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Abstract—We propose a new approach to filtering under arbitrary bounded exogenous distur-
bances based on reducing this problem to an optimization problem. The approach has a low
computational complexity since only Lyapunov equations are solved at each iteration. At the
same time, it possesses advantages essential from an engineering-practical point of view, namely,
the possibilities to limit the filter matrix and to construct optimal filter matrices separately for
each coordinate of the system’s state vector. A gradient method for finding the filter matrix
is presented. According to the examples, the proposed recurrence procedure is rather effective
and yields quite satisfactory results. This paper continues the series of research works devoted
to feedback control design from an optimization perspective.
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1. INTRODUCTION

The classical formulation of the filtering problem (i.e., state estimation for a dynamic system by
measurements) under random disturbances admits an almost exhaustive solution using the Kalman
filter [1]; see the monographs [2] and [3] for details. However, quite often the only knowledge is that
all disturbances are bounded (and arbitrary in other respects); in this case, we can construct guar-
anteeing (rather than probabilistic) estimates of the states. In the early 1970s, ellipsoidal filtering
was developed by Schweppe [4], Kurzhansky [5], and Chernous’ko [6]. Later, the papers [7, 8]
considered filtering with bounded nonrandom disturbances for time-invariant problems. Within
this approach, the error of a desired state estimate must belong to the same ellipsoid for all time
instants, i.e., the estimate must be uniform, and the filter is designed in the class of linear time-
invariant filters. As it turned out, filtering is completely solvable in this class of problems and
estimations: an optimal filter and a corresponding state estimate were constructed. In [7, 8], the
technique of linear matrix inequalities (LMIs) [9] was applied, and the original problem was reduced
to a parametric semidefinite programming problem. We refer to the monograph [10] for systematic
exposure of this technique.

On the other hand, control problems for linear systems can be treated and solved as optimization
problems. Such methods have become very popular, despite that their rigorous justification has
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appeared only recently; see [11–15]. In [16], such an approach was first applied to control problems
with exogenous disturbances; in [17], to the output-feedback control design based on an observer;
in [18], to the design of PID controllers.

This paper continues both lines of research and pursues the following objectives: simplify the
algorithm for computing the guaranteeing filter and compare it numerically with the Kalman filter.
We propose an optimization algorithm for solving the filtering problem under nonrandom bounded
exogenous disturbances. It has a low computational complexity since only Lyapunov equations are
solved at each iteration. At the same time, compared to the LMI approach, it is advantageous from
an engineering-practical point of view due to the possibility to limit the filter matrix. According
to the examples, the proposed recurrence procedure is rather effective and yields quite satisfactory
results.

Note that, in contrast to the Kalman filter, the proposed approach allows constructing optimal
filter matrices separately for each coordinate of the system’s state vector.

This paper is organized as follows. Section 2 contains the problem statement. In Section 3,
we discuss the proposed approach to constructing a guaranteeing filter. Section 4 presents and
substantiates the algorithm for computing the optimal filter matrix. Section 5 is devoted to the
continuous problem statement. In Section 6, we describe and discuss the calculation results for
several examples. Possible generalizations of the results are considered in the Conclusions.

In the sequel, we adopt the following notations: | · | is the Euclidean norm of a vector; ‖ · ‖
is the spectral norm of a matrix; ‖ · ‖F is the Frobenius norm of a matrix; T is the transpose
symbol; tr is the trace of a matrix; 〈·, ·〉 is the Frobenius scalar product of matrices; I is an
identity matrix of appropriate dimensions; λi(A) are the eigenvalues of a matrix A; σi(A) are the
singular values of a matrix A; σ(A) = −max

i
Re (λi(A)) is the degree of stability of a Hurwitz

matrix A; ρ(A) = max
i
|λi(A)| is the spectral radius of a Schur matrix A. All matrix inequalities

are understood in the sense of the definiteness of the corresponding matrices.

2. PROBLEM STATEMENT

We consider a discrete-time system of the form

xk+1 = Axk +B1uk +D1wk,

yk = Cxk +B2uk +D2wk,

zk = C1xk,

(1)

with given matrices A ∈ R
n×n, B1 ∈ R

n×p, B2 ∈ R
�×p, C ∈ R

�×n, C1 ∈ R
r×n, D1 ∈ R

n×m, and
D2 ∈ R

�×m, the state vector xk ∈ R
n, an initial condition x0, the input uk ∈ R

p, the observed
yk ∈ R

� and estimated zk ∈ R
r outputs, and a bounded exogenous disturbance (noise) wk ∈ R

m,
i.e.,

|wk| � 1 for all k = 0, 1, . . . .

The pairs (A,D1) and (A,C) are supposed to be controllable and observable, respectively.

Let the state xk of the system be unmeasurable and information about the system be provided
by its output yk. To estimate the output zk, we use a filter described by a linear difference equation
with respect to the state estimate x̂k:

x̂k+1 = Ax̂k +B1uk + L(yk − Cx̂k −B2uk), x̂0 = 0, (2)

where L ∈ R
n×�. We emphasize that the filter has a preset structure (linear time-invariant) and only

the constant matrix L is to be chosen. This structure is the same as in the well-known Luenberger
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observer [19, 20]. In fact, this filter can be considered a generalization of the Luenberger observer
to problems with disturbances.

It is required to minimize the estimation error

zk − ẑk = C1(xk − x̂k) = C1ek,

where the residual ek = xk − x̂k, due to (1) and (2), satisfies the difference equation

ek+1 = (A− LC)ek + (D1 − LD2)wk, e0 = x0. (3)

An admissible filter matrix L stabilizes system (3), making (A−LC) a Schur matrix. Its existence
follows from the observability of the original system.

We underline that the considerations below deal with the case of bounded nonrandom distur-
bances. For random Gaussian noises, it is natural to apply Kalman filtering, but among other
objectives, this paper draws attention to filtering with bounded noises. In addition, some examples
demonstrate the operation of the Kalman filter with bounded disturbances and, vice versa, the
application of the bounded noise model to random disturbances.

Note also that this paper involves a more general problem statement than [7]: the system
description includes the input uk.

Finally, the constraint on the exogenous disturbance of the form

|wk| � γ for all k = 0, 1, . . .

is taken into account obviously, by the matrix scaling: D1 := γD1 and D2 := γD2.

3. GUARANTEEING FILTER

This paper proposes a guaranteeing approach to solving the filtering problem under bounded
noises. Here, direct formulas can be explicitly derived using gradient descent. The approach is
based on the concept of invariant ellipsoids; for details, see [10, 21].

The assertion below expresses one of the main results of the paper.

Theorem 1. Let L∗, P ∗ be the solution of the optimization problem

min f(L,α), f(L,α) = trC1PC
T
1 + ρ‖L‖2F , (4)

subject to the constraint

1

α
(A− LC)P (A− LC)T − P +

1

1− α(D1 − LD2)(D1 − LD2)
T = 0 (5)

for the matrix variables P = PT ∈R
n×n and L ∈ R

n×� and a scalar parameter 0 < α < 1.

Then the output of system (1) with zero initial condition is estimated by the observer (2) with
the matrix L∗, and the estimation error (zk − ẑk) belongs to the minimal bounding ellipsoid with
the matrix

C1P
∗CT

1 .

Proceeding to the proof of this theorem, we recall the following result from [22].

Lemma 1. Assume that A is a Schur matrix, ρ = max
i
|λi(A)| < 1, the pair (A,D) is controllable,

and the matrix P (α) � 0, ρ2 < α < 1, satisfies the discrete Lyapunov equation

1

α
APAT − P +

1

1− αDD
T = 0. (6)
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Then:

1) An optimal bounding ellipsoid for the output of the system

xk+1 = Axk +Dwk,

zk = Cxk,

with an initial condition x0 and bounded exogenous disturbances |wk| � 1 is found by minimizing
the univariate function f(α) = trCP (α)CT on the interval ρ2 < α < 1.

2) If α∗ is the minimum point and x0 satisfies the condition

xT0 P
−1(α∗)x0 � 1,

then the guaranteeing estimate is given by

|zk|2 � f(α∗), k = 0, 1, . . . .

We consider the value C1ek as the linear output of system (3). When enclosing the residual ek
into the invariant ellipsoid

E =
{
e ∈ R

n : eTP−1e � 1
}
, P � 0,

the value C1ek will be contained in the bounding ellipsoid

Ez =
{
ez ∈ R

r : eTz (C1PC
T
1 )

−1ez � 1
}
. (7)

The size of this ellipsoid has to be minimized. Thus, we estimate the asymptotic filtering accuracy.
(In the case of small deviations, the accuracy is even uniform in k.)

According to Lemma 1, the original problem has been reduced to the matrix optimization
problem (4)–(5). In addition to the component determining the size of the bounding ellipsoid (7) by
the trace criterion, the minimized function f(L,α) includes a filter matrix penalty. (The coefficient
ρ > 0 regulates its importance.) Its presence ensures the coercivity of the minimized function in L.
The form f(L,α) emphasizes that, given L and α, the matrix P is found from the Lyapunov
Equation (5); thus, the independent variables are L and α.

We stress an important feature as follows.

Remark 1. The guaranteeing approach under consideration allows constructing optimal filter
matrices for each coordinate of the system’s state vector separately. (This possibility disappears
for the Kalman filter.) Indeed, let the transposed ith coordinate vector be the matrix C1 in the

problem of Theorem 1. Then we arrive at the filter matrix minimizing the residual (x
(i)
k − x̂(i)k ).

4. CALCULATING THE OPTIMAL FILTER MATRIX

Recall that a guaranteeing approach to filtering under bounded noises was proposed in [7]. It is
based on the technique of linear matrix inequalities and involves solving a parametric semidefinite
programming problem. There is no need to apply this, technically rather complicated, apparatus for
the optimization problem (4)–(5). (Despite that both the minimized function and the constraint
are jointly nonconvex in the variables P , L, and α.) This section introduces a regular iterative
approach to its solution, with the gradient descent method applied for the variable L and Newton’s
minimization method for the variable α. Here is a general scheme of the algorithm.
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Algorithm 1 to minimize f(L,α):

1. Specify the parameters ε > 0, γ > 0, 0 < τ < 1, and the initial admissible approximation L0.
Calculate the value α0 =

(
1 + ρ2(A− L0C)

)
/2.

2. In iteration j, given the values Lj and αj , find the gradient Hj = ∇Lf(Lj, αj). If ‖Hj‖ � ε,
then take Lj as an approximate solution.

3. Make a move of the gradient descent method:

Lj+1 = Lj − γjHj,

choosing the step γj > 0 by fractioning γ until the conditions:

a. Lj+1 makes (A− LC)/
√
αj a Schur matrix.

b. f(Lj+1) � f(Lj)− τγj‖Hj‖2.
4. For the resulting value Lj+1, minimize f(Lj+1, α) in α using Newton’s method:1

αj+1 = αj −
f ′(αj)

f ′′(αj)
.

Having obtained αj+1, get back to item 2.

The values ∇Lf(L,α), f
′(α), and f ′′(α) in Algorithm 1 are given by

∇Lf(L,α) = 2

(
ρL− 1

α
Y (A− LC)PCT − 1

1− αY (D1 − LD2)D
T
2

)
,

f ′(α) = trY

(
1

(1− α)2 (D1 − LD2)(D1 − LD2)
T − 1

α2
(A− LC)P (A− LC)T

)
,

f ′′(α) = 2tr Y

(
1

(1− α)3 (D1 − LD2)(D1 − LD2)
T +

1

α3
(A− LC)(P −X)(A − LC)T

)
,

where the matrices P , Y, and X satisfy the discrete Lyapunov Equations (5),

1

α
(A− LC)TY (A− LC)− Y + CT

1 C1 = 0, (8)

and

1

α
(A− LC)X(A− LC)T −X +

1

(1− α)2 (D1 − LD2)(D1 − LD2)
T

− 1

α2
(A− LC)P (A− LC)T = 0,

respectively.

The rationale of Algorithm 1 with the corresponding formulas is placed in Appendix A.

An important point is choosing a trial step of the gradient descent method. A very promising
choice rests on the following reasoning. For some admissible L, let us find the solution P of the
discrete Lyapunov equation

(A− LC)P (A− LC)T − P = −I.

Considering the increment in L, i.e.,

L→ L− γH, H = ∇Lf(L,α),

1 It actually takes 3–4 iterations to obtain a solution with high accuracy if the starting point is not too close to the
boundaries of the interval

(
ρ2(A− Lj+1C), 1

)
.
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we determine under which γ the matrix P will remain a matrix of the quadratic Lyapunov function
for A− (L− γH)C, i.e.,

(A− (L− γH)C)P (A− (L− γH)C)T − P ≺ 0.

Due to the Schur complement lemma, it reduces to(
P A− (L− γH)C

(A− (L− γH)C)T P−1

)
� 0.

This matrix inequality, written as(
P A− LC

(A− LC)T P−1

)
+ γ

(
0 HC

(HC)T 0

)
� 0,

holds for

γ < λ−1
max

((
0 HC

(HC)T 0

)
,

(
P A− LC

(A− LC)T P−1

))
.

5. THE CONTINUOUS-TIME CASE

We consider a continuous-time system of the form

ẋ = Ax+B1u+D1w, x(0) = x0,

y = Cx+B2u+D2w,

z = C1x,

(9)

with given matrices A ∈ R
n×n, B1 ∈ R

n×p, B2 ∈ R
�×p, C ∈ R

�×n, C1 ∈ R
r×n, D1 ∈ R

n×m, and
D2 ∈ R

�×m, the state vector x(t) ∈ R
n, the input u(t) ∈ R

p, the observed y(t) ∈ R
� and estimated

z(t) ∈ R
r outputs, and a bounded exogenous disturbance (noise) w(t) ∈ R

m, i.e.,

|w(t)| � 1 for all t � 0.

The pairs (A,D1) and (A,C) are supposed to be controllable and observable, respectively.

To estimate the output z, we use a filter described by a linear differential equation with respect
to the state estimate x̂:

˙̂x = Ax̂+B1u+ L(y − Cx̂−B2u), x̂(0) = 0, (10)

where L ∈ R
n×�.

Like in the discrete-time case, it is required to minimize the estimation error

z − ẑ = C1(x− x̂) = C1e,

where the residual e(t) = x(t)− x̂(t), due to (9) and (10), satisfies the differential equation

ė = (A− LC)e+ (D1 − LD2)w, e(0) = x0. (11)

An admissible filter matrix L stabilizes system (11), making (A − LC) a Hurwitz matrix. Its
existence follows from the observability of the original system.

The next result is a continuous-time analog of Lemma 1.
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Lemma 2 [9, 10]. Assume that A is a Hurwitz matrix, σ = −max
i

Re (λi(A)) > 0, the pair (A,D)

is controllable, and the matrix P (α) � 0, 0 < α < 2σ, satisfies the Lyapunov equation(
A+

α

2
I

)
P + P

(
A+

α

2
I

)T
+

1

α
DDT = 0.

Then:

1) An optimal bounding ellipsoid for the output of the system

ẋ = Ax+Dw, x(0) = x0,

z = Cx,

with bounded exogenous disturbances |w(t)| � 1 is found by minimizing the univariate function
f(α) = trCP (α)CT on the interval 0 < α < 2σ.

2) If α∗ is the minimum point and x(0) satisfies the condition

xT(0)P−1(α∗)x(0) � 1,

then the guaranteeing estimate is given by

|z(t)|2 � f(α∗), 0 � t <∞.

Following similar considerations as in the discrete-time case, we use Lemma 2 to establish the
following result.

Theorem 2. Let L∗, P ∗ be the solution of the optimization problem

min f(L,α), f(L,α) = trC1PC
T
1 + ρ‖L‖2F ,

subject to the constraint(
A−LC +

α

2
I

)
P +P

(
A−LC +

α

2
I

)T
+

1

α
(D1−LD2)(D1−LD2)

T = 0 (12)

for the matrix variables P = PT ∈R
n×n and L ∈ R

n×� and a scalar parameter α > 0.

Then the output of system (9) with zero initial condition is estimated by the observer (10) with
the matrix L∗, and the estimation error (z − ẑ) belongs to the minimal bounding ellipsoid with the
matrix

C1P
∗CT

1 .

The properties of the minimized function and its derivatives (see Appendix B) allow developing
a minimization method and justify its convergence.

Algorithm 2 to minimize f(L,α):

1. Specify the parameters ε > 0, γ > 0, and 0 < τ < 1 and the initial admissible approxima-
tion L0. Calculate the value α0 = σ(A− L0C).

2. In iteration j, given the values Lj and αj , find the gradient Hj = ∇Lf(Lj, αj). If ‖Hj‖ � ε,
then take Lj as an approximate solution.

3. Make a move of the gradient descent method:

Lj+1 = Lj − γjHj,

choosing the step γj > 0 by fractioning γ until the conditions:
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a. Lj+1 makes (A− LC +
αj

2 I) a Hurwitz matrix.

b. f(Lj+1) � f(Lj)− τγj‖Hj‖2.
4. For the resulting value Lj+1, minimize f(Lj+1, α) in α and obtain αj+1. Get back to item 2.

The values ∇Lf(L,α), f
′(α), and f ′′(α) in Algorithm 2 are given by

∇Lf(L,α) = 2

(
ρL− Y PCT − 1

α
Y (D1 − LD2)D

T
2

)
,

f ′(α) = trY

(
P − 1

α2
(D1 − LD2)(D1 − LD2)

T
)
,

f ′′(α) = 2tr Y

(
X +

1

α3
(D1 − LD2)(D1 − LD2)

T
)
,

where the matrices P , Y, and X satisfy the discrete Lyapunov Equations (12),(
A− LC +

α

2
I

)T
Y + Y

(
A− LC +

α

2
I

)
+ CT

1 C1 = 0, (13)

and (
A− LC +

α

2
I

)
X +X

(
A− LC +

α

2
I

)T
+ P − 1

α2
(D1 − LD2)(D1 − LD2)

T = 0, (14)

respectively.

The rationale of Algorithm 2 with the corresponding formulas is placed in Appendix B.

The trial step in the gradient descent method is chosen by the following reasoning. For some
admissible L, let us find the solution P of the Lyapunov equation

(A− LC)P + P (A− LC)T = −I.

Considering the increment in L, i.e.,

L→ L− γH, H = ∇Lf(L,α),

we determine under which γ the matrix P will remain a matrix of the quadratic Lyapunov function
for A− (L− γH)C, i.e.,

(A− (L− γH)C)P + P (A− (L− γH)C)T ≺ 0.

Due to the original equation, we have

γ
(
HCP + P (HC)T

)
≺ I

and, consequently,

γ < λ−1
max

(
HCP + P (HC)T

)
.

6. EXAMPLES AND DISCUSSION

We consider a discrete-time state-space model of a plant described by

xk+1 = Axk +B1uk +Gwk,

yk = Cxk +B2uk + vk,
(15)
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with the state vector xk ∈ R
n, an initial condition x0, the input uk ∈ R

p, the observed output
yk ∈ R

�, a noise wk ∈ R
m, and a measurement error vk ∈ R

�. Here, A, B1, B2, C, and G are given
matrices of compatible dimensions, and the values wk and vk are supposed to be independent.

For system (15), the Kalman filter has the following form. (In this case, the values wk and vk are
supposed to be random with the Gaussian distribution with zero mean and covariance matrices Q
and R, respectively.)

The extrapolation stage:

x̂k+1|k = Ax̂k|k +B1uk,

Pk+1|k = APk|kAT +GQGT.

The correction stage:

Kk = Pk|k−1C
T(CPk|k−1C

T +R)−1,

x̂k|k = x̂k|k−1 +Kk(yk −Cx̂k|k−1 −B2uk),

Pk|k = (I −KkC)Pk|k−1.

We study three problem statements as follows.

1. The model M1 with random disturbances: the noise wk and the measurement error vk are
Gaussian with zero mean and covariance matrices Q and R, respectively:

wk ∼ N(0, Q), vk ∼ N(0, R).

2. The model M2 with bounded random disturbances: the noise wk and the measurement
error vk are uniformly distributed on the cubes [−w,w]m and [−v, v]�, respectively:

wk ∼ U([−w,w]m), vk ∼ U([−v, v]�).

3. The model M3 with bounded nonrandom disturbances: the noise wk and the measurement
error vk take arbitrary values on the cubes [−w,w]m and [−v, v]�, respectively:

|wk|∞ � w, |vk|∞ � v.

Within these models, let us compare the operation of the Kalman filter and the guaranteeing
approach for several examples. (Even though the guaranteeing estimates are not valid for the
model M1 whereas the Kalman filter for the model M3.)

The figures below demonstrate the true trajectory of the system, its observation (if any), and
the estimates provided by the Kalman filter (QF) and the guaranteeing filter (GF). In the latter
case, we also present a guaranteeing tube containing the estimate under all admissible disturbances.

Example 1. Consider a truck on straight, frictionless rails [23]. Initially, the truck is stationary
at zero position and is affected by exogenous disturbances. The position of the truck is measured
every Δt seconds, and the measurements are imprecise. The problem is to track the position s and
velocity ṡ = v of the truck.

The corresponding system can be represented in the form (15) with

xk =

(
s
ṡ

)
, x0 = 0,

A =

(
1 Δt
0 1

)
, B1 = B2 = 0, C =

(
1 0
)
, G =

(
(Δt)2/2

Δt

)
.
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Fig. 1. The dynamics of coordinates and their estimates in Example 1 (model M1).

1. Within the model M1, the truck moves at time instant k with a constant acceleration
distributed by the Gaussian law with zero mean and a standard deviation σx and the measurement
error has the Gaussian distribution with zero mean and a standard deviation σy:

wk ∼ N(0, σx), vk ∼ N(0, σy).

We construct a Kalman filter and use the guaranteeing approach by combining the distur-
bances wk and vk into the common disturbance vector

w̃k =

(
wk

vk

)
. (16)

In this case, the matrices D1 and D2 in system (1) take the form

D1 = 3σx
√
2
(
G 0

)
, D2 = 3σy

√
2
(
0 1
)
.

Hence, the values wk and vk can be independently varied within the ranges

|wk| � 3σx, |vk| � 3σy.

Numerical calculations based on the guaranteeing approach yielded the optimal filter matrices

L∗
1 =

(
0.2359
0.1412

)

(for the coordinate x(1) = s) and

L∗
2 =

(
0.1122
0.0386

)

(for the coordinate x(2) = ṡ).

The comparison results with the Kalman filter for

Δt = 0.1, σx = 0.1, σy = 0.5

are shown in Figs. 1a and 1b.
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Fig. 2. The dynamics of coordinates and their estimates in Example 1 (model M2).

2. Within the model M2, the truck moves at time instant k with a constant acceleration
uniformly distributed on an interval [−a, a] and the measurement error has the uniform distribution
on an interval [−v, v]:

wk ∼ U(−a, a), vk ∼ U(−v, v).

We construct the Kalman filter with the parameters σx = a/3 and σy = v/3 and use the guar-
anteeing approach for the disturbance (16) and the matrices

D1 = a
√
2
(
G 0

)
, D2 = v

√
2
(
0 1
)
.

Numerical calculations based on the guaranteeing approach yielded the optimal filter matrices

L∗
1 =

(
0.1393
0.0489

)

(for the coordinate x(1) = s) and

L∗
2 =

(
0.0574
0.0101

)

(for the coordinate x(2) = ṡ).

The comparison results with the Kalman filter for

Δt = 0.1, a = 0.1, v = 2

are shown in Figs. 2a and 2b.

3. Within the model M3, the acceleration wk and the measurement error vk take arbitrary
values on the intervals [−a, a] and [−v, v], respectively:

|wk| � a, |vk| � v.

We construct the Kalman filter with the parameters σx = a and σy = v and use the guaranteeing
approach for the disturbance (16) and the matrices

D1 = a
√
2
(
G 0

)
, D2 = v

√
2
(
0 1
)
.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 4 2023



A COMPARISON OF GUARANTEEING AND KALMAN FILTERS 445

0 5 10 15 20 25 30
�10

0

10

20

30

40

50

60

0 5 10 15 20 25 30
�2

�1

0

1

2

3

4
(a) (b)

t, s t, s

x k(2
)

x k(1
)

Trajectory
Observation
GF: estimate

GF: boundaries
QF: estimate

Trajectory
GF: estimate
QF: estimate
GF: boundaries

Fig. 3. The dynamics of coordinates and their estimates in Example 1 (model M3).

Numerical calculations based on the guaranteeing approach yielded the optimal filter matrices

L∗
1 =

(
0.1397
0.0492

)

(for the coordinate x(1) = s) and

L∗
2 =

(
0.0574
0.0101

)

(for the coordinate x(2) = ṡ).

The comparison results with the Kalman filter for

Δt = 0.1, a = 0.1, v = 2

are shown in Figs. 3a and 3b.

Example 2. This example [24] consists in estimating the projectile motion along a ballistic trajec-
tory under exogenous disturbances and observable (noisy) coordinates. The corresponding system
has the form (15), where

x =

⎛⎜⎜⎜⎝
sx
sy
vx
vy

⎞⎟⎟⎟⎠
is the state vector of the system (the projections of the coordinate and velocity of the projectile on
the horizontal and vertical axes) and

A =

⎛⎜⎜⎜⎝
1 0 Δt 0
0 1 0 Δt
0 0 1− b 0
0 0 0 1− b

⎞⎟⎟⎟⎠ , u =

⎛⎜⎜⎜⎝
0
0
0

−gΔt

⎞⎟⎟⎟⎠ ,

B1 = G = I, B2 = 0, C =

(
1 0 0 0
0 1 0 0

)
.
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Fig. 4. The dynamics of coordinates and their estimates in Example 2 (model M1).

Here, Δt is the interval between measurements, 0 < b� 1 is the air resistance coefficient, and g is
the gravitational constant. The disturbance wk and measurement noise vk are Gaussian with zero
mean and covariance matrices Qk � 0 and Rk � 0, respectively. The parameters have the values

Δt = 0.1, b = 10−4, g = 9.8, Q = 0.1I, R = 500I.

1. Within the “standard” model M1,

wk ∼ N(0, σxI), σ2x = 0.1,

vk ∼ N(0, σyI), σ2y = 500.

As in the previous example, to use the guaranteeing approach, we combine the disturbances wk

and vk into the common disturbance vector. The matrices D1 and D2 in system (1) take the form

D1 = 3σx
√
2
(
G 0

)
, D2 = 3σy

√
2
(
0 I
)
.

Hence, the values wk and vk can be independently varied within the ranges

|wk| � 3σx, |vk| � 3σy.

Numerical calculations based on the guaranteeing approach yielded the following optimal filter
matrices for each of the four coordinates:

L∗
1 =

⎛⎜⎜⎜⎝
0.5946 0

0 0.6822
0.8467 0

0 1.0590

⎞⎟⎟⎟⎠ , L∗
2 =

⎛⎜⎜⎜⎝
0.7277 0

0 0.6340
1.2376 0

0 0.9879

⎞⎟⎟⎟⎠ ,

L∗
3 =

⎛⎜⎜⎜⎝
0.0971 0

0 0.1389
0.0284 0

0 0.0456

⎞⎟⎟⎟⎠ , L∗
4 =

⎛⎜⎜⎜⎝
0.1393 0

0 0.0975
0.0459 0

0 0.0285

⎞⎟⎟⎟⎠ .
(Hereinafter, the entries of the filter matrices not exceeding 10−6 in absolute value are zeroed out.)

The comparison results for the coordinates sy and vy are is shown in Figs. 4a and 4b.
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Fig. 5. The dynamics of coordinates and their estimates in Example 2 (model M2).
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Fig. 6. The dynamics of coordinates and their estimates in Example 2 (model M3).

Note that the actual starting point

x0 =

⎛⎜⎜⎜⎝
0
0

300
600

⎞⎟⎟⎟⎠
is outside the minimal invariant ellipsoid for the residual, which explains the behavior of the esti-
mation trajectories in the initial section. However, due to the attraction property of the invariant
ellipsoid, after a few steps, the guaranteeing estimates cover the true trajectory.

2. Within the model M2,

wk ∼ U(−w,w), vk ∼ U(−v, v),

where w = 3σx and v = 3σy.

In this case,

D1 = w
√
2
(
G 0

)
, D2 = v

√
2
(
0 I
)
,
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and numerical calculations based on the guaranteeing approach yielded the same filter matrices as
in the modelM2. The comparison results with the Kalman filter for the coordinates sy and vy are
shown in Figs. 5a and 5b.

3. Within the model M3,

|wk| � σx, |vk| � σy.

Numerical calculations based on the guaranteeing approach with

D1 = σx
√
2
(
G 0

)
, D2 = σy

√
2
(
0 I
)

yielded the optimal filter matrices

L∗
1 =

⎛⎜⎜⎜⎝
0.6362 0

0 0.7256
0.9779 0

0 1.2126

⎞⎟⎟⎟⎠ , L∗
2 =

⎛⎜⎜⎜⎝
0.6697 0

0 0.5747
1.0517 0

0 0.8206

⎞⎟⎟⎟⎠ ,

L∗
3 =

⎛⎜⎜⎜⎝
0.0971 0

0 0.1389
0.0284 0

0 0.0456

⎞⎟⎟⎟⎠ , L∗
4 =

⎛⎜⎜⎜⎝
0.1393 0

0 0.0975
0.0459 0

0 0.0285

⎞⎟⎟⎟⎠ .
The comparison results with the Kalman filter for the coordinates sy and vy are shown in Figs. 6a
and 6b.

According to the examples, the Kalman and guaranteeing filters, on the one hand, do not
differ too much in their results; on the other hand, they are quite operable in all three models.
As expected, for Gaussian disturbances, the Kalman filter gives slightly (but not dramatically)
better estimates than the guaranteeing filter; for bounded nonrandom disturbances, the latter filter
has the advantage over the former.

Note also that the guaranteeing tube containing the corresponding estimate is strongly over-
valued; see the figures. This is typical behavior for guaranteed estimation methods, intended to
counteract the “worst-case” realization of uncertainty.

Finally, the guaranteeing filter allows obtaining a uniform estimate of the filtering accuracy. In
this context, we pay attention to the behavior of the guaranteeing and Kalman estimates on the
initial segment of the trajectory. (The latter estimate also has a pronounced peak.)

7. CONCLUSIONS

This paper has proposed a new approach to guaranteeing filtering based on reducing this problem
to a matrix optimization problem with the filter matrix as the variable. The resulting problem has
been solved by the gradient descent method. Its convergence has been theoretically proved for a
series of important special cases.

The examples presented above show the operability and effectiveness of the proposed algorithm.
Also, it has been compared with the Kalman filter on three different problem statements.

This paper has considered time-invariant filter design; of obvious interest is to generalize this
approach to dynamic filtering in the spirit of [25, 26] using the tools [27, 28].
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APPENDIX A

Lemma A.1. Let X and Y be the solutions of the dual discrete Lyapunov equations with a Schur
matrix A:

ATXA−X +W = 0 and AY AT − Y + V = 0.

Then tr (XV ) = tr (Y W ).

Proof of Lemma A.1. Indeed, direct calculations give

tr (XV ) = tr
(
X(Y −AY AT)

)
= tr (XY )− tr (XAY AT)

= tr (Y X)− tr (Y ATXA) = tr
(
Y (X −ATXA)

)
= tr (Y W ).

The proof of Lemma A.1 is complete.

Lemma A.2. The solution P of the discrete Lyapunov equation

APAT − P +Q = 0

with a Schur matrix A and Q � 0 satisfies the lower bounds

λmax(P ) �
λmin(Q)

1− ρ2 , λmin(P ) �
λmin(Q)

1− σ2min(A)
, (A.1)

where ρ = max
i
|λi(A)| and σmin(A) is the smallest singular value of the matrix A.

If Q = DDT and the pair (A,D) is controllable, then

λmax(P ) �
‖u∗D‖2
1− ρ2 > 0, (A.2)

where

u∗A = λu∗, |λ| = ρ, ‖u‖ = 1,

i.e., u is the left eigenvector of the matrix A corresponding to the eigenvalue λ of the matrix A
with the greatest magnitude. The vector u and the value λ can be complex; here, u∗ denotes the
conjugate transpose of u.

Proof of Lemma A.2. The lower bounds (A.1) are well known; for example, see [29]. Let us
prove (A.2). The explicit solution of the discrete Lyapunov equation with a Schur matrix A has
the form

P =
∞∑
k=0

AkDDT(AT)k.

Multiplying this equality by u on the right and by u∗ on the left, due to u∗Ak = λku∗ and (AT)ku =
(λ∗)ku, we obtain

λmax(P ) � u∗Pu =
∞∑
k=0

u∗AkDDT(AT)
k
u =

∞∑
k=0

(λλ∗)ku∗DDTu =
‖u∗D‖2
1− ρ2 ,

where ‖u∗D‖ > 0 by the controllability of the pair (A,D); for example, see [10, Theorem D.1.5].
The proof of Lemma A.2 is complete.
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Now, we optimize the function f(α) and consider the problem

min f(α), f(α) = trCPCT

subject to the constraint

1

α
APAT − P +

1

1− αDD
T = 0

for the matrix variables P = PT ∈ R
n×n and a scalar parameter 0 < α < 1.

Here we impose more stringent requirements for the problem statement: the matrix C of the
system output is supposed to be square and nonsingular. This assumption could be relaxed, but
the current goal is to establish the simplest and most obvious results.

Lemma A.3. Assume that A is a Schur matrix, ρ is the spectral radius of A, ρ2 < α < 1, the
pair (A,D) is controllable, and the matrix C is such that CTC � 0. Then the function f(α) =
trCP (α)CT possesses the following properties:

a) The function f(α) is well-defined, positive, and strongly convex on the interval ρ2 < α < 1
and its values tend to infinity at the interval endpoints. Moreover, there exists a constant c > 0
such that

f(α) � α

(1− α)(α − ρ2)c, ρ2 < α < 1; (A.3)

b) The function f(α) has the derivative

f ′(α) = trY

(
1

(1− α)2DD
T − 1

α2
APAT

)
,

where P and Y are the solutions of the discrete Lyapunov equations

1

α
APAT − P +

1

1− αDD
T = 0 (A.4)

and

1

α
ATY A− Y + CTC = 0, (A.5)

respectively.

c) The second derivative of the function f(α) is given by

f ′′(α) = 2tr Y

(
1

(1− α)3DD
T +

1

α3
A(P −X)AT

)
,

where P , Y , and X satisfy the discrete Lyapunov Equations (A.4), (A.5), and

1

α
AXAT −X +

1

(1− α)2DD
T − 1

α2
APAT = 0,

respectively. Moreover, f ′′(α∗) > 0 and f ′′(α) is monotonically increasing on the left and right of α∗.

Proof of Lemma A.3. a. Equation (6) can be written as(
1√
α
A

)
P

(
1√
α
A

)T
− P = − 1

1− αDD
T;
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according to [10, Lemma 1.2.6], there exists a unique solution if and only if 1√
α
A is a Schur matrix:

|λi( 1√
α
A)| < 1, i.e., under the condition ρ2 < α < 1.

We estimate the value f(α) = trCP (α)CT using Lemma A.2 with obvious changes:

f(α) = trCP (α)CT � λmin(C
TC)λmax (P (α))

� ‖u∗D‖2λmin(C
TC)

(1− α) (1− ρ2(A/
√
α))

=
α

(1− α)(α − ρ2)‖u
∗D‖2λmin(C

TC).

Here, u has the same meaning as in Lemma A.2 and the value ‖u∗D‖2 is positive by the control-
lability of the pair (A/

√
α,D). (It follows from the controllability of (A,D).)

Now we show that the function f(α) = trCP (α)CT is strictly convex on the interval (ρ2, 1).
According to [10, Lemma 1.2.6], the solution of Eq. (A.4) can be explicitly represented as

P (α) =
∞∑
k=0

(
1√
α
A

)k 1

1− αDD
T
(

1√
α
AT
)k

=
∞∑
k=0

1

(1− α)αk︸ ︷︷ ︸
g(α,k)

AkDDT(AT)k︸ ︷︷ ︸
Hk

.

But Hk � 0 and g(α, k) > 0 for 0 < α < 1; therefore, on the interval (ρ2, 1) we have

P (α) =
∞∑
k=0

g(α, k)Hk � 0

and

f(α) = trP (α)CTC > 0.

Direct calculations give

g′(α, k) =
(

1

1− α −
k

α

)
g(α, k),

g′′(α, k) =
((

1

1− α −
k

α

)2
+

1

(1− α)2 +
k

α2

)
g(α, k) � 1

(1− α)2 g(α, k).

(Here, differentiation is performed with respect to α.) As a result,

f ′′(α) =
∞∑
k=0

g′′(α, k)trCHkC
T � 1

(1− α)2 f(α) �
1

(1− ρ2)2 f(α
∗) > 0.

Thus, the second derivative of the function f(α) is positive and tends to infinity at the endpoints
of the interval (ρ2, 1).

Next, with direct calculations of the fourth derivative, we obtain

g(IV )(α, k) =
∞∑
k=0

k(k + 1)(k + 2)(k + 3)

αk+4
+

24

(1− α)4 � 24

(1− α)4 ,

so

f (IV )(α) =
∞∑
k=0

g(IV )(α, k)trCHkC
T

� 24

(1− α)4
∞∑
k=0

trCHkC
T >

24

(1− ρ2)4
∞∑
k=0

trCHkC
T > 0,

i.e., the second derivative f ′′(α) is convex and grows at the interval endpoints.
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b. Let us derive the formula for the derivative of f(α). In Eq. (A.4), the solution P is a function
of α. We differentiate this equation, interpreting P ′ as the derivative with respect to α:

1

α
AP ′AT − P ′ +

1

(1− α)2DD
T − 1

α2
APAT = 0. (A.6)

Applying Lemma A.1 to the dual Eqs. (A.6) and (A.5) finally yields

f ′(α) = trCP ′CT = trP ′CTC = trY

(
1

(1− α)2DD
T − 1

α2
APAT

)
.

c. The desired expression for the second derivative of f(α) can be established by analogy.
Differentiating Eq. (A.6) with respect to α, we have

1

α
AP ′′AT − P ′′ +

2

(1− α)3DD
T +

2

α3
APAT − 2

α3
AP ′AT = 0.

Applying Lemma A.1 to this equation and Eq. (A.5) with X = P ′, we arrive at

f ′′(α) = trCP ′′CT = trP ′′CTC = 2trY

(
1

(1− α)3DD
T +

1

α3
A(P −X)AT

)
.

The proof of Lemma A.3 is complete.

Note that the function f(α) and its two derivatives are calculated by solving three discrete
Lyapunov equations.

Due to the above properties, this function can be minimized using Newton’s method. We specify
an initial approximation ρ2(A) < α0 < 1, e.g., α0 =

(
1 + ρ2(A)

)
/2, and apply the iterative process

αj+1 = αj −
f ′(αj)

f ′′(αj)
. (A.7)

The next theorem ensures the global convergence of the algorithm; it can be proved by analogy
with a similar result in [16].

Theorem A.1 [16]. In the method (A.7), we have the upper bounds

|αj − α∗| � f ′′(α0)

2jf ′′(α∗)
|α0 − α∗|, |αj+1 − α∗| � c|αj − α∗|2,

where c > 0 is some constant (possibly, in explicit form).

The first bound ensures the global convergence of the method (faster than a geometric progres-
sion with a coefficient of 1/2); the second bound, the quadratic convergence in the neighborhood of
the solution. In practice, it takes 3–4 iterations to obtain a solution with a high accuracy (unless
the starting point is too close to the interval endpoints).

Returning to the optimization problem (4)–(5), we minimize the function

f(L) = min
α
f(L,α)

after a preliminary study of its properties.

Lemma A.4. The function f(L) is well-defined and positive on the set S of admissible filter
matrices.
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Indeed, if (A− LC) is a Schur matrix, then ρ(A− LC) < 1 and for ρ2(A− LC) < α < 1, there
exists a solution P � 0 of the discrete Lyapunov Equation (5). Thus, a strictly positive func-
tion f(L,α) is well-defined and f(L) > 0 due to (A.3). As in the continuous-time case, its domain S
may be nonconvex and disconnected and its boundaries nonsmooth.

Lemma A.5. On the set S the function f(L) is coercive (i.e., it tends to infinity on the boundary
of the domain). Moreover, the following lower bounds are valid:

f(L) � 1

1− ρ2(A− LC)

λmin(C1C
T
1 )

1− σ2min(A− LC)
‖D1 − LD2‖2F , (A.8)

f(L) � ρ‖L‖2.

Proof of Lemma A.5. We consider a sequence {Lj} ⊆ S of admissible matrices such that
Lj → L ∈ ∂S, i.e., ρ(A− LC) = 1. In other words, for any ε > 0 there exists a number N = N(ε)
such that

|ρ(A− LjC)− ρ(A− LC)| = 1− ρ(A− LjC) < ε

for all j � N(ε).

Let Pj be the solution of Eq. (5) associated with the filter matrix Lj:

1

αj
(A− LjC)Pj(A− LjC)T − Pj +

1

1− αj
(D1 − LjD2)(D1 − LjD2)

T = 0;

let Yj be the solution of its dual discrete Lyapunov equation

1

αj
(A− LjC)TYj(A− LjC)− Yj + C1C

T
1 = 0.

In view of Lemma A.2, we have

f(Lj) = tr (C1PjC
T
1 ) + ρ‖Lj‖2F � tr

(
PjC1C

T
1

)
= tr

(
Yj

1

1− αj
(D1 − LjD2)(D1 − LjD2)

T

)

� 1

1− αj
λmin(Yj)‖D1 − LjD2‖2F � 1

1− αj

λmin(C1C
T
1 )

1− σ2min(A− LjC)
‖D1 − LjD2‖2F

� 1

1− ρ2(A− LjC)

λmin(C1C
T
1 )

1− σ2min(A− LjC)
‖D1 − LjD2‖2F

� 1

ε

λmin(C1C
T
1 )

1− σ2min(A− LjC)
‖D1 − LjD2‖2F −−−→

ε→0
+∞

since ρ2(A− LjC) < αj < 1.

On the other hand,

f(Lj) = tr (C1PjC
T
1 ) + ρ‖Lj‖2F � ρ‖Lj‖2F � ρ‖Lj‖2 −−−−−−−→‖Lj‖→+∞

+∞.

The proof of Lemma A.5 is complete.

We introduce the level set

S0 = {L ∈ S : f(L) � f(L0)}.

Obviously, Lemma A.5 implies the following result.
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Corollary A.1. For any L0 ∈ S, the set S0 is bounded.

On the other hand, the function f(L) achieves minimum on the set S0. (This function is con-
tinuous by the properties of the solution of the discrete Lyapunov equation and is considered on a
compact set.) However, the set S0 has no common points with the boundary of S due to (A.8). The
function f(L) is differentiable on S0; see below. Consequently, we arrive at the following result.

Corollary A.2. There exists a minimum point L∗ on the set S, and the gradient of the func-
tion f(L) vanishes at this point.

Let us analyze the properties of the gradient of the function f(L,α).

Lemma A.6. The function f(L,α) is defined on the set of stabilizing L for ρ2(A− LC) < α < 1.
On this admissible set, the function is differentiable, and its gradient is given by

∇αf(L,α) = trY

(
1

(1− α)2 (D1 − LD2)(D1 − LD2)
T − 1

α2
(A− LC)P (A− LC)T

)
, (A.9)

∇Lf(L,α) = 2

(
ρL− 1

α
Y (A− LC)PCT − 1

1− αY (D1 − LD2)D
T
2

)
, (A.10)

where the matrices P and Y are the solutions of the discrete Lyapunov Equations (5) and (8),
respectively.

The minimum of f(L,α) is achieved at an inner point of the admissible set and is determined
by the conditions

∇Lf(L,α) = 0, ∇αf(L,α) = 0.

In addition, f(L,α) as a function of α is strictly convex on ρ2(A− LC) < α < 1 and achieves
minimum at an inner point of this interval.

Proof of Lemma A.6. We have the constrained optimization problem

min f(L,α), f(L,α) = trC1PC
T
1 + ρ‖L‖2F

subject to the discrete Lyapunov Equation (5) for the matrix P of the invariant ellipsoid.

Following Lemma A.3, differentiation with respect to α is performed using the relations (A.9),
(5), and (8). To differentiate with respect to L, we add an increment ΔL and denote by ΔP the
corresponding increment of P . As a result, the relation (5) takes the form

1

α
(A− (L+ΔL)C) (P +ΔP ) (A− (L+ΔL)C)T − (P +ΔP )

+
1

1− α (D1 − (L+ΔL)D2) (D1 − (L+ΔL)D2)
T = 0.

Leaving the notation ΔP for the principal terms of the increment, we obtain

1

α

(
(A−LC)P (A−LC)T−ΔLCP (A−LC)T− (A−LC)P (ΔLC)T+(A−LC)ΔP (A−LC)T

)
− (P +ΔP )+

1

1−α
(
(D1−LD2)(D1−LD2)

T−ΔLD2(D1−LD2)
T− (D1−LD2)(ΔLD2)

T
)
=0.

Subtracting Eq. (12) from this equation yields

1

α
(A− LC)ΔP (A− LC)T

−ΔP − 1

α

(
ΔLCP (A− LC)T + (A− LC)P (ΔLC)T

)
− 1

1− α
(
ΔLD2(D1 − LD2)

T + (D1 − LD2)(ΔLD2)
T
)
= 0. (A.11)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 4 2023



A COMPARISON OF GUARANTEEING AND KALMAN FILTERS 455

We calculate the increment of the functional f(L) by linearizing the corresponding values:

Δf(L) = trC1ΔPC
T
1 + ρtrLTΔL+ ρtr (ΔL)TL = trΔPCT

1 C1 + 2ρtrLTΔL.

By Lemma B.1, from the dual Eqs. (A.11) and (8) we have

Δf(L) = −2trY
(
1

α
ΔLCP (A− LC)T +

1

1− αΔLD2(D1 − LD2)
T
)
+ 2ρtrLTΔL

= 2tr

(
ρLTΔL− 1

α
CP (A− LC)TY − 1

1− αD2(D1 − LD2)
TY

)
ΔL

=

〈
2

(
ρL− 1

α
Y (A− LC)PCT − 1

1− αY (D1 − LD2)D
T
2

)
,ΔL

〉
.

Thus, the relation (A.10) is derived and the proof of Lemma A.6 is complete.

The gradient of the function f(L) is not Lipschitz on the set S. But it can be shown to possess
this property on the subset S0 (similar to [16]).

These properties of the minimized function and its derivatives justify the minimization method
implemented as Algorithm 1.

APPENDIX B

Lemma B.1 [16]. Let X and Y be the solutions of the dual Lyapunov equations with a Hurwitz
matrix A:

ATX +XA+W = 0 and AY + Y AT + V = 0.

Then tr (XV ) = tr (Y W ).

The properties of the function f(α) established in [16] fully apply to the case under considera-
tion. In particular, the function f(α) is well-defined, positive, and strongly convex on the interval
0 < α < 2σ(A− LC) and its values tend to infinity at the interval endpoints. Moreover, there
exists a constant c > 0 such that

f(α) � c

α(2σ − α) , 0 < α < 2σ(A− LC). (B.1)

The function f(α) can be effectively minimized using Newton’s method. We specify an initial
approximation 0 < α0 < 2σ(A − LC), e.g., α0 = σ(A− LC), and apply the iterative process

αj+1 = αj −
f ′(αj)

f ′′(αj)
,

where, according to [16],

f ′(α) = trY

(
P − 1

α2
(D1 − LD2)(D1 − LD2)

T
)
, (B.2)

f ′′(α) = 2tr Y

(
X +

1

α3
(D1 − LD2)(D1 − LD2)

T
)
,

and P , Y , and X are the solutions of the Lyapunov Equations (12), (13), and (14), respectively.
Theorem A.1 remains valid as well.

The following lemma is a continuous-time analog of Lemma A.4.
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Lemma B.2. The function f(L) is well-defined and positive on the set S of admissible filter
matrices.

Indeed, if (A− LC) is a Hurwitz matrix, then σ(A− LC) > 0 and for 0 < α < 2σ(A− LC),
there exists a solution P � 0 of the Lyapunov Equation (12). Thus, a strictly positive function
f(L,α) is well-defined and f(L) > 0 due to (B.1). Its domain S may be nonconvex and disconnected
and its boundaries nonsmooth; see [16].

Lemma B.3. On the set S of admissible matrices the function f(L) is coercive (i.e., it tends to
infinity on the boundary of the domain). Moreover, the following lower bounds are valid:

f(L) � λmin(C1C
T
1 )‖D1 − LD2‖2F

4σ(A − LC) (‖A− LC‖+ σ(A− LC))
, (B.3)

f(L) � ρ‖L‖2.

Proof of Lemma B.3. We consider a sequence {Lj} ⊆ S of admissible matrices such that
Lj → L ∈ ∂S, i.e., σ(A− LC) = 0. In other words, for any ε > 0 there exists a number N = N(ε)
such that

|σ(A− LjC)− σ(A− LC)| = σ(A− LjC) < ε

for all j � N(ε).

Let Pj be the solution of Eq. (12) associated with the filter matrix Lj :(
A− LjC +

αj

2
I

)
Pj + Pj

(
A− LjC +

αj

2
I

)T
+

1

αj
(D1 − LjD2)(D1 − LjD2)

T = 0;

let Yj be the solution of its dual Lyapunov equation(
A− LjC +

αj

2
I

)T
Yj + Yj

(
A− LjC +

αj

2
I

)
+ C1C

T
1 = 0.

In view of [16, Lemma A.3], we have

f(Lj) = tr (C1PjC
T
1 ) + ρ‖Lj‖2F

� tr (PjC1C
T
1 ) = tr

(
Yj

1

αj
(D1 − LjD2)(D1 − LjD2)

T

)

� 1

αj
λmin(Yj)‖D1 − LjD2‖2F � 1

αj

λmin(C1C
T
1 )

2‖A− LjC +
αj

2 I‖
‖D1 − LjD2‖2F

� 1

4σ(A− LjC)

λmin(C1C
T
1 )

‖A− LjC +
αj

2 I‖
‖D1 − LjD2‖2F

� λmin(C1C
T
1 )

4ε(‖A − LjC‖+ ε)
‖D1 − LjD2‖2F −−−→

ε→0
+∞,

since 0 < αj < 2σ(A− LjC) and

‖A− LjC +
αj

2
I‖ � ‖A− LjC‖+

αj

2
.

On the other hand,

f(Lj) = tr (C1PjC
T
1 ) + ρ‖Lj‖2F � ρ‖Lj‖2F � ρ‖Lj‖2 −−−−−−−→‖Lj‖→+∞

+∞.

The proof of Lemma B.3 is complete.
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We introduce the level set

S0 = {L ∈ S : f(L) � f(L0)}.

Obviously, Lemma B.3 implies the following result.

Corollary B.3. For any L0 ∈ S, the set S0 is bounded.

On the other hand, the function f(L) achieves minimum on the set S0. (This function is continu-
ous by the properties of the solution of the Lyapunov equation and is considered on a compact set.)
However, the set S0 has no common points with the boundary of S due to (B.3). The function f(L)
is differentiable on S0; see below. Consequently, we arrive at the following result.

Corollary B.4. There exists a minimum point L∗ on the set S, and the gradient of the func-
tion f(L) vanishes at this point.

Let us analyze the properties of the gradient of the function f(L,α).

Lemma B.4. The function f(L,α) is defined on the set of stabilizing L for 0 < α < 2σ(A−LC).
On this admissible set, the function is differentiable, and its gradient is given by

∇αf(L,α) = trY

(
P − 1

α2
(D1 − LD2)(D1 − LD2)

T
)
,

∇Lf(L,α) = 2

(
ρL− Y PCT − 1

α
Y (D1 − LD2)D

T
2

)
, (B.4)

where the matrices P and Y are the solutions of the Lyapunov Equations (12) and (13), respectively.

The minimum of f(L,α) is achieved at an inner point of the admissible set and is determined
by the conditions

∇Lf(L,α) = 0, ∇αf(L,α) = 0.

In addition, f(L,α) as a function of α is strictly convex on 0 < α < 2σ(A− LC) and achieves
minimum at an inner point of this interval.

Proof of Lemma B.4. We have the constrained optimization problem

min f(L,α), f(L,α) = trC1PC
T
1 + ρ‖L‖2F

subject to the Lyapunov Equation (12) for the matrix P of the invariant ellipsoid.

Differentiation with respect to α is performed using the relations (B.2), (12), and (13). To
differentiate with respect to L, we add an increment ΔL and denote by ΔP the corresponding
increment of P . As a result, the relation (12) takes the form(

A− (L+ΔL)C +
α

2
I

)
(P +ΔP ) + (P +ΔP )

(
A− (L+ΔL)C +

α

2
I

)T
+
1

α
(D1 − (L+ΔL)D2) (D1 − (L+ΔL)D2)

T = 0.

Leaving the notation ΔP for the principal terms of the increment, we obtain(
A− (L+ΔL)C +

α

2
I

)
P + P

(
A− (L+ΔL)C +

α

2
I

)T
+

(
A− LC +

α

2
I

)
ΔP +ΔP

(
A− LC +

α

2
I

)T
+
1

α

(
(D1 − LD2)(D1 − LD2)

T −ΔLD2(D1 − LD2)
T − (D1 − LD2)(ΔLD2)

T
)
= 0.
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Subtracting Eq. (12) from this equation yields(
A− LC +

α

2
I

)
ΔP +ΔP

(
A− LC +

α

2
I

)T
−ΔLCP − P (ΔLC)T (B.5)

− 1

α

(
ΔLD2(D1 − LD2)

T + (D1 − LD2)(ΔLD2)
T
)
= 0. (B.6)

We calculate the increment of the functional f(L) by linearizing the corresponding values:

Δf(L) = trC1ΔPC
T
1 + ρtrLTΔL+ ρtr (ΔL)TL = trΔPCT

1 C1 + 2ρtrLTΔL.

By Lemma B.1, from the dual Eqs. (B.6) and (13) we have

Δf(L) = −tr 2Y
(
ΔLCP +

1

α
ΔLD2(D1 − LD2)

T
)
+ 2ρtrLTΔL

= 2tr

(
ρLTΔL− CPYΔL− 1

α
D2(D1 − LD2)

TYΔL

)
=

〈
2

(
ρL− Y PCT − 1

α
Y (D1 − LD2)D

T
2

)
,ΔL

〉
.

Thus, the relation (B.4) is derived and the proof of Lemma B.4 is complete.

REFERENCES

1. Kalman, R.E., A New Approach to Linear Filtering and Prediction Problems, J. Basic Engineer., 1960,
vol. 82, no. 1, pp. 35–45.

2. Kailath, T., Sayed, A.H., and Hassibi, B., Linear Estimation, New Jersey: Prentice Hall, 2000.

3. Matasov, A.I., Osnovy teorii fil’tra Kalmana (Foundations of Kalman Filter Theory), Moscow: Mosk.
Gos. Univ., 2021.

4. Schweppe, F.C., Uncertain Dynamic Systems , New Jersey: Prentice Hall, 1973.

5. Kurzhanskii, A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti (Control and Observation
under Uncertainty), Moscow: Nauka, 1977.

6. Chernous’ko, State Estimation for Dynamic Systems , Boca Raton: CRC Press, 1994.

7. Polyak, B.T. and Topunov, M.V., Filtering under Nonrandom Disturbances: The Method of Invariant
Ellipsoids, Dokl. Math., 2008, vol. 77, no. 1, pp. 158–162.

8. Khlebnikov, M.V. and Polyak, B.T., Filtering under Arbitrary Bounded Exogenous Disturbances: The
Technique of Linear Matrix Inequalities, The 13th Multiconference on Control Problems (MCCP 2020),
Proceedings of the 32nd Conference in Memory of Nikolay Ostryakov , Saint Petersburg, October 6–8,
2020, Concern CSRI Elektropribor, pp. 291–294.

9. Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System and
Control Theory, Philadelphia: SIAM, 1994.

10. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vnesh-
nikh vozmushcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems under
Exogenous Disturbances: The Technique of Linear Matrix Inequalities), Moscow: LENAND, 2014.

11. Fazel, M., Ge, R., Kakade, S., and Mesbahi, M., Global Convergence of Policy Gradient Methods for
the Linear Quadratic Regulator, Proc. 35th Int. Conf. Machine Learning , Stockholm, July 10–15, 2018,
vol. 80, pp. 1467–1476.

12. Mohammadi, H., Zare, A., Soltanolkotabi, M., and Jovanović, M.R., Global Exponential Convergence of
Gradient Methods over the Nonconvex Landscape of the Linear Quadratic Regulator, Proc. 2019 IEEE
58th Conf. Decision Control , Nice, December 11–13, 2019, pp. 7474–7479.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 4 2023



A COMPARISON OF GUARANTEEING AND KALMAN FILTERS 459
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