For example, Laplace distribution [19] has two parameters: μ and λ > 0. The mean and variance
are, correspondingly, μ and 2λ2. Denote by yβ the β-order quantile of the Laplace distribution with
parameters μ = 0 and λ = 1. As this distribution has zero mean and variance 2, we get zβ = yβ/

√
2.

5. CONCLUSIONS

The present paper investigates a problem of constructing the set of all efficient portfolios in
the mean-SP setting, where the SP measure of risk is the probability that the total return falls
below a prescribed level. Using the parametrization by the mean of total return, we have found a
constructive characterization of the set of efficient mean-SP portfolios, and show that it is always
a subset of the set of efficient mean-variance portfolios, and it is also a subset of the set of efficient
mean-VaR portfolios when the confidence level is “not very close” to the unit. Finally, we study
a non-normality situation and show that the main results developed in this paper are still valid
when the rates of returns follow a multivariate elliptical distribution. Further extensions of the
paper may include: the study of a market with a risk-free assert under the SP measure of risk, a
comparison of the mean-SP efficient portfolios with that in mean-conditional value-at-risk (mean-
CVaR) setting [20], and the investigation of a model in which a background risk is correlated with
the rates of returns [15].

FUNDING

This work is supported by State program FFSM-2019-0001.

APPENDIX

The proof of Theorem 1. Since Φ(x) is an increasing function, a necessary condition of efficiency
of a fixed portfolio a∗ ∈ ASP is that it must solve the problem⎧⎪⎨⎪⎩

min (α− μ(a))/σ(a),
μ(a) =M,
a ∈ A = {a ∈ Rn :

∑n
i=1 ai = 1},

(A.1)

where M = μ(a∗).
Suppose, at first, that α�M . If α =M then a∗ is not efficient since any portfolio a1: μ(a1) > M

dominates a∗ in the sense that (α − μ(a1))/σ(a1) < (α − μ(a∗))/σ(a∗) = 0 and μ(a1) > μ(a∗).
If α > M then problem (A.1) reduces to maximizing σ(a). It is easy to construct a portfolio
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sequence {am} such that μ(am) = M and σ(am) →∞ as m → ∞. Then, for sufficiently large m,
σ(am) > σ(a∗) and, hence, am dominates a∗. We have shown that a condition α < M is necessary
for efficiency of a∗. Under this condition, problem (A.1) reduces to

minσ2(a), s.t. μ(a) =M,
n∑

i=1

ai = 1. (A.2)

Problem (A.2) is already solved by a standard method of Lagrange multipliers (see, e.g., [14, 17]).
It is shown that (A.2) has a unique optimal point

a∗(= a(M)) =
1

!
[
1||m||2C −m〈1,m〉C +M(m||1||2C − 1〈1,m〉C )

]
C−1. (A.3)

Now, we will investigate the intervals of monotonicity of the function SP [α,Xa(M)] = Φ((α −
M)/σ(a(M)). Taking into account that

σ2(a(M)) = 〈a(M), a(M)C〉 = (M2||1||2C − 2M〈1,m〉C + ||m||2C)/!2,

the derivative

d

dM
Φ((α−M)/σ(a(M))) =

φ((α −M)/σ(a(M))

!2σ3(a(M))
[−!2σ2(a(M))

−(α−M)(M ||1||2C − 〈1,m〉C)],

where φ(x) > 0 denotes the density of standard normal distribution. Consider the function in the
square brackets,

r(M) =M(〈1,m〉C − α||1||2C )− ||m||2C + α〈1,m〉C . (A.4)

1) Let α � α0 = 〈1,m〉C/||1||2C . If α > α0 then, as M > α > 0, r(M) < r(α) = −α2||1||2C −
||m||2C + 2α〈1,m〉C . By Cauchy-Schwartz-Bunyakovskii inequality, we have r(α) < −(α||1||C −
||m||C)2 � 0. If α = α0 then r(M) ≡ −||m||2C + α0〈1,m〉C < 0.

2) Let α < α0. It follows from (A.4) that r(M) > 0 (= 0) if and only if

M > (=)MSP =
||m||2C − α〈1,m〉C
〈1,m〉C − α||1||2C

, (A.5)

i.e., the function SP [α,Xa(M)] increases only on the interval [MSP ,∞). To sum up, (i) the condition
α < 〈1,m〉C/||1||2C is necessary and sufficient for existence of an efficient mean-SP portfolio, (ii) the
set of efficient mean-SP portfolios is defined as ASP = {a(M), M ∈ [MSP ,∞)}, the expressions
for a(M) and MSP are given by (A.3) and (A.5) correspondingly. �
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