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Abstract—This paper is devoted to the mean-square optimal stochastic recovery of a square in-
tegrable function with respect to the Lebesgue measure defined on a finite-dimensional compact
set. We justify an optimal recovery procedure for such a function observed at each point of its
compact domain with Gaussian errors. The existence of the optimal stochastic recovery proce-
dure as well as its unbiasedness and consistency are established. In addition, we propose and
justify a near-optimal stochastic recovery procedure in order to: i) estimate the dependence of
the standard deviation on the number of orthogonal functions and the number of observations
and ii) find the number of orthogonal functions that minimizes the standard deviation.
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1. INTRODUCTION

This paper considers the theory of optimal recovery of square integrable functions with respect to
the Lebesgue measure defined on a finite-dimensional compact set that are observed with Gaussian
errors. We establish the existence of an optimal recovery procedure in terms of the minimum
standard deviation criterion using the minimum number of orthonormal functions.

The stochastic recovery of an unknown function from some class is usually understood as follows:
the value of this function can be observed with errors at any point of its domain and the problem lies
in estimating (recovering) it from observations in terms of a given optimality criterion. Note that
this problem belongs to the theory of nonparametric (infinite-dimensional) estimation. Numerous
researches were devoted to nonparametric estimation; for example, see [1–22].

Let us overview the results on the stochastic recovery of functions in chronological order. Many
books by Russian researchers were first published in Russian and then translated into English. For
the ease of foreign readers, we present both the Russian originals and their translated versions in
the References section.

The papers [3, 4] considered the problem of estimating a one-dimensional unknown square-
integrable probability density function from its independent observations. As was demonstrated,
the problem can be solved using kernel estimators [3], which are asymptotically unbiased and
consistent. Subsequently, this class of estimators was called the Parzen–Rosenblatt estimators. For
brevity, probability density functions will be called densities below.

In [5], the Parzen–Rosenblatt estimators were generalized to the multivariate case.

The publication [6] was focused on recovering a scalar unknown function from its observations
with uncorrelated Gaussian errors in a finite number of its domain points. Stratonovich described

412

10.25728/arcRAS.2023.21.74.002
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optimal recurrence-based recovery algorithms and established their rate of convergence to the un-
known function.

In [7], Watson studied the problem of recovering an unknown density defined on the real line.
The standard deviation of his projection estimator of the density, proposed therein, is equivalent
to that of the projection estimator introduced by Chentsov [9].

The research work [8] solved the nonparametric estimation problem for an unknown density of
an absolutely continuous random variable by observing m independent random variables with an
unknown density. The author established conditions ensuring the existence of a kernel estimator
of this unknown density. Moreover, these estimators were proved to be asymptotically unbiased
and consistent. The cited study generalizes the well-known results of Parzen and Rosenblatt and
Murphy [3–5, 7].

The monograph [9] outlined a new nonparametric estimation method. Chentsov was the first
to introduce the concept of projection estimator. His approach to recovering an unknown density
consists in estimating the Fourier coefficients of this density by a suitable system of orthonormal
functions. As it turned out, such estimators are linear functionals of the observations. They
are used to construct optimal estimators in terms of the minimum standard deviation criterion.
Following this approach, the author proved the existence of a finite number of Fourier components
ensuring convergence to the unknown density with an optimal rate by the order of magnitude.

In his book [10], Vapnik proposed a method for recovering an unknown function based on
Kolmogorov’s theory of n-widths and the Glivenko–Cantelli theorem.

The monograph [11] was devoted to asymptotic methods in the theory of point and nonpara-
metric estimation. It also presented a theory for estimating an unknown smooth square-integrable
signal observed against additive white Gaussian noise. This problem was shown to be the one
of nonparametric estimation. The minimum standard deviation was adopted as an optimality
criterion. Ibragimov and Has’minskii proved the existence of a signal estimator whose standard
deviation is (by the order of magnitude) equivalent to that of the optimal estimator. In addition,
this estimator was demonstrated to be unimprovable.

The book [12] was concerned with the nonparametric estimation of an unknown density. Asymp-
totic unbiasedness and consistency were established for the Parzen–Rosenblatt kernel estimators of
densities. In addition, the limiting properties of the deviations of these estimators from the true
density were investigated. The author also presented a method for constructing a nonparametric
estimator of the regression curve.

In [13], the rates of convergence were found for the maximum likelihood estimation of an unknown
L2-function from its observations in finitely many points. The conditions obtained in the paper
ensure the unimprovable rate of convergence. In particular, the authors proved that for a monotonic
unknown function from the class L2, the nonlinear maximum likelihood estimator has a better rate
of convergence by the order of magnitude than any linear nonparametric estimator.

Darkhovsky [14, 15] surveyed in detail the results on nonparametric estimation using the mini-
max approach.

The paper [16] considered a two-component random vector with a random element taking values
in some measurable space with a probability measure (the first component) and a random variable
(the second component). The problem was to estimate the regression function for the first com-
ponent by n independent observations of the second one. The regression function was assumed to
belong to some class of smooth square-integrable functions with known metric characteristics such
as the Kolmogorov ε-entropy or Kolmogorov n-widths. The asymptotic properties of its standard
deviation were studied.
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The three-chapter monograph [17] was devoted to the theory of nonparametric estimation. The
following branches of the theory were described:

(i) design methods for nonparametric estimators;

(ii) statistical properties of nonparametric estimators (convergence and the rate of convergence);

(iii) adaptive nonparametric estimation procedures.

Branches (i) and (ii) were discussed in detail in Chapter 1. Branch (iii) constituted the main
content of the monograph (Chapters 2 and 3).

The publication [18] dealt with recovering an unknown scalar square-integrable function from
its observations at each point of a finite-dimensional compact domain with independent Gaussian
errors. Using the spectral representation, the authors derived conditions for the existence of an
optimal recovery procedure in terms of the minimum standard deviation criterion. Moreover, the
recovery procedure was shown to be unbiased and consistent.

The paper [19] considered the application of optimal interpolation methods based on the proper-
ties of Abel–Jacobi elliptic functions for estimating nonparametric regressions. It described optimal
interpolation methods for statistical data in terms of some optimality criteria, particularly their
use in stochastic recovery problems.

In [20], Juditsky and Nemirovski developed a stochastic recovery method for general linear mod-
els. As was shown, this problem can be reduced to monotonic variational inequalities, numerically
solvable by well-known and efficient computational procedures. The authors proved that strongly
monotonic variational inequalities have an upper bound.

The research work [21] considered the problem of estimating a linear functional from its obser-
vations, i.e., an additive mixture of this functional and white Gaussian noise. Projection estimators
were used for this functional. Golubev described a methodology for selecting the best estimator in
this class and detailed the idea of constructing such estimators.

The paper [22] was concerned with the stochastic recovery of scalar, smooth, deterministic,
square-integrable functions with respect to the Lebesgue measure on the real line from their ob-
servations with independent Gaussian errors at each point of the domain. Existence conditions
were established for optimal estimators in terms of the minimum standard deviation criterion. The
problem statement considered therein has the following peculiarity: both the observed sequence
and the performance criterion were described not in the coordinate form but in terms of the Fourier
coefficients of the observations, recovered function, and observation errors. Such a representation
with the trigonometric basis yields results in a simple and convenient form. Easily verifiable condi-
tions were derived for the existence of the optimal recovery procedure and its important properties
(unbiasedness and consistency) were proved. In addition, for smooth functions from the Sobolev
space, the authors constructed a recovery procedure equivalent to the optimal one. Note that in
this case, the constructed procedure has the standard deviation with the following properties:

(i) Due to the presence of bias, the deviation is smaller than the optimal one.

(ii) It does not depend on the recovered function.

(iii) It is unimprovable.

Topicality. According to the survey above, stochastic recovery has been studied in numerous
research works. In [3–17, 19, 20], this problem was stated in the coordinate representation; see
formulas (1)–(4) and (15) in Section 2 for the corresponding mathematical description. It follows
from [26] that the solution of the optimal problem (15) exists under the conditions of the Yankov–
von Neumann lemma; furthermore, it is an analytical function. Hence, the solution of problem (15)
is not a Borel function and, therefore, there is no nonparametric statistical estimator of an unknown
square-integrable function observed against additive white noise.
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Let us also mention the publication [21], which showed the following fact: in the coordinate
representation, there is no maximum likelihood estimator for an unknown square-integrable function
observed against noises described by a Gaussian random function in some Hilbert space.

Another approach was introduced in [18] under the assumption of observing the Fourier coeffi-
cients of the additive mixture (7) of an unknown function and the Gaussian error function. Such a
representation is called spectral. In particular, formula (7) yields existence conditions and explicit-
form estimates of each Fourier coefficient and its variance. Using this fact below, we derive an
explicit form of the optimal nonparametric estimator and the standard deviation of an unknown
function, for the first time in the literature; see Theorem 1 and Corollary 1. Based on these results,
the unbiasedness and consistency of the estimators are established (Theorems 2 and 3). Meanwhile,
how close are the nonparametric estimators proposed in [3–17, 19–21] to the optimal ones? This
issue is not clear.

Also, we obtain the following results:

(i) an explicit dependence for the standard deviation of an unknown function estimated by a

random function with only the firstN ∈ Z
+
terms in (23) andm ∈ Z

+\0 observations (Theorem 4);

(ii) for eachm, the existence of N0(m) ∈ Z
+
that minimizes the standard deviation (Theorem 5).

In addition, a constructive method is proposed to find N0(m) (Theorem 6). This result gives
conditions for the equivalence of the standard deviation and m−1 as well as the equivalence of
N0(m) and m; see Corollary 3. With these assertions, we define the Chentsov projection estimator
(formula (40)) and determine its standard deviation. Moreover, we estimate the rate of convergence
of this procedure to the unknown function (Theorem 8) and its independence from the unknown
function (Theorem 10).

At the end of this paper, we provide an example with the number N0(m) ∈ Z
+

calculated
explicitly.

The remainder of this paper is organized as follows.

Section 2 states the stochastic recovery problem in the spectral representation.

In Section 3, we establish an existence condition for the solution of the stochastic recovery
problem (Theorem 1), which is in turn a nonparametric estimation problem. In addition, we
demonstrate important statistical properties of optimal recovery, namely, unbiasedness (Theorem 2)
and consistency (Theorem 3).

Section 4 is devoted to finding the dependence of the standard deviation Vm(N) on the number of

orthonormal functions and the number of observations (Theorem 4). Here, (i) for each m ∈ Z
+ \ 0,

we prove the existence of N0(m) minimizing Vm(N) (Theorem 5) and (ii) we describe a constructive

method for finding N0(m). In addition, the conditions for the equivalence of Vm(N0) and N0(m)
m as

well as the equivalence of N0(m) and m are derived.

Section 5 describes the properties of optimal projection estimators of the unknown function with
the standard deviation Vm(N0(m)) (see formula (40)). They are called the Chentsov projection
estimators (CPEs). In addition, the following results are proved here:

1) CPE converges to the unknown function with a rate of m− 1
2 .

2) CPE is asymptotically unbiased and consistent.

The proofs of all assertions are postponed to Appendices A and B.

2. STOCHASTIC RECOVERY: PROBLEM STATEMENT, DEFINITIONS, NOTATIONS,
AND JUSTIFICATION OF THE SPECTRAL REPRESENTATION

2.1. Let K be a finite-dimensional compact set, B(K) be a Borel σ-algebra in K, and L2(K,Λ)
be the set of square integrable functions f : K→ R

1 with respect to the Lebesgue measure Λ on K,

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 4 2023



416 BULGAKOV, KHAMETOV

i.e.,
∫
K f

2(x)dx <∞. Since L2(K,Λ) is a separable Hilbert space, it has a complete orthonormal
system of functions (generally speaking, nonunique), which will be denoted by {ϕj(x)}j�0. In

other words, for any j, j′ ∈ Z
+

(Z
+ � Z

+ ∪ {∞}), there exist functions ϕj(x), ϕj′(x) ∈ L2(K,Λ)

such that
∫
K ϕj(x)ϕj′(x)dx = δj,j′, where δj,j′ is the Kronecker delta, and

∞∑
j=0

∫
K
ϕ2
j (x)dx <∞ [24].

Hence, for almost all x ∈ K,

f(x) =
∞∑
j=0

cjϕj(x), (1)

where {cj}j∈Z+ are the Fourier coefficients of a function f(x), i.e., cj �
∫
K
f(x)ϕj(x)dx.

In a complete probability space (Ω,F ,P) we define a measurable function n : Z
+ × Ω×K→ R

1,

further denoted by nm(x), that satisfies the following conditions for any x ∈ K and m ∈ Z
+ \ 0.

Conditions (n1):

Enm(x) = 0, σ2 � E

∫
K

n2m(x)dx <∞, (2)

and for any y, x ∈ K, y �= x, m �= q,

Enm(x)nq(x) = 0, Enm(y)nm(x) = 0 . (3)

Here, E(·) stands for the Lebesgue integral with respect to the probability measure P.

Obviously, the measure Λ× P, denoted by P̃, is defined on the σ-algebra B(K)⊗F .
At any point x ∈ K we observe a function ym(x) as the sum of functions f(x) ∈ L2(K,Λ)

and nm(x). In other words, the observations of f(x) contain the additive errors nm(x):

ym(x) = f(x) + nm(x) =
∞∑
j=0

cjϕj(x) + nm(x) P̃-a.e., (4)

where m ∈ Z
+ \ 0 is the observation number.

2.2. For the further presentation, we also need the Fourier coefficients of the random functions
ym(x) and nm(x):

yjm �
∫
K

ym(x)ϕj(x)dx, (5)

njm �
∫
K

nm(x)ϕj(x)dx. (6)

Due to (5)–(6), the Fourier coefficients are random variables for each m ∈ Z
+ \ 0 and j ∈ Z

+
.

It also follows from (1), (4), (5), (6) that

yjm = cj + njm P-a.s. (7)

Throughout the paper, we adopt the conventional abbreviations “a.s.” and “a.e.” for “almost
surely” and “almost everywhere,” respectively, involving an appropriate probability measure.

Since f(x) ∈ L2(K,Λ) and conditions (n1) hold, equality (7) implies

∞∑
j=0

[
c2j + E(njm)2

]
=

∞∑
j=0

E(yjm)2 = E
∞∑
j=0

(yjm)2 <∞ (8)

for any m ∈ Z
+ \ 0.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 4 2023



OPTIMAL RECOVERY OF A SQUARE INTEGRABLE FUNCTION 417

Conditions (n2):

(i) σ2j � E(njm)2, j ∈ Z
+
, i.e., the variance of the Fourier coefficients of the errors is independent

of the observation number.

(ii) σ2 �
∞∑
j=0

σ2j <∞.

According to [23], given the Fourier coefficients of the set {yjk}j∈Z+

k=1,m

, m ∈ Z
+ \ 0, any observed

function from the set {ym(x)} x∈K
m∈Z+\0

can be represented as

ym(x) �
∑
j∈Z+

yjmϕj(x) P̃-a.e. (9)

Let Fyj
m and Fy

m be the σ-algebras induced by the families of random variables {yjk}k=1,m

and {yjk}j∈Z+

k=1,m

, respectively, i.e.,

Fyj

m � σ
{
yj1, . . . , y

j
m

}
, (10)

Fy
m � σ

{
yj1, . . . , y

j
m, j ∈ Z

+
}
. (11)

Obviously, ym(x) is an Fy
m ⊗ B(K)-measurable random function.

Definition 1. Any Fy
m ⊗ B(K)-measurable function fm(x) taking values in R

1 is called an esti-

mator of an unknown function f(x) ∈ L2(K,Λ) from m ∈ Z
+ \ 0 observations.

Definition 2. An estimator fm(x) is said to be admissible if

E

∫
K

|fm(x)|2dx <∞. (12)

We denote by M2,m(P̃) the set of admissible estimators fm(x). Obviously, M2,m(P̃) �= ∅ and
is a Hilbert space.

Definition 3. An admissible estimator f̂m(x) ∈ M2,m(P̃) is said to be a projection estimator if
it can be represented as

f̂m(x) =
∞∑
j=0

cj,mϕj(x) P̃-a.e., (13)

where for each j ∈ Z
+

and m ∈ Z
+ \ 0, the Fourier coefficient cj,m of the estimator f̂m(x) is an

Fyj
m -measurable random variable such that E

∞∑
j=0

c2j,m <∞.

We denote by M2,m(P̃) the set of projection estimators. Obviously, M2,m(P̃) ⊆M2,m(P̃).

This paper considers the problem of constructing projection estimators f̂m(x) ∈M2,m(P̃) of an
unknown function f(x) ∈ L2(K,Λ) from its observations (7) such that

E

∫
K

[
f(x)− f̂m(x)

]2
dx→ inf

f̂m(x)∈M2,m(P̃)

. (14)

The optimality criterion (14) is the minimum deviation with respect to the measure P̃.

Now, we define an optimal projection estimator.
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Definition 4. A projection estimator f̂ 0
m(x) ∈M2,m(P̃) is said to be optimal if

inf
f̂m(x)∈M2,m(P̃)

E

∫
K

[
f(x)− f̂m(x)

]2
dx = E

∫
K

[
f(x)− f̂ 0

m(x)
]2
dx. (15)

The representation (5)–(15) of the stochastic recovery problem data is called the spectral rep-
resentation.

2.3. This paper aims at:

1) proving the existence of a recovery procedure of an unknown function f(x) ∈ L2(K,Λ) with
finitely many orthonormal functions and finding its standard deviation;

2) investigating the statistical properties of the recovery procedure.

3. EXISTENCE CONDITIONS FOR OPTIMAL ESTIMATORS
OF AN UNKNOWN FUNCTION

We denote by M̃2,m(P) the set of infinite-dimensional random vectors ĉm � (ĉ0,m, ĉ1,m, . . . ) such
that:

i) For any j ∈ Z
+
and each m ∈ Z

+ \ 0, the random variable ĉj,m is Fyj
m -measurable.

ii) E
∞∑
j=0

∣∣ĉj,m∣∣2 <∞.

3.1. If f̂m(x) ∈M2,m(P̃), then

f̂m(x) =
∞∑
j=0

ĉj,mϕj(x) P̃-a.e., (16)

where ĉj,m ∈ M̃2,m(P), j ∈ Z
+
, m ∈ Z

+ \ 0, is an Fyj
m -measurable random variable specifying the

Fourier coefficient of the estimator f̂m(x) ∈M2,m(P̃), i.e.,

ĉj,m �
∫
K

f̂m(x)ϕj(x)dx P-a.s. (17)

From (16) we have the relation

E

∫
K

∣∣f̂m(x)
∣∣2dx = E

∞∑
i=0

ĉ 2
j,m, (18)

which generalizes the well-known Parseval identity [24, 25].

Due to (18), M̃2,m(P) is a Hilbert space.

In addition, equality (18) leads to the following result.

Proposition 1. M2,m(P̃) and M̃2,m(P) are isomorphic.

Proposition 2. For any m ∈ Z
+ \ 0, the optimal projection estimator f̂ 0

m(x) ∈M2,m(P̃) exists if

and only if there are {ĉ 0
m} ∈ M̃2,m(P) such that

inf
{ĉj,m}j�0∈M̃2,m(P)

E
∞∑
j=0

[
cj − ĉj,m

]2
= E

∞∑
j=0

[
cj − ĉ 0

j,m

]2
. (19)

The proof of Proposition 2 is given in Appendix A; see item A.1.
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Remark 1. According to Proposition 2, the existence of an optimal projection estimator of an
unknown function from the class M2,m(P̃) is equivalent to the existence of the optimal estimators
of its Fourier coefficients.

3.2. This subsection presents existence conditions for a solution of the optimal stochastic recov-
ery problem in the class L2(K,Λ) of unknown functions.

Conditions (n3).

For any j ∈ Z
+

and m ∈ Z
+ \ 0, the family {njm}j∈Z+

m∈Z+\0
is a Gaussian system of uncorrelated

random variables with Law(njm) = N (0, σ2j ).

We denote by Vm(∞) the standard deviation of the optimal estimator.

Existence conditions can be formulated as follows.

Theorem 1. Let f(x) ∈ L2(K,Λ) and conditions (ni), i = 1, 3, be satisfied. Then for almost all

x ∈ K and m ∈ Z
+ \ 0, there exists an optimal projection estimator f̂ 0

m(x) ∈M2,m(P̃) that can be
represented as

f̂ 0
m(x) =

∞∑
j=0

ĉ 0
j,mϕj(x) P̃-a.e., (20)

where

ĉ 0
j,m =

1

m

m∑
k=1

yjk, (21)

and its standard deviation has the form

Vm(∞) = inf
f̂m(x)∈M2,m(P̃)

E

∫
K

[
f(x)− f̂m(x)

]2
dx =

1

m

∞∑
j=0

σ2j . (22)

The proof of Theorem 1 is given in Appendix A; see item A.2.

Remark 2. In contrast to [3–17, 19–21], Theorem 1 provides sufficient conditions for the exis-
tence of an optimal projection estimator of an unknown function from the class L2(K,Λ) from its
observations with independent Gaussian errors.

3.3. Theorem 1 leads to a simple form of the estimator f̂ 0
m(x).

Corollary 1. Under the hypotheses of Theorem 1, for each m ∈ Z
+ \ 0, the optimal estima-

tor f̂ 0
m(x) can be represented as

f̂ 0
m(x) =

1

m

m∑
k=1

yk(x) P̃-a.e. (23)

The proof of Corollary 1 is given in Appendix A; see item A.3.

3.4. The Properties of Optimal Estimators

Theorem 2. Under the hypotheses of Theorem 1, the estimator (20) is unbiased.

The proof of Theorem 2 is given in Appendix A; see item A.4.

Theorem 3. Under the hypotheses of Theorem 1, let the series
∞∑
j=0

σ2jϕ
2
j (x) be convergent for

almost all x ∈ K with respect to the Lebesgue measure. Then the estimator f̂ 0
m(x) is consistent.

The proof of Theorem 3 is given in Appendix A; see item A.5.
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4. THE STANDARD DEVIATION OF THE ESTIMATOR OF AN UNKNOWN
FUNCTION f(x)∈L2(K,Λ): DEPENDENCE OF THE NUMBER OF ORTHOGONAL
FUNCTIONS AND THE NUMBER OF OBSERVATIONS AND OTHER PROPERTIES

4.1. Let fN (x) �
N∑
j=0

cjϕj(x), where cj �
∫
K
f(x)ϕj(x)dx andN ∈ Z

+
is the number of orthogonal

functions used. Obviously, fN (x) ∈ L2(K,Λ).

We consider f̂ 0
m,N(x) ∈M2,m(P̃), i.e., the optimal projection estimator of an unknown function

fN (x) ∈ L2(K,Λ). By Theorem 1, it has the form

f̂ 0
m,N (x) �

N∑
j=0

ĉ 0
j,m(x)ϕj(x). (24)

Due to Fubini’s theorem, from (24) it follows that

E

∫
K

∣∣f̂ 0
m,N (x)

∣∣2dx = E
N∑
j=0

∣∣ĉ 0
j,m

∣∣2, (25)

where ĉ 0
j,m is given by (21).

Let Vm(N) be the standard deviation of the estimator f̂ 0
m,N (x) of an unknown function f(x) ∈

L2(K,Λ) constructed using a “segment” of N orthonormal functions with m observations. Obvi-
ously,

Vm(N) � E

∫
K

[
f(x)− f̂ 0

m,N(x)
]2
dx. (26)

Now, we formulate the main result of this subsection.

Theorem 4. Under the hypotheses of Theorem 1, the following assertions are true for any m ∈
Z

+ \ 0 and N ∈ Z
+
:

1) Vm(N) can be represented as

Vm(N) =
N∑
j=0

[
1

m
σ2j − c2j

]
+
∥∥f∥∥2

L2(K,Λ)
. (27)

2) Assume that
∥∥f∥∥

L2(K,Λ)
� σ20 and there exists a constant C10 > 0 such that σ20 � C10. Then

0 < C10 � Vm(N) � max

(∥∥f∥∥2
L2(K,Λ)

,
σ2

m

)
. (28)

The proof of Theorem 4 is given in Appendix B; see item B.1.

4.2. Theorem 4 implies a simple result.

Corollary 2. Under the hypotheses of Theorem 4, the following assertions are true.

1) For each m ∈ Z
+ \ 0, the sequence {Vm(N)}

N∈Z+ satisfies the recurrent relation⎧⎪⎪⎪⎨⎪⎪⎪⎩
Vm(N + 1) = Vm(N)− c2N+1 +

1

m
σ2N+1

Vm(N)
∣∣∣
N=0

=
∞∑
j=0

c2j ,
(29)

and its solution has the form (22).
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2) For each N ∈ Z
+
, the partial sequence {Vm(N)}

m∈Z+\0 satisfies the recurrent relation

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Vm+1(N) = Vm(N)− 1

(m+ 1)m

N∑
j=0

σ2j

Vm(N)
∣∣∣
m=1

= −
∞∑

j=N+1

c2j +
N∑
j=0

σ2j ,

(30)

and its solution has the form (22).

The proof of Corollary 2 is given in Appendix B; see item B.2.

Remark 3. Due to assertion 2 of Corollary 2 and (27), we have

lim
m→∞Vm+1(N) = lim

m→∞Vm(N) =
∞∑

j=N+1

c2j

for any N ∈ Z
+
. Therefore,

lim
N→∞

lim
m→∞Vm(N) = 0 .

4.3. In this section, we establish that for each m ∈ Z
+ \ 0, the sequence {Vm(N)}

N∈Z+ has a
unique minimum.

Theorem 5. Under the hypotheses of Theorem 4, for each m ∈ Z
+ \ 0, there exists a unique

number N0(m) ∈ Z
+

such that

inf
N∈Z+

Vm(N) = Vm(N0(m)). (31)

The proof of Theorem 5 is given in Appendix B; see item B.3.

Remark 4. Theorem 5 implies the following results:

(a) For any N ∈ Z
+
,

Vm(N) � Vm(N0(m)). (32)

(b) For all s ∈ Z
+
such that N0(m)− s � 0 and N0(m) + s ∈ Z

+
,

Vm(N0(m)− s)− 2Vm(N0(m)) + Vm(N0(m) + s) � 0. (33)

4.4. This subsection describes a constructive method for finding N0(m).

Theorem 6. Under the hypotheses of Theorem 4, the number N0(m) ∈ Z
+
can be represented as

N0(m) = inf

⎧⎨⎩N ∈ Z
+
:

N∑
j=0

σ2j
m

�
∞∑

j=N+1

c2j

⎫⎬⎭ . (34)

The proof of Theorem 6 is given in Appendix B; see item B.4.

4.5. Based on Theorem 6, we establish equivalence relations between the standard deviation of

the CPE and
N0(m)∑
j=0

σ2
j

m .
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Theorem 7. Under the hypotheses of Theorem 6,

N0(m)∑
j=0

σ2j
m

� Vm(N0(m)) � 2

N0(m)∑
j=0

σ2j
m

(35)

for any m ∈ Z
+ \ 0. In other words,

Vm(N0(m)) �
N0(m)∑
j=0

σ2j
m
. (36)

The proof of Theorem 7 is given in Appendix B; see item B.5.

4.6. Theorem 7 leads to important results.

Corollary 3. Under the hypotheses of Theorem 7, assume that:

(i) sup
j∈Z+

σ2j � C11.

(ii) There exists a number j0 ∈ {0, . . . , N0(m)} such that σ2j0 � C12 > 0.

Then the following conditions hold:

1)

C12
N0(m)

m
� Vm(N0(m)) � C11

N0(m)

m
, (37)

i.e., Vm(N0(m)) � N0(m)
m .

2)

N0(m) � m. (38)

The proof of Corollary 3 is given in Appendix B; see item B.6.

5. CHENTSOV PROJECTION ESTIMATORS AND THEIR PROPERTIES

According to Section 4, for any m ∈ Z
+\0, the standard deviation Vm(N) of the projection

estimator f̂ 0
m,N (x) achieves a unique minimum (Theorem 5) at the point N0(m) ∈ Z

+
. Theorem 6

therein provides a constructive method to find N0(m). In addition, Section 4 has established the

equivalence relations Vm(N0(m)) �
N0(m)∑
j=0

σ2
j

m � N0(m)
m � const; see Theorem 7 and Corollary 3.

5.1. In this subsection, we define the Chentsov projection estimator of an unknown function
f(x) ∈ L2(K,Λ).

Let us denote

f̃ 0
m(x) � f̂ 0

m,N(x)
∣∣∣
N=N0(m)

. (39)

Obviously, f̃ 0
m(x) ∈M2,m(P̃) and, due to (20), it can be represented as

f̃ 0
m(x) =

N0(m)∑
j=0

ĉ 0
j,mϕj(x) P̃-a.e., (40)

where ĉ 0
j,m = 1

m

m∑
k=1

yjk stands for the jth component of the infinite-dimensional vector ĉ 0
m ∈ M̃2,m(P)

(the Fourier coefficient of the optimal estimator f̂ 0
m(x) ∈M2,m(P̃)).
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Definition 5. An Fy
m ⊗ B(K)-measurable function f̃ 0

m(x) ∈M2,m(P̃) is called the Chentsov pro-
jection estimator (CPE) of an unknown function f(x) ∈ L2(K,Λ) if it admits the representa-
tion (40).

By this definition and (25), the standard deviation Vm(N0(m)) of the CPE from the correspond-
ing function f(x) ∈ L2(K,Λ) is given by

Vm(N0(m)) = E

∫
K

[
f(x)− f̃ 0

m(x)
]2
dx =

∞∑
j=N0(m)+1

c2j +

N0(m)∑
j=0

σ2j
m
. (41)

5.2. Theorem 7 allows estimating the rate of convergence of the CPE to the corresponding
function f(x) ∈ L2(K,Λ) as m→∞. Since N0(m) ∈ Z

+
, from Corollary 3 we have

Vm(N0(m)) � m−1. (42)

Thus, the following result is true.

Theorem 8. Under the hypotheses of Theorem 7 and Corollary 3,∥∥f − f̃ 0
m

∥∥
M2,m(P̃)

= O(m− 1
2 ). (43)

5.3. This subsection focuses on statistical properties of the CPE (40).

Theorem 9. The CPE (40) possesses the following properties:

1) For any m ∈ Z
+ \ 0, the estimator (40) is biased.

2) Under the hypotheses of Theorem 5, the standard deviation of the CPE satisfies the inequality

Vm(N0(m)) � Vm(∞). (44)

3) The estimator (40) is asymptotically unbiased, i.e.,

lim
m→∞Ef̃ 0

m(x) = f(x) (45)

for almost all x ∈ K.

4) For any x ∈ K, let
∞∑
j=0

σ2jϕ
2
j(x) <∞ and

∣∣ ∞∑
j=0

cjϕj(x)
∣∣ <∞. Then

f̃ 0
m(x)

P−−−−→
m→∞ f(x).

The proof of Theorem 9 is given in Appendix B; see item B.7.

5.4. Here, we establish conditions under which the standard deviation of the CPE is independent
of the function f(x) ∈ L2(K,Λ) under estimation.

Theorem 10. Under the hypotheses of Theorems 5 and 6, we have the inequality

sup
f(x)∈L2(K,Λ)

inf
N∈Z+

sup
fm,N (x)∈M2,m(P̃)

E

∫
K

[
f(x)− fm,N (x)

]2
dx � 2

∞∑
j=0

σ2j
m
−−−−→
m→∞ 0. (46)

The proof of Theorem 10 is given in Appendix B; see item B.8.

5.5. This subsection gives one example with an explicit solution of the stochastic recovery
problem. Due to Theorems 8 and 9 and the CPE formula, optimal stochastic recovery is reduced
to finding N0(m); see below.
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Example. Suppose that the elements of the sequences {c2j}j�0 and {σ2j }j�0 can be repre-
sented as

1) σ2j = σ20q
j
1,

2) c2j = c20q
j
2,

where σ20 > 0, c20 > 0, qi ∈ (0, 1) for i = 1, 2, and j ∈ Z
+
. According to Theorems 5 and 6, there

exists a number N0(m) ∈ Z
+
such that inf

N∈Z+
Vm(N) = Vm(N0); furthermore, for any N � N0(m),

N∑
j=0

σ2j
m

�
∞∑

j=N+1

c2j .

Under assumptions 1) and 2), this inequality can be written as

σ20
m

N∑
j=0

qj1 � c20

∞∑
j=N+1

qj2.

By Theorem 5, for N = N0(m) we have the equality

σ20
m

1

1− q1
=
c20q

N0(m)+1
2

1− q2
+
σ20
m

q
N0(m)+1
1

1− q1
. (47)

Consider two special cases in which the number N0(m) ∈ Z
+
can be found explicitly.

We denote by �a� the integer part of a ∈ Z
+ \ 0.

Case 1. Let q1 = q2. If
σ2
0

c20m+σ2
0
> q1, from (47) it follows that

N0(m) =

⌊
ln

σ2
0

c20m+σ2
0

ln q1

⌋
.

Case 2. Let q2 = (q1)
2. In this case, from (47) it follows that

σ20
m

=
c20q

2(N0(m)+1)
1

1 + q1
+
σ20
m
q
N0(m)+1
1 . (48)

The expression (48) is a quadratic equation for q
N0(m)+1
1 . Under the condition

σ20(1 + q1)

2mc20q1

[√
1 +

4mc20
σ20(1 + q1)

− 1

]
> 1,

we obtain

N0(m) =

⌊
ln

σ2
0(1+q1)

2mc20

[(
1 +

4mc20
σ2
0(1+q1)

) 1
2 − 1

]
ln q1

⌋
.
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APPENDIX A

A.1. The proof of Proposition 2. Let f(x) ∈ L2(K,Λ) and f̂m(x) ∈M2,m(P̃) be some projection
estimator. Since the system {ϕj(x)}j�0 is complete and orthonormal, from (1), (13), and Fubini’s
theorem we have the equalities

E

∫
K

[
f(x)− f̂m(x)

]2
dx = E

∞∑
j=0

[
cj − ĉj,m

]2
=

∞∑
j=0

E
[
cj − ĉj,m

]2

for any m ∈ Z
+ \ 0.

Due to Proposition 1,

inf
f̂m(x)∈M2,m(P̃)

E

∫
K

[
f(x)− f̂m(x)

]2
dx = inf

ĉj,m∈M̃2,m(P)

∞∑
j=0

E
[
cj − ĉj,m

]2
. (A.1)

Recall that M̃2,m(P) is the set of Fyj
m -measurable square-integrable random variables. Therefore,

from (A.1) it follows that

inf
f̂m(x)∈M2,m(P̃)

E

∫
K

[
f(x)− f̂m(x)

]2
dx �

∞∑
j=0

inf
ĉj,m∈M̃2,m(P)

E
[
cj − ĉj,m

]2
.

Hence, the estimator ĉ 0
j,m is optimal if and only if

inf
ĉj,m∈M̃2,m(P)

E
[
cj − ĉj,m

]2
= E
[
cj − ĉ 0

j,m

]2
.

Thus, given the existence of ĉ 0
j,m,

inf
f̂m(x)∈M2,m(P̃)

E

∫
K

[
f(x)− f̂m(x)

]2
dx �

∞∑
j=0

E
[
cj − ĉ 0

j,m

]2
.

In view of (A.1) and this inequality, we have

inf
f̂m(x)∈M2,m(P̃)

E

∫
K

[
f(x)− f̂m(x)

]2
dx �

∞∑
j=0

E
[
cj − ĉ 0

j,m

]2

= inf
ĉj,m∈M̃2,m(P)

E
∞∑
j=0

[
cj − ĉj,m

]2
= E

∫
K

[
f(x)− f̂ 0

m(x)
]2
dx,

where f̂ 0
m(x) �

∞∑
j=0

ĉ 0
j,mϕj(x). The proof of this proposition is complete.

A.2. The proof of Theorem 1. By Proposition 2, there exists an optimal projection estimator
f̂ 0
m(x) ∈M2,m(P̃) if and only if (19) holds. Therefore,

inf
f̂m(x)∈M2,m(P̃)

E

∫
K

[
f(x)− f̂m(x)

]2
dx = E

∫
K

[
f(x)− f̂ 0

m(x)
]2
dx.

The main content of Theorem 1 is equalities (20)–(22).
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To prove them, we consider E
∫
K

[
f(x)− f̂ 0

m(x)
]2
dx. From Proposition 2 (see formulas (A.1)

and (25)) it follows that

E

∫
K

[
f(x)− f̂ 0

m(x)
]2
dx =

∞∑
j=0

E
∣∣cj − ĉ 0

j,m

∣∣2. (A.2)

Hence, for each j ∈ Z
+
, it is required to construct a mean-square optimal estimate of the Fourier

coefficient cj from the observations (yj1, . . . , y
j
m). Note that due to (7), the random variable yjm

has the Gaussian distribution: Law(yjm) = N (cj , σ
2
j ). As is well known [1, 2], in this case, the

optimal estimate ĉ 0
j,m of the Fourier coefficient cj from the error-containing observations (yj1, . . . , y

j
m)

coincides with the maximum likelihood estimate. Thus, ĉ 0
j,m has the form (19). We multiply both

sides of (19) by ϕj(x) and perform summation over all j to obtain (18).

Now, we find the value E
∫
K

[
f(x)− f̂ 0

m(x)
]2
dx. Due to (A.2), (7), (19) and Proposition 1, we

have

E

∫
K

[
f(x)− f̂ 0

m(x)
]2
dx =

∞∑
j=0

E
∣∣ĉ 0

j,m − cj
∣∣2

=
∞∑
j=0

E

∣∣∣∣∣ 1m
m∑
k=1

yjk − cj
∣∣∣∣∣
2

=
∞∑
j=0

E

(
1

m

m∑
k=1

njk

)2

=
∞∑
j=0

σ2j
m
.

The proof of this theorem is complete.

A.3. The proof of Corollary 1. From (20)–(22) and Fubini’s theorem we obtain (23) since

f̂ 0
m(x) =

∞∑
j=0

ĉ 0
j,mϕj(x) =

∞∑
j=0

1

m

m∑
k=1

yjkϕj(x) =
1

m

m∑
k=1

∞∑
j=0

yjkϕj(x) =
1

m

m∑
k=1

yk(x).

The proof of this corollary is complete.

A.4. The proof of Theorem 2. From (7), (20), and (21), by Fubini’s theorem, we have

Ef̂ 0
m(x) = E

∞∑
j=0

ĉ 0
j,mϕj(x) =

∞∑
j=0

ϕj(x)Eĉ
0
j,m =

∞∑
j=0

ϕj(x)
1

m
E

m∑
k=1

yjk

=
∞∑
j=0

ϕj(x)
1

m

m∑
k=1

(
cj + Enjk

)
=

∞∑
j=0

ϕj(x)cj = f(x)

for any x ∈ K and m ∈ Z
+ \ 0. The proof of this theorem is complete.

A.5. The proof of Theorem 3. It is required to establish that

f̂ 0
m(x)

P−−−−→
m→∞ f(x)

for almost all x ∈ K. It suffices to demonstrate that the variance of the estimator f̂ 0
m(x) vanishes

as m→∞.
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For each x ∈ K, we calculate the variance Df̂ 0
m(x) of the estimator f̂ 0

m(x). From (20), (7),
and (21), by Fubini’s theorem, we have

Df̂ 0
m(x) = E

[
f̂ 0
m(x)− f(x)

]2
= E

⎡⎣ ∞∑
j=0

(
ĉj,m − cj

)
ϕj(x)

⎤⎦2

= E

⎡⎣ ∞∑
j=0

(
1

m

m∑
k=1

yjk − cj
)
ϕj(x)

⎤⎦2 = E

⎡⎣ ∞∑
j=0

1

m

m∑
k=1

njkϕj(x)

⎤⎦2 = 1

m

∞∑
j=0

ϕ2
j (x)σ

2
j .

Since the series
∞∑
j=0

ϕ2
j (x)σ

2
j converges for almost all x ∈ K, the latter equality yields the desired

result. The proof of this theorem is complete.

APPENDIX B

B.1. The proof of Theorem 4. We begin with the first assertion. According to the definition
of Vm(N),

Vm(N) = E

∫
K

[
f(x)− fN (x) + fN (x)− f̂ 0

m,N (x)
]2
dx

= E

∫
K

⎡⎣ ∞∑
j=0

cjϕj(x)−
N∑
j=0

cjϕj(x) +
N∑
j=0

cjϕj(x)−
N∑
j=0

ĉ 0
j,mϕj(x)

⎤⎦2 dx

= E

∫
K

⎡⎣ ∞∑
j=N+1

cjϕj(x) +
N∑
j=0

(
cj − ĉ 0

j,m

)
ϕj(x)

⎤⎦2 dx.
Hence, for any m ∈ Z

+ \ 0 and N ∈ Z
+
, the standard deviation Vm(N) is given by

Vm(N) =
∞∑

j=N+1

c2j + E
N∑
j=0

(
cj − ĉ 0

j,m

)2
. (B.1)

Since ĉ 0
j,m = 1

m

m∑
k=1

yjk, by (7), we have

ĉ 0
j,m =

1

m

m∑
k=1

(
cj + njk

)
= cj +

1

m

m∑
k=1

njk. (B.2)

In view of (B.2) and conditions (ni), i = 1, 3, by Fubini’s theorem, formula (B.1) reduces to (23).
Indeed,

Vm(N) =
∞∑

j=N+1

c2j + E
N∑
j=0

(
1

m

m∑
k=1

njk

)2

=
∞∑

j=N+1

c2j +
N∑
j=0

1

m2
E

m∑
k=1

njk

m∑
k′=1

njk′

=
∞∑

j=N+1

c2j +
N∑
j=0

σ2j
m

=
∞∑

j=N+1

c2j +
1

m

N∑
j=0

σ2j .

(B.3)

Thus, the first assertion is true.
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Now, we prove the second assertion of Theorem 4. According to the first assertion, for any
N ∈ Z

+
, the standard deviation Vm(N) of the estimator f̂ 0

m,N (x) ∈M2,m(P̃) has the form (B.3).

For each m, it is required to derive a lower bound for Vm(N). Obviously, Vm(N) consists of two
terms, namely, a monotonically decreasing sequence (the first term) and a monotonically increasing
sequence (the second term). Therefore,

inf
N∈Z+

Vm(N) = inf
N∈Z+

⎛⎝ ∞∑
j=N+1

c2j +
N∑
j=0

σ2i
m

⎞⎠
= max

⎛⎝ lim
N→∞

∞∑
j=N+1

c2j , lim
N→0

N∑
j=0

σ2i
m

⎞⎠ = max

(
0,
σ20
m

)
� C10 > 0.

The proof of this theorem is complete.

B.2. The proof of Corollary 2. The desired result obviously follows from Theorem 4 (see for-
mula (27)).

B.3. The proof of Theorem 5. Due to Theorem 4, Vm(N) can be represented as (23). Hence, it
consists of two terms:

—The first term is the series
∞∑

j=N+1
c2j , which converges by the convergence of the series

∞∑
j=0

c2j =

∥∥f∥∥2
L2(K,Λ)

<∞. Obviously, the sequence

{
∞∑

j=N
c2j

}
N�0

is nonincreasing with increasing N , i.e.,

∞∑
j=N+1

c2j �
∞∑

j=N
c2j ; as a result,

lim
N→∞

∞∑
j=N

c2j = 0 .

—The second term is the convergent nondecreasing sequence

{
N∑
j=0

σ2j

}
N�0

(
∞∑
j=1

σ2j = σ2 <∞
)
.

Therefore, for each m ∈ Z
+ \ 0, we have the sets

A1
m �

{
j ∈ Z

+
:
σ2j
m
− c2j � 0

}
�= ∅,

A2
m �

{
j ∈ Z

+
:
σ2j
m
− c2j � 0

}
�= ∅.

If N ∈ A1
m (N ∈ A2

m), Corollary 2 implies the inequality

Vm(N + 1) � Vm(N)

(Vm(N − 1) � Vm(N), respectively).

Obviously, A1
m ∩A2

m �= ∅ and there exists a number N0(m) ∈ Z
+
such that A1

m ∩A2
m = {N0(m)}.

This result immediately leads to (31). The proof of this theorem is complete.

B.4. The proof of Theorem 6. According to the proof of Theorem 3, for any m ∈ Z
+ \ 0 and

N ∈ Z
+
, the standard deviation of the estimator f̂ 0

m,N (x) ∈M2,m(P̃) is given by (B.3). Due to

Theorem 5, there exists a function N0(m) = N0 : (Z
+ \ 0)→ Z

+
such that

Vm(N) � Vm(N0(m))

for each m ∈ Z
+ \ 0 and any N ∈ Z

+
.
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Let us denote

1{
N�N0(m)

} � { 1, N � N0(m)
0, N < N0(m).

(B.4)

According to the proof of Theorem 5, N � N0(m) if and only if
N∑
j=0

σ2
j

m �
∞∑

j=N+1
c2j . Therefore,

1{
N�N0(m)

} = 1{
N∈Z+

:
N∑

j=0

σ2
j

m
�

∞∑
j=N+1

c2j

}.
Let us denote

�m(N) �

⎛⎝ N∑
j=0

σ2j
m
−

∞∑
j=N+1

c2j

⎞⎠1{
N∈Z+

:
N∑

j=0

σ2
j

m
�

∞∑
j=N+1

c2j

}. (B.5)

Obviously, for each m ∈ Z
+ \ 0 and any N ∈ Z

+
,

�m(N) � 0. (B.6)

From (B.5) and (B.6) it follows that �m(N) can be represented as

�m(N) = max

⎛⎝ N∑
j=0

σ2j
m
−

∞∑
j=N+1

c2j , 0

⎞⎠ . (B.7)

The graphs of the functions Vm(N) and �m(N) for eachm ∈ Z
+ \ 0 and anyN ∈ Z

+
demonstrate

the properties:

(i)

Vm(N) � �m(N), (B.8)

(ii)

N0(m) = argmin
N∈Z+

Vm(N) = argmin
N∈Z+

�m(N). (B.9)

From (B.7) and (B.9) we finally arrive at the assertion of Theorem 6. The proof of this theorem
is complete.

B.5. The proof of Theorem 7. First, Theorem 4, Corollary 2, and (41) imply the representation

Vm(N0(m)) = Vm(N)
∣∣∣
N=N0(m)

=
∞∑

j=N0(m)+1

c2j +

N0(m)∑
j=0

σ2j
m
. (B.10)

From (B.10) we obtain the inequality

Vm(N0(m)) �
N0(m)∑
j=0

σ2j
m
, (B.11)

expressing a lower bound for Vm(N0(m)).
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Due to Theorem 6,

N0(m)∑
j=0

σ2j
m

�
∞∑

j=N0(m)+1

c2j (B.12)

for any m ∈ Z
+ \ 0.

Therefore, (B.10) and (B.12) lead to

Vm(N0(m)) � 2

N0(m)∑
j=0

σ2j
m
. (B.13)

The desired result finally follows from inequalities (B.11) and (B.13):

Vm(N0(m)) �
N0(m)∑
j=0

σ2j
m
.

The proof of this theorem is complete.

B.6. The proof of Corollary 3. It is immediate from conditions (i) and (ii) of the corollary and
the proof of Theorem 7.

B.7. The proof of Theorem 9.

1) From (40) it follows that

f̃ 0
m(x) =

N0(m)∑
j=0

[
cjϕj(x) +

m∑
k=1

njkϕj(x)

]2
= fN0(m)(x) +

N0(m)∑
j=0

1

m

m∑
k=1

njkϕj(x).

Taking the expectation of both sides of this equality yields

Ef̃ 0
m(x) = fN0(m)(x) + E

N0(m)∑
j=0

1

m

m∑
k=1

njkϕj(x) = fN0(m)(x) �= f(x). (B.14)

Thus, the estimator (40) is biased.

2) For proving the second assertion of this theorem, we have to show inequality (44). According
to Theorem 4,

Vm(N0(m)) � Vm(N)

for any N � N0(m). Passing to the limit as N →∞ gives

Vm(N0(m)) � lim
N→∞

Vm(N) = Vm(∞).

3) Next, we establish the third assertion of Theorem 9. Let us consider (40) and pass to the
limit as m→∞. For almost all x ∈ K, we obtain

lim
m→∞E f̃ 0

m(x) = lim
m→∞ fN0(m)(x).

By item (ii) of Corollary 3, N0(m) −−−−→
m→∞ ∞. Hence,

lim
m→∞ fN0(m)(x) = f(x).

This means that the estimator (40) is asymptotically unbiased.
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4) Finally, we demonstrate the consistency of the estimator (40). Due to the Chebyshev inequal-

ity, for any m ∈ Z
+ \ 0 and ε > 0,

P
(∣∣f̃ 0

m(x)− f(x)
∣∣2 � ε

)
� 1

ε
E
∣∣f̃ 0

m(x)− f(x)
∣∣2. (B.15)

We analyze the right-hand side of inequality (43). From (40) it follows that

f̃ 0
m(x)− f(x) = −

∞∑
j=N0(m)+1

cjϕj(x) +
1

m

N0(m)∑
j=0

m∑
k=1

njkϕj(x).

Therefore, E
∣∣f̃ 0

m(x)− f(x)
∣∣2 can be represented as

E
∣∣f̃ 0

m(x)− f(x)
∣∣2 = E

∣∣∣∣∣∣−
∞∑

j=N0(m)+1

cjϕj(x) +
1

m

N0(m)∑
j=0

m∑
k=1

njkϕj(x)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∞∑

j=N0(m)+1

cjϕj(x)

∣∣∣∣∣∣
2

+
1

m

N0(m)∑
j=0

σ2jϕ
2
j (x).

(B.16)

According to Corollary 3 and the conditions of this theorem, the series

∣∣∣∣∣ ∞∑
j=N0(m)+1

cjϕj(x)

∣∣∣∣∣
and

N0(m)∑
j=0

σ2jϕ
2
j (x) are convergent for almost all x ∈ K. As a result, we have

∣∣∣∣∣∣
∞∑

j=N0(m)+1

cjϕj(x)

∣∣∣∣∣∣
2

−−−−→
m→∞ 0,

1

m

N0(m)∑
j=0

σ2jϕ
2
j(x) −−−−→m→∞ 0.

Consequently, for any ε > 0,

lim
m→∞P

(∣∣f̃ 0
m(x)− f(x)

∣∣2 � ε
)
= 0.

The proof of this theorem is complete.

B.8. The proof of Theorem 10. According to the proof of Theorem 7, the standard deviation of
the CPE satisfies the inequalities

2

N0(m)∑
j=0

σ2j
m

� Vm(N0(m)) �
N0(m)∑
j=0

σ2j
m
.

From Theorem 4, Corollary 2, and Theorems 5 and 6 we have the inequality

Vm(N0(m)) = inf
N∈Z+

inf
fm,N (x)∈M2,m(P̃)

E

∫
K

[
f(x)− fN,m(x)

]2
dx (B.17)

=

N0(m)∑
j=0

σ2j
m

+
∞∑

j=N0(m)+1

c2j � 2

N0(m)∑
j=0

σ2j
m

� 2
∞∑
j=0

σ2j
m

=
2σ2

m
.

Since the right-hand side of (B.17) is independent of f(x) ∈ L2(K,Λ), the desired conclusion
follows. The proof of this theorem is complete.
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