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Abstract—The possibility of constructing a multi-position direction finding system for the case
of a priori uncertainty, based on the application of the principles of multiplication of single
marks of the location of the emitting target (multistructure principle) and their subsequent
partition into classes (clustering principle) is considered. The criteria and algorithms for de-
tecting the resulting cluster and for constructing the optimal estimation of target location
stable to anomalous measurement errors are presented, taking into account the time costs of
their computer realization. Practical recommendations and results of comparative analysis of
different algorithms are given.
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1. INTRODUCTION

In [1, 2] the cluster-variant method (CVM) of solving the triangulation problem (which is al-
ternative to the known methods of passive location, for example in [3–20]) is developed, allowing
under some limitation on the number of unreliable azimuthal and angular measurements to form
stable estimates of target location in conditions of significant a priori uncertainty (such as lack
of reliable knowledge about distribution laws of measurement errors, gaps in measurements, pres-
ence of tool and methodical errors, “degradation” of the structure, etc.). Under such conditions,
which often arise in practice, the results of direction finding may allow the presence of unknown
anomalous measurement errors (AMEs). These errors can be of very different nature of origin
(deterministic unknowns or random ones) and related uncertainty in their formalized description.
Often even minimally necessary information for effective application of known adaptive methods of
measurement processing, which guarantee the consistency of formed estimations (see, for example,
[21–23]), is absent. In addition, these methods do not take into account the specifics of construction
and functioning of a multi-position direction finding system, in particular the geometric factor due
to the location in space of direction finders and targets. For a large class of such systems, not only
some averaged estimate of efficiency is important, but also a guaranteed for a specific sample of
measurements (i.e. “here and now”) estimate of the target location. The only factor taken into
account is often the assumption of the maximum possible number of unreliable azimuth and angle
measurements, at which it is still possible to obtain a reliable estimate, taking into account a given
number of direction finders.

In [1, 2], the multistructure principle (which consists of multiplying single triangulation marks
based on all possible measurement sets that provide the correct mark without bearing errors) and
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the clustering principle (which consists of dividing all generated marks into classes based on the
chosen optimality criterion) are used to deal with AMEs. In [1], the principle itself of multistructural
formation of a family of single marks is outlined, but there is no effective rule for combining them
to form the resulting estimate of the target location. This shortcoming is to some extent eliminated
in [2], where an algorithm for selecting the resulting cluster is proposed, which allows detecting
unreliable measurements, as well as forming a resultant estimate of target motion parameters that
is stable to AMEs. We are talking about the construction of a multi-position direction finding
system, which is an alternative to classical systems created within the framework of traditional
statistical methods (maximum a posteriori probability density, maximum likelihood, least squares,
and minimum of various misalignments [3–13]), which have proved themselves well for the case of
correct measurements (in the absence of AMEs).

However, [2] introduces a serious restriction: the number of partitioning clusters of unit marks
must be specified a priori. Furthermore, [2] does not take into account the possibility of choosing
the optimal resulting cluster and the optimal resulting estimate of the target location. The possi-
bilities of CVM decomposition and the issues of operability of resulting estimate formation are not
investigated as well.

This paper further develops CVM [2] in terms of its optimization, including the introduction
of better optimality criteria and assumptions regarding the parameters of the clusters used. We
demonstrate the possibility to choose the most efficient (in terms of accuracy) algorithm for process-
ing bearing in abnormal measurement conditions, taking into account its possible decomposition
(two-step approach) and time consumption for obtaining the resulting estimate of the target loca-
tion by each algorithm of this family.

2. PROBLEM FORMULATION

In order to compactly describe the proposed method, we will mainly consider the case of a single
target, which allows us to omit cumbersome notations and calculations. The generalization of the
method to the case of an unknown number of many targets is considered in Section 6. In the
XY Z Cartesian coordinate system, we consider a multi-target bearing system (hereafter simply
the system), consisting of a set of direction finders (Πm, m = 1,M ), where the position of each Πm

is given by the vector ρm = [ρxm, ρym, ρzm]T. The true position of the target is characterized by the

vector λtr = [xtr, ytr, ztr]
T with the constraint λtr ∈ Λ = Λx × Λy × Λz, the vector λ = [x, y, z]T is

used for an arbitrary (model) point of the XY Z system.

Vectors Yα =
[
α̃m,m = 1,M

]T
and Yβ =

[
β̃m,m = 1,M

]T
of primary measurements of the

azimuth α̃m = αm +Δαm and the spot angle β̃m = βm +Δβm respectively can be assigned to the
system’s bearing, where Δαm and Δβm are measurement errors with an unknown law distribution.

Let us denote by ςα the number of azimuthal measurements that do not contain AMEs, and
by ςβ the angular ones. We suppose that

γα < ςα ≤M, γβ < ςβ ≤M, (1)

where γα and γβ are natural numbers that set the maximum permissible number of unreliable
measurements by azimuth and elevation, respectively, and the choice of γα and γβ (along with the
number M) should take into account the possibility of forming the required number of sets (they
were discussed in the introduction), ensuring the effective application of the previously mentioned
principles of multistructure and clustering.

We assume that the kth and lth sets must not coincide for all k, l ∈ {1, . . . , N}, k �= l where N
corresponds to the minimum required number of γαβ = γα + γβ azimuthal and angular measure-
ments, sufficient to construct the set. We will also assume that the number of measurements that
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do not contain AMEs should be at least Dαβ = Dαs +Dβs, s = 1, S, Dαs,Dβs ∈ {1, . . . ,M}, where
Dαs, Dβs are the components for the sth representation variant of the number Dαβ which provides
the construction of the set (S is the total number of such variants). It is clear that in order to
build a set it is necessary that Dαs ≥ γα and Dβs ≥ γβ . The total amount of possible sets for the
(γα, γβ) pair is equal to

N =

(
M∑

n=γα

Cn
M

)⎛⎝ M∑
n=γβ

Cn
M

⎞⎠ , (2)

respectively, the number of sets formed by the measurements that do not contain AEMs (for the
sth variant) is

N s =

(
Dαs∑
n=γα

Cn
Dαs

)⎛⎝ Dβs∑
n=γβ

Cn
Dβs

⎞⎠ , (3)

and their minimal amount (for all variants)

Nmin = min
s
N s. (4)

In (2) and (3), the corresponding numbers of combinations appear in parentheses under the sum
sign.

According to the results of measurements for all sets of triangulation marks are plotted and
αm[k] = αm +Δαm[k] and βm[k] = βm +Δβm[k] secondary bearings are calculated, and it is assumed
that for the sets containing no measurements with AMEs, the following conditions are fulfilled:∣∣∣Δαm[k]

∣∣∣ = ∣∣∣αm[k] − α̃m

∣∣∣ < εαm,∣∣∣Δβm[k]

∣∣∣ = ∣∣∣βm[k] − β̃m
∣∣∣ < εβm,

m = 1,M, (5)

where εαm > 0 and εβm > 0 are set thresholds.

To perform clustering (selection) of marks, the number of conditions fulfilled is checked (sepa-
rately by azimuth and elevation angle): if for the kth set this number does not satisfy the constraints
in (5) or the mark does not belong to the Λ area, the set in question is discarded.

The remaining secondary sets after selection (their amount is N ≤ N) correspond to the

marks λ[n], where n = 1, N , N ≤ N . The formed set X =
{
λ[1], . . . ,λ[N ]

}
is divided into clus-

ters Kq, q = 1, Q (hierarchical agglomerative algorithm with Euclidean norm is used for clustering
by analogy with [24–28]). According to this algorithm, the marks λ[1], . . . ,λ[N ] are grouped in
succession (in steps): first the closest, and then more and more distant from each other. In the
first step, each mark is treated as a separate cluster.

The clustering algorithm sets the following mapping f : X→ {Kq, q = 1, Q}, Kq =
{
λ ∈ X

∣∣
f(λ) = q

}
, withX=

⋃
Kq (where

⋃
is the cluster association symbol by index q=1, Q) Kk

⋂
Kr =∅,

k, r ∈ {1, . . . , Q}, k �= r and Kq �= ∅ ∀q = 1, Q.

To solve the problem of finding the best cluster and constructing the optimal resulting estimate
corresponding to it (the unified detection-estimation problem), we use the following solver function:

F (λ, q) =
M∑

m=1

⎡⎣(αm(λ)− α̃m

2π

)2
Wαm (q) +

(
βm(λ)− β̃m

2π

)2

Wβm (q)

⎤⎦ , (6)
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where αm(λ) and βm(λ) are model bearing, Wαm (q) and Wβm (q) are dimensionless normalized
weight coefficients.

In (6), the number 2π is used for normalization and to obtain the dimensionless function F (λ, q),
and the partial weights are given as follows:

Wαm (q) = L−1
q

Lq∑
l=1

ϕ

(
|αmql − α̃m|2

ε2αm

)
,

Wβm (q) = L−1
q

Lq∑
l=1

ϕ

⎛⎜⎝
∣∣∣βmql − β̃m

∣∣∣2
ε2βm

⎞⎟⎠ ,
(7)

where Lq is the number of marks in the cluster Kq, αmql and βmql are secondary bearings of the
mark λql of the cluster Kq, l ∈ {1, . . . , Lq}, ϕ (p) = 1− p for p ≤ 1, ϕ (p) = 0 for p > 1. It is obvious
that 0 ≤Wαm (q) ≤ 1 and 0 ≤Wβm (q) ≤ 1.

The formula (7) allows taking into account the number of marks (Lq), the thresholds of accept-
able errors of secondary direction finding (εαm, εβm) and the presence of AEMs (by introducing the
indicator function ϕ (p)). The coefficients Wαm (q) and Wβm (q) show the specific contribution of
bearings α̃m and β̃m to the formation of all Kq cluster marks. They can be called the coefficients of
correspondence of the bearings α̃m and β̃m to the marks of the cluster Kq. The greater the value of
the coefficient, the greater the confidence in the primary bearing to which this coefficient is related.
In classical triangulation estimation such role is played by coefficients inversely proportional to the
square of error variances Δαm and Δβm.

The criterion for optimal detection-evaluation comes down to the following:

λ∗ = argmin
λ

F (λ, q∗) , (8)

q∗ = argmax
q
W (q) = argmax

q

{
M−1

M∑
m=1

[Wαm (q) +Wβm (q)]

}
, (9)

where W (q) is the integral dimensionless normalized weight coefficient, 0 ≤W (q) ≤ 1.

Taking into account the (1)–(9), it is required to: construct an algorithm for solving the trian-
gulation problem in the optimal formulation; consider a quasi-optimal computationally economical
two-step CVM (first by azimuth and then by elevation); based on the analysis of known cluster-
ing algorithms, substantiate an effective algorithm for combining partial triangulation marks into
chained clusters; conduct a numerical comparative analysis of algorithms A1 (for known CVM),
A2 and A3 (respectively for the developed optimal and two-stage quasi-optimal) in accuracy and
efficiency; give a numerical comparative analysis with the maximum likelihood method (for con-
ventional and extended options).

3. OPTIMAL ALGORITHM FOR SOLVING THE TRIANGULATION PROBLEM

To calculate the model bearings, we will use the well-known formulas for the Cartesian and
Cartesian-rectangular coordinates relation:⎧⎪⎨⎪⎩

αm (λ) = arccos
{
(x− ρxm)

[
(x− ρxm)2 + (y − ρym)2

]−1/2
}
,

βm (λ) = arcsin
{
(z − ρzm)

[
(x− ρxm)2 + (y − ρym)2 + (z − zym)2

]−1/2
}
.

(10)
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Minimization of the solver function F (λ, q) on the vector argument λ leads to the equation

[
∂F (λ, q)

∂λ

]T
= 0, (11)

where 0 = [0, 0, 0]T .

After expanding the partial derivatives in (11), we get a system of scalar equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M∑
m=1

[(
αm(λ)− α̃m

2π

)
Wαmq

∂αm(λ)

∂x
+

(
βm(λ)− β̃m

2π

)
Wβmq

∂βm(λ)

∂x

]
= 0,

M∑
m=1

[(
αm(λ)− α̃m

2π

)
Wαmq

∂αm(λ)

∂y
+

(
βm(λ)− β̃m

2π

)
Wβmq

∂βm(λ)

∂y

]
= 0,

M∑
m=1

[(
αm(λ)− α̃m

2π

)
Wαmq

∂αm(λ)

∂z
+

(
βm(λ)− β̃m

2π

)
Wβmq

∂βm(λ)

∂z

]
= 0,

(12)

where the partial derivatives are disclosed considering (10).

The system (12) corresponds to partial estimates λ∗ (q), q = 1, Q. As the resultant of λ∗ ∈
{λ∗ (1) , . . . ,λ∗ (Q)} that partial estimate λ∗ (q∗) (where q∗ ∈ {1, . . . , Q}) is chosen that, according
to (9), meets the criterion

W (q∗) > W (q) , q �= q∗. (13)

The choice of parameter values appearing in conditions (1)–(5) can always ensure the uniqueness
and accuracy of the solution of the triangulation problem, given (10)–(13). Thus, with increasing
values of parameters M , ςα and ςβ, reliable detection of the resulting cluster Kq∗ containing the
largest number of marks formed by valid structures is always ensured. In turn, the choice of
parameters εαm and εβm affects the accuracy of triangulation estimation.

If we restrict ourselves to a single cluster, remove the restrictions in (5), and assign the weight
coefficientsWαm (q) andWβm (q) to the inverse values of the variances of the direction finding errors
(distributed according to the normal law), then the above solution in (10)–(13) will correspond to
the known maximum likelihood triangulation estimate for the case of no AMEs (see, for example,
[5, 10, 11, 13]).

The algorithm for solving the triangulation problem in the cluster optimal formulation is reduced
to the following:

1. Clustering of triangulation marks is performed by constructing clusters Kq, q = 1, Q (recom-
mendations for clustering are given in the fourth section).

2. For each cluster Kq the number of marks (Lq), partial and integral weight coefficients
(Wαm(q), Wβm(q) and W (q)) are calculated.

3. Using criterion (13) solve the detection problem, i.e. find the number q∗ of the resulting
cluster Kq∗ .

4. For the cluster Kq∗ solve the system of equations (12), choosing the Cartesian coordinates
of the center of this cluster as the initial condition. As a result, given (13), we obtain the
resulting (optimal) estimate of the target location λ∗ = λ∗ (q∗) = [x (q∗) , y (q∗) , z (q∗)]T.

Remark . If we use the known approximate approach to construct a maximum-likelihood tri-
angulation estimate (see, for example, [13]), based on approximation of the residuals αm(λ)− α̃m

and βm(λ)− β̃m using approximate data on the range to the target (in this case, the range to
the cluster center), then instead of (12) we can obtain an appropriate linear system of algebraic
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equations. In this case there is no need to select an initial condition, which is typical for nonlinear
system of equations in (12).

In the classical statistical formulation, the triangulation problem is solved on the basis of all
measurements (regardless of whether they are good or bad) subjected to joint optimal process-
ing, taking into account the pre-assigned a priori weights. Algorithm A2 also operates with all
measurements, but with consideration of a posteriori weights (Wαm(q), Wβm(q) and W (q)) which
are generated directly from the direction finding results using a family of sets. Combined result
estimation, which implies simultaneous consideration of the a priori and a posteriori weights, is
also possible.

The implementation of the proposed A2 algorithm (taking into account the preparation of input
data) is associated with the following computational costs Γ = Γ1 + Γ2 + Γ3, where Γ1 is the cost
of constructing a family of marks, Γ2 is the cost of clustering the marks and selecting the resulting
cluster, and Γ3 is the cost of constructing the resulting estimate. When solving the triangulation
problem in a linear (approximate) version, the main costs Γ1 are associated with solving a set
(volume N) of systems of linear equations with a square matrix of size 3× 3. In this case, a parallel
process of obtaining desired solutions is organized, which is most important for real-time processing
of measurements in a multi-position direction finding system. The Γ2 costs are mainly related to the
simplest operations of finding a set (volume N (N − 1) /2) of Euclidean distances between marks
(that have undergone selection) and sorting them into different clusters, Γ3 is related to solving a
set (volume Lq) of systems of linear equations with a square matrix of size 3× 3. Implementation of
the above operations in specialized computing environments is not particularly difficult and allows
us to provide a real-time mode. Comparative results of realization of CVM in a universal computer
environment are shown in Section 7.

4. RECOMMENDATIONS FOR MARK CLUSTERING

In case of the A1 algorithm, detection of invalid measurements and construction of the resulting
estimate are related to the cluster core (this is its densest part plus marks of close neighboring
clusters), which is effective when there are only spherical clusters. When working with clusters
of chain-shaped form, the accuracy of the estimation based on the A1 algorithm significantly de-
teriorates. This is confirmed by a real example, the results of which are shown in Figs. 1 and 2.
Here the options for grouping the marks for a target observed at an angle of 45 degrees from the
horizontal axis of the plane coordinate system are shown. These figures correspond to experimental
results for the flat case and the system consisting of five azimuthal direction finders evenly spaced
on a circle with a radius of 10 km and centered at the origin (Fig. 1 corresponds to a range to the
target of approximately 20 km relative to the circle center, Fig. 2 to 50 km), bearing measurements
were accompanied only by acceptable random errors (without AMEs), the solid lines correspond
to the direction of direction finder-target, the points correspond to the marks that have passed
selection. The scales of Figs. 1 and 2 are different, whereas in Fig. 1 the division value in abscissa
and ordinates axis are the same and are 50 m, in Fig. 2—200 m in abscissa and 50 m in ordinates.

In the well-known CVM, the introduction of kernels was designed to minimize the errors in
triangulation estimation when Q was not chosen well. Let Q be one more than the real number of
clusters (e.g, due to an error of the system operator), then some of them will be artificially split
into two clusters. If the priority cluster corresponding to the true position of the target is subjected
to such a partitioning, it can lead to a significant increase in the estimation error. Figure 3 shows
such a case, where black dots correspond to marks assigned to the first cluster (the target is in this
cluster), gray dots correspond to the second cluster, � and × marks show centers of clusters and
true target mark respectively, ellipse shows some neighborhood of the first cluster center (marks of
first and second clusters, which fall in this neighborhood, make the first cluster core), shaded square
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Fig. 1. Formation of a spherical cluster.

Fig. 2. Formation of a chained cluster.

Fig. 3. Formation of the cluster kernel.

marks center of the first cluster core. Due to the mistake made (splitting the original chain cluster
into two smaller clusters) the following negative consequences are possible: an error in selecting the
priority cluster and, as a consequence, a significant bias in the resulting estimate; the processing
completely ignores the marks of the competing (second) cluster; the number of useful marks from
the original chained cluster, which could participate in the processing, decreases sharply. The
situation can be somewhat improved by introducing kernels (one of them, corresponding to the
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Fig. 4. Location of partial triangulation marks for the flat case.

first cluster, is shown in Fig. 3 in the form of an ellipse). We see that the core of the first cluster
“actively” captures the marks of both the first and the second clusters, which increases the number
of marks involved in processing, and hence reduces the bias of the resulting score. But even in this
case a part of useful marks of the initial chained cluster drops out of the resulting estimation. In
the spatial case, when we work with a much larger number of structures, this problem becomes
most pronounced.

Figure 4 shows the location of marks for the flat case with allowable random errors in the
channels of four azimuthal direction finders (Π1, . . . ,Π4) and the anomalous error (11 degrees) in
the channel of the fifth direction finder (Π5). In Fig. 3, the centers of clusters K1 (left) and K2

(right) are marked with a � (the third cluster K3 is at a considerable distance and is not shown in
the figure). For the flat case and the system of five direction finders we have N = 26 and N = 25
(i.e., twenty-five out of twenty-six markers have passed selection, with twenty markers in K1, four
markers in K2, and one marker in K3).

It should also be noted that, in practice, the construction of the kernel requires a certain neigh-
borhood of the cluster center. The complexity of choosing such a neighborhood is caused by the
fact that as the distance to the target and/or its appearance in triangulation-incorrect directions
grows, the size of clusters also grows. This also forces to modify known CVM and use new approach
to choose number of clusters of triangulation marks partitioning.

For the fixed k marks are divided into Qk = Q0 + k clusters (where Q0 ≥ 2, k ∈ {0, 1, . . . }). The
partitioning of marks into clusters should end at step k = k∗, when

k∗ = argmax
k

S (k) , k ∈ {0, 1, . . .} , (14)

where Sk = S(k) is a solving convex function that depends on the cluster parameters and has a
maximum point. The value k = k∗ corresponds to the optimal number of partitioning clusters
Qk∗ = Q∗.

Analysis of existing cluster theory showed that the most suitable procedure for working with
chained clusters as applied to the A2 algorithm is the automatic non-threshold calculation of the
number (Q) of clusters Kq using the “silhouette” coefficient [28]:

S(k) =
1

N

Qk∑
q=1

Lq∑
l=1

s(q, l), k ∈ {0, 1, . . .} , (15)

where s(q, l) = 1− a(q, l)/b(q, l) when a(q, l) < b(q, l); s(q, l) = 0 when a(q, l) = b(q, l); s(q, l) =
b(q, l)/a(q, l) − 1 when a(q, l) > b(q, l); a(q, l) is the average distance from the lth element (λql) of
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Fig. 5. Dependence of the “silhouette” coefficient on the number of clusters.

the cluster Kq to the other elements of the same cluster; b(q, l) is the average distance from the lth
element (λql) of the cluster Kq to the elements (λr1, . . . ,λrLr) of the “neighboring” cluster Kr.

The following formulas are used for calculations:

a(q, l) =
1

Lq − 1

Lq∑
m=1
m�=l

|λql − λqm| ,

b(q, l) = min
r �=q

1

Lr

Lr∑
m=1

|λql − λrm| .

(16)

Algorithm (14)–(16) splitting the family of triangulation marks into clusters is implemented
autonomously (without operator participation), is simple enough for computer implementation
and does not require large computational costs. The results of application of cluster algorithms
based on the “silhouette” coefficient show their high efficiency and good asymptotic properties in
various domains.

Recall that in algorithm A1 the determination of the number of clusters depends on a threshold
value, in the choice of which there is uncertainty, which requires the participation of an experi-
enced operator in solving the cluster partitioning problem. This is due to the fact that the solver
function used in algorithm A1 is monotonically decreasing (with increasing k ∈ {0, 1, . . .}) and has
no maximum point.

For the example considered in the previous section, the value of the silhouette coefficient for the
parameter Qk ∈ {2, 3, . . . , 10} is shown in Fig. 5. It can be seen that if the initial condition Q0 = 2
is chosen, the maximum is reached when k = k∗ = 1, resulting in Qk∗ = Q∗ = 3. Thus, the optimal
solution would be to divide all marks into three clusters, which agrees with the data presented in
Fig. 4 (i.e., the real number of clusters is equal to the calculated value).

5. TWO-STAGE QUASI-OPTIMAL ALGORITHM

The application of the two-step approach to the implementation of CVM implies an increase in
the speed of estimation. For this purpose, let us consider the main provisions of the A3 algorithm,
which is quasi-optimal with respect to the A2 algorithm.

The first version of the A3 algorithm is based on the fact that it is possible to implement the
algorithm discussed in Section 2, first only on azimuthal measurements and sets (the first step),
which allows to form a family of plane marks and clusters, and then to determine the estimates
x∗ and y∗ of the two true target coordinates (xtr and ytr). The point (x∗, y∗) in three-dimensional
space corresponds to its own target position line. Combining this line and the position cones
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(corresponding to the position angles) of all direction finders for different sets, we form new sets,
spatial marks and clusters, on the basis of which (based on the algorithm discussed in Section 2)
we construct the missing estimate z∗ of the true coordinate ztr (second step).

The second version of realization of the A3 algorithm is based on the fact that at the first
stage (based on the algorithm considered in Section 2 with regard to azimuthal measurements and
sets only), using the coefficients Wαm (q∗), unreliable azimuthal measurements are found which
are excluded from further processing (step 1). Then, the algorithm from Section 2 (step 2) is
implemented on the remaining priority azimuthal and all angular measurements. In this case, the
number of the studied sets increases (as compared to the first version), which provides an increase
in the quality of triangulation estimation in conditions of uncertainty.

Obviously, the two-stage quasi-optimal CVM for the two considered variants does not exhaust
the potential of the optimal CVM under uncertainty, but it is more economical from a computational
point of view. This is due, first of all, to a significant reduction of the investigated sets, partial
triangulation marks, and clusters.

6. GENERALIZING TO THE CASE OF MANY TARGETS

The extension of the developed CVM to this case depends on the purpose, principles of con-
struction and organization of the information-measuring process in a particular system. Two main
versions of CVM realization for multipurpose case can be distinguished.

Version 1 : When the separation of bearings into classes on the basis of belonging to a given target
is separated into a separate stage (the task of bearing identification). Such truncated formulation
of a problem is quite widespread in practice at appropriate decomposition of information-measuring
process. In this case application of CVM is reduced to the previously considered algorithm with re-

spect to each class. For this purpose the measurement vectors Yj =
[
YT

jα, Y
T
jβ

]T
are formed, where

j is the number of target (class), j = 1, J , Yjα =
[
α̃mj ,m = 1,M

]T
and Yjβ =

[
β̃mj ,m = 1,M

]T
.

For the jth class (similar to Section 2), the elements Kjq, Ljq, Wjαm(q), Wjβm(q), Wj(q), q
∗
j and

the resulting estimations λ∗
j = λ∗

j(q
∗
j ) =

[
x(q∗j ), y(q∗j ), z(q∗j )

]T
based on these elements are formed,

which, taking into account the criteria (8) and (9), provide the solution of the single problem of
triangulation estimation of the coordinates of many targets. Version 1 is the most effective from a
computational point of view, allowing to organize J parallel channels of measurement processing,
but it does not exhaust all potential possibilities of joint processing of available direction finding
measurements.

Note 1. If during the solution of the identification problem mixing up of bearings is admitted, a
false bearing can be considered as a bearing containing an AME. Developed CVM allows to struggle
effectively with such errors irrespective of their nature.

Note 2. It is possible to attract for solving this problem various radio technical parameters (for
example, carrier frequency, pulse repetition period, their duration, type of intrapulse modulation,
etc.), which are “loaded” with bearings. Such parameters are stored in appropriate formulas, which
are widely used in radio reconnaissance to solve the problem of identification of targets.

Version 2. In this case the CVM is applied to all the measurement sets Yα =
[
α̃mj ,m = 1,M,

j = 1, J
]
and Yβ =

[
β̃mj ,m = 1,M, j = 1, J

]
at once with formation of the clusters Kq, q = 1, Q.

Initially, it is necessary to determine the numbers q∗j ∈ {1, . . . , Q} of the priority clusters Kq∗j ,

and this is achieved by introducing the criterion W
(
q∗j
)
≥ γ, where γ is the set target recog-

nition threshold, γ > 0. Then for each priority cluster the resulting estimates λ∗
j = λ∗

j

(
q∗j
)
=[

x
(
q∗j
)
, y
(
q∗j
)
, z
(
q∗j
)]T

, j = 1, J are constructed.
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Version 2 is quite computationally expensive, since it leads to a large number of clusters (Q).
The advantage of the version is that the problem of triangulation estimation of coordinates of many
targets fulfills the potential capabilities of CVM in the conditions of uncertainty.

7. COMPARATIVE ANALYSIS

Let us consider a system whose direction finders are on a circle with the coordinates ξm =
[xm, ym, zm]T =

[
104 cos (2πm/M) , 104 sin (2πm/M) , 0

]
, M = 5, m = 1, 4. For the vector λ,

180 marks were registered, also arranged in the circle:

λk = [xk, yk, zk]
T =

[
5× 104 cos (2πk/K) , 5× 104 sin (2πk/K) , 3× 103

]T
, k = 1, 180.

Hereinafter, the coordinates of target and direction finders are given in meters, azimuth, el-
evation angle, and direction finding errors are given in radians. For each fixed k, it was as-
sumed that in reliable measurement channels the fluctuation errors of measurements are dis-
tributed according to the normal law with zero mathematical expectations and correlation matrix

Km = diag
[
σ2
αm,σ

2
βm

]
= diag

[
σ2
α,σ

2
β

]
, where σα = π/360 and σβ = π/360, and, in this case, the

errors were formed using a random number sensor (errors of different direction finders are indepen-
dent). The numbers of unreliable measurements (no more than half of all azimuthal measurements
and no more than half of all angular measurements) containing AME were chosen randomly. The
resulting measurement error (this is the sum of AME and acceptable random error) corresponded
to the interval (3σα,π/6) for the azimuth and (3σβ,π/6) for the location angle. The estimation
procedure was performed for each fixed k followed by averaging over a hundred experiments. In
A1 algorithm Q = 7, and in A2 and A3 algorithms Q0 = 2 was taken as the initial condition. Two
numerical characteristics were used for the compared algorithms A1, A2 and A3: S(Ai) is the inte-
gral characteristic of accuracy (expressed in meters), T (Ai) is the characteristic of computational
efficiency (expressed in seconds). For the kth target position and algorithm Ai (i ∈ {1, 2, 3}) we
have

S (Ai) =
180∑
k=1

Sk (Ai) = (2π/180)
180∑
k=1

Δk (Ai) ,

where Δk (Ai) =
∥∥λ̄∗

k (Ai)− λk

∥∥
2 is the partial residual, λ∗

kp (Ai) and λ̄∗
k (Ai) =

100∑
p=1

λ∗
kp (Ai) /100

are unit (for the pth experiment) and averaged (for 100 experiments) estimates of vector λk re-
spectively.

For a comparative analysis of algorithms Ai (where i ∈ {1, 2, 3}), the relative integral character-
istic

δS (Ai) = 100S (Ai)S
−1 (A1) [%]

and the relative computational efficiency

δT (Ai) = 100T (Ai)T
−1 (A2) [%]

are further used, taking into account that algorithm A1 is less accurate and A2 is more time-
consuming than other algorithms. The results of the simulation are presented in the algorithm
comparison table.

Table

Algorithms (Ai) A1 A2 A3

δS (Ai), % 100 50 67

δT (Ai), % 90 100 15
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Fig. 6. Comparison with algorithms based on the maximum likelihood method.

We see that in the abnormal conditions of the system the modified algorithm A2 with adaptive
selection of the number of clusters (based on the “silhouette” factor), optimal selection of the
resulting cluster (based on the improved criterion) and weighted data processing (using matching
coefficients) is significantly better (in terms of accuracy) than algorithms A1 and A3. In terms
of responsiveness, it is the most time-consuming, but it should be noted that the time cost of
implementing procedures (6)–(8) does not exceed 10%. We also see that the A3 algorithm is
inferior to the A2 algorithm in terms of accuracy, but it requires significantly less time.

We also carried out a comparison of the CVM with the maximum likelihood method (MLM)
and the extended MLM (EMLM—for the case when the AMEs are included in the vector of
estimated parameters). It was assumed that the measurements with AMEs are fixed—this is the
5th azimuth and the 3rd position angle. For the MLM method, the readings of the 5th and 3rd
direction finders were completely excluded from the processing, while for the EMLM method, it
was assumed that the numbers of measurements with anomalous errors are known, and only the
values of the corresponding errors are unknown.

The resulting error of the compared methods (in meters) is presented in Fig. 6. Here we use the
designations: 1—for CVM, 2—for MLM, 3—for EMLM. From the figure, we can see that only the
CVM provides reliable estimation for all directions of target sighting.

8. CONCLUSION

The proposed modified CVM allows, based on the A2 and A3 algorithms, to construct a resultant
estimate of the target location stable to the influence of AMEs under conditions of structural
uncertainty. These algorithms both independently and in combination with traditional approaches
(e.g., the maximum likelihood method) can be effectively used to improve existing and develop
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promising new generation systems. In case of limited computational resources and/or with a large
number of direction finders, the two-step approach (based on the A3 algorithm) can significantly
increase the efficiency of triangulation estimation.

Obviously, that essential interest for the theory and practice of multi-position direction finding
systems of various types are the following directions of CVM improvement: consideration of systems
with single-channel and dual-channel direction finders of various types; modernization of obtained
algorithms for the case of non-synchronous and different-precision measurements; building a filtering
algorithm taking into account the chain character of clusters, which will be most expressed in
consideration of a moving target. Work in these areas is already underway and will be presented
to interested specialists in the near future.
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