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Abstract—The dynamic properties of the response of a one-dimensional elastic mechanical
system to an external mechanical action are examined. Transfer functions are calculated in
two channels: from the force action at one of the system boundaries to the displacement of the
medium sections and to the temperature. The asymptotic behavior of the transfer function is
analyzed for each channel in the neighborhood of the origin on the complex plane. The case of
no heat exchange between the system and the environment is considered separately.
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1. INTRODUCTION

Thermomechanical systems with mechanical vibrations and heat transfer processes are widely
used in modern engineering. Therefore, it is necessary to study the dynamic properties of such
systems in mathematical terms and develop control methods for them.

The literature on the thermoelasticity phenomenon is quite extensive. The early works [1–3] were
followed by [4], where thermoelasticity was investigated as part of general elasticity effects. In the
recent literature, we mention the publications [5–7] devoted to various properties of thermoelastic
media. The book [8] developed a modern theory of thermomechanics of elastoplastic deformation.
A coupled dynamic thermoelasticity problem for a one-dimensional medium was stated in [9].

In this paper, we analyze the dynamic properties of a one-dimensional distributed elastic ther-
momechanical system. The mathematical model of processes in such a system is based on the
classical work [4]. In contrast to [10], the system is subjected to a mechanical (force) action at one
of its boundaries instead of a thermal action. The system dynamics equations have the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂2ϕ

∂t2
= c2

∂2ϕ

∂x2
− β ∂θ

∂x
,

βtherm
∂2ϕ

∂t∂x
+
∂θ

∂t
= a

∂2θ

∂x2
,

(1.1)

where t ≥ 0, 0 ≤ x ≤ l, and a, c, β, and βtherm are positive constants. (For details, we refer, e.g.,
to the monograph [4].)

In these equations, ϕ(x)(t) denotes the displacement of the section located at a distance l − x
from the point of application of the force action; θ(x)(t) is the temperature of the medium in the
section x.
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The initial conditions with respect to the time variable are assumed to be zero. The boundary
conditions are as follows:

a) for the function ϕ, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ϕ

∂x
(0) = 0,

∂2ϕ

∂t2
(l) = u,

(1.2)

where u is the control action (with the physical sense of a mechanical (force) action applied to the
system);

b) for the function θ, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
−λ∂θ

∂x
+ αθ

)
(0) = 0,(

λ
∂θ

∂x
+ αθ

)
(l) = 0,

(1.3)

where α and λ are positive constants.

2. CALCULATION OF THE VECTOR TRANSFER FUNCTION u→ (ϕ(x), θ(x))

We perform the Laplace transform of Eqs. (1.1) with the boundary conditions ((1.2), (1.3)) to
obtain the system of ordinary differential equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

c2
∂2ϕ

∂x2
(x)(p) − p2ϕ(x)(p) − β ∂θ

∂x
(x)(p) = 0,

a
∂2θ

∂x2
(x)(p) − pθ(x)(p) − βthermp

∂ϕ

∂x
(x)(p) = 0,

(2.1)

⎧⎪⎨⎪⎩
∂ϕ

∂x
(0) = 0,

p2ϕ(l) = u,

(2.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂θ

∂x
(0) = κθ(0),

∂θ

∂x
(l) = −κθ(l),

(2.3)

where κ = ∝
λ . In this system, the pair of unknown functions (ϕ(x), θ(x)) consists of the Laplace

images of the desired functions (ϕ(x)(t), θ(x)(t)).

Solving the boundary-value problem (2.1)–(2.3) yields the following expressions for the transfer
functions in the channels u→ ϕ(x) and u→ θ(x).

Theorem 1. The transfer functions of the system in the channels u → ϕ(x) and u → θ(x) are
given by

Wu→ϕ(x) =
a22
ΔA

[
ac2D3(x)− b1pD1(x)

]
− β a21

ΔA
[κaD1(x) + pD0(x)] (2.4)

and

Wu→θ(x) =
a22
ΔA

βthermp
3D0(x)

+
a21
ΔA

[
−ac2D3(x)− κac2D2(x) + b2pD1(x) + κap2D0(x)

]
, (2.5)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 4 2023



STUDYING THE DYNAMIC PROPERTIES 391

respectively. In these formulas, ΔA = a11a22 − a12a21,

a11 = p2
(
ac2D3(l)− b1pD1(l)

)
,

a12 = βp2 (κaD1(l) + pD0(l)) ,

a21 = βthermp
3 (D1(l) + κD0(l)) ,

a22 = ac2D4(l) + 2κac2D3(l) +
(
κ2ac2 − b2p

)
D2(l)− κp (2ap + ββtherm)D1(l)− κ2ap2D0(l),

Dj(x) =
1

R

(
ρ
(j−1)/2
1 sinh (x

√
ρ1)− ρ(j−1)/2

2 sinh (x
√
ρ2)
)

(j = 0; 2; 4),

Dj(x) =
1

R

(
ρ
(j−1)/2
1 cosh (x

√
ρ1)− ρ(j−1)/2

2 cosh (x
√
ρ2)
)

(j = 1; 3),

ρ1,2 =
p (ap+ b1)±R

2ac2
, R = ap

√
(p+ μ)2 + y2, μ =

ββtherm − c2
a

, y = 2
c

a

√
ββtherm,

b1 = ββtherm + c2, b2 = ββtherm + ap.

3. ASYMPTOTIC BEHAVIOR OF TRANSFER FUNCTIONS AS p→ 0

We study the dynamic properties of the system, beginning with the asymptotic behavior of its
transfer functions in the neighborhood of the origin on the complex plane C.

Theorem 2. In the neighborhood of the origin on the plane C, the transfer function Wu→ϕ(x)

can be represented as

Wu→ϕ(x) =
1

p2
(1 +O (p)) (3.1)

and the transfer function Wu→θ(x) as

Wu→θ(x) =
βtherm
6ac2

p

[
x3 − l2 3 + κl

2 + κl

(
x+

1

κ

)
+O (p)

]
. (3.2)

Here, O (p) denotes a function f (p) (p ∈ C) with a bounded ratio f(p)
p as p→ 0.

Thus, the system has the double integrating property in the channel u→ ϕ(x) and the differen-
tiating property in the channel u→ θ(x).

Remark. According to (3.2), the asymptotic formula for the transfer function Wu→θ(x) as p→ 0

includes the ratio 1
κ = λ

∝ . Therefore, the case κ = 0 (no heat exchange with the environment)
should be considered separately; see the next section.

4. THE CASE κ = 0

Wu→ϕ(x) =
a22
ΔA

(
ac2D3(x)− b1pD1(x)

)
− β a21

ΔA
pD0(x), (4.1)

Wu→θ(x) =
a22
ΔA

βthermp
3D0(x) +

a21
ΔA

(
−ac2D3(x) + b2pD1(x)

)
. (4.2)

In this case, the functions ajk (j, k = 1, 2) have the form

a11 = p2
(
ac2D3(l)− b1pD1(l)

)
, a12 = βp3D0(l), a21 = βthermp

3D1(l), (4.3)

a22 = ac2D4(l)− b2pD2(l). (4.4)
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Theorem 3. In the case κ = 0, in the neighborhood of the origin on the complex plane C, the
transfer function Wu→ϕ(x) admits the same representation (3.1) as in the general case (see Theo-
rem 2); the transfer function Wu→θ(x) in this neighborhood can be represented as

Wu→θ(x) = −βtherm
l

2c2
(1 +O (p)) . (4.5)

Thus, in the case κ = 0, the transfer function of the system in the channel u→ θ(x) has a finite
nonzero limit as p→ 0. This property can be called static.

The proofs of Theorems 1–3 are given in Appendices A–C, respectively.

5. CONCLUSIONS

As has been demonstrated by this study, the thermomechanical controlled plant subjected to a
mechanical (force) external action possesses the following dynamic properties: double integration
in the channel from the force action to the displacement of the one-dimensional medium and (but
only under heat exchange with the environment) differentiation in the channel from the force action
to the temperature.

The resulting conclusions should be considered when designing control systems for thermome-
chanical plants with dynamic properties described by (1.1)–(1.3).

According to the results of [10] and this paper, the intrinsic feedback of the plant (from the dis-
placement of the sections to the temperature) complicates the description of its dynamic properties
compared to the case of no feedback, which was investigated in [11].

APPENDIX A

Proof of Theorem 1.

1. We apply the Laplace transform to Eqs. (2.1) with respect to the spatial coordinate x con-
sidering the first boundary condition in (2.2). (For details, see [12, item 80, formulas (6) and (7)].)
As a result, ⎧⎨⎩

(
c2q2 − p2

)
ϕ(q)− βqθ(q) = z1(q),

−βthermqpϕ(q) +
(
aq2 − p

)
θ(q) = z2(q),

(A.1)

where z1(q) = c2qϕ(0)− βθ(0) and z2(q) = aqθ(0) + a ∂θ
∂x(0)− βthermpϕ(0).

In view of these expressions for zi(q), the solution of system (A.1) in
(
ϕ(q), θ(q)

)
is given by

ϕ(q) =
ac2q3ϕ(0) +B1q + βpθ(0)

Δ(q)
, (A.2)

θ(q) =
ac2q3θ(0) + ac2q2 ∂θ

∂x(0) +B2p
2 − b2qpθ(0)

Δ(q)
, (A.3)

where

Δ(q) = ac2
(
q2 − ρ1

) (
q2 − ρ2

)
, ρ1,2 =

p (ap+ b1)±R
2ac2

,

R = ap
√
(p+ μ)2 + y2, μ =

ββtherm − c2
a

, y = 2
c

a

√
ββtherm,

b1 = ββtherm + c2, b2 = ββtherm + ap,

B1 = βa
∂θ

∂x
(0) − b1pϕ(0), B2 = βthermpϕ(0) − a

∂θ

∂x
(0).
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Based on the relation

1

Δ(q)
=

1

R

(
1

q2 − ρ1
− 1

q2 − ρ2

)
, (A.4)

from (A.2) and (A.3) we pass to the original functions with respect to the coordinate x:

ϕ(x) = ac2D3(x)ϕ(0) +D1(x)B1 + βpD0(x)θ(0), (A.5)

θ(x) = ac2D3(x)θ(0) + ac2D2(x)
∂θ

∂x
(0) − b2pD1(x)θ(0) + p2D0(x)B2, (A.6)

where

Dj(x) =
1

R

(
ρ
(j−1)/2
1 sinh (x

√
ρ1)− ρ(j−1)/2

2 sinh (x
√
ρ2)
)

(j = 0; 2),

Dj(x) =
1

R

(
ρ
(j−1)/2
1 cosh (x

√
ρ1)− ρ(j−1)/2

2 cosh (x
√
ρ2)
)

(j = 1; 3).

(The details can be found in [12, item 80, formula (4)].)

Due to (A.5) and the first condition in (2.3), the second boundary condition in (2.2) takes the form

p2
[(
ac2D3(l)− b1pD1(l)

)
ϕ(0) + β (pD0(l) + aκD1(l)) θ(0)

]
= u. (A.7)

According to (A.6), the second condition in (2.3) reduces to

ac2 (D4(l) + κD3(l)) θ(0) + ac2κ (D3(l) + κD2(l)) θ(0)

− b2p (D2(l) + κD1(l)) θ(0) + p2 (D1(l) + κD0(l))
(
βthermpϕ(0) − κaθ(0)

)
= 0, (A.8)

where

D4(l) =
1

R

(
ρ
3/2
1 sinh (x

√
ρ1)− ρ3/22 sinh (x

√
ρ2)
)
.

Conditions (A.7) and (A.8) make up the following system of equations in the vector

(
ϕ(0)

θ(0)

)
:

A

(
ϕ(0)

θ(0)

)
=

(
u
0

)
, (A.9)

where A = (ajk; j, k = 1, 2), a11 = p2
(
ac2D3(l)− b1pD1(l)

)
,

a12 = βp2 (κaD1(l) + pD0(l)) , a21 = βthermp
3 (D1(l) + κD0(l)) ,

a22 = ac2D4(l) + 2κac2D3(l) +
(
κ2ac2 − b2p

)
D2(l)

− κp (2ap+ ββtherm)D1(l)− κ2ap2D0(l).

The solution of system (A.9) is given by(
ϕ(0)

θ(0)

)
=

(
a22
−a21

)
u

ΔA
, (A.10)

where ΔA = a11a22 − a12a21.
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Substituting (A.10) into (A.5) and (A.6) and using the formula for Bi and the first condition
in (2.3), we finally arrive at the following expressions for ϕ(x) and θ(x):

ϕ(x) =
{
a22
[
ac2D3(x)− b1pD1(x)

]
− βa21 [κaD1(x) + pD0(x)]

} u

ΔA
, (A.11)

θ(x) =
{
a22βthermp

3D0(x)

+ a21
[
−ac2D3(x)− κac2D2(x) + b2pD1(x) + κap2D0(x)

]} u

ΔA
. (A.12)

APPENDIX B

Proof of Theorem 2.

1. In the neighborhood of the origin on the plane C, the functions R and ρj (j = 1, 2; see the
explanations for (2.4) and (2.5)) can be represented as

R = b1p (1 +O (p)) , ρ1 =
b1p

ac2
(1 +O (p)) , ρ2 = O

(
p2
)
. (B.1)

2. In the neighborhood of the origin on the plane C, the functions Dj(x) (j = 0÷ 4) can be
represented as follows:

D0(x) =
x3

6

ρ1 − ρ2
R

+O
(
p2
)
=

x3

6ac2
+O

(
p2
)
, (B.2)

D1(x) =
x2

2

ρ1 − ρ2
R

+O
(
p2
)
=

x2

2ac2
+O

(
p2
)
, (B.3)

D2(x) = x
ρ1 − ρ2
R

+O
(
p2
)
=

x

ac2
+O

(
p2
)
, (B.4)

D3(x) =
ρ1 − ρ2
R

+O
(
p2
)
=

1

ac2
+O

(
p2
)
, (B.5)

D4(x) = x
ρ21 − ρ22
R

+O
(
p2
)
= x

ρ1 + ρ2
ac2

+O
(
p2
)
= x

b1
a2c4

p+O
(
p2
)
. (B.6)

3. In the neighborhood of the origin on the plane C, the functions ajk (j, k = 1, 2; see the
explanations for (A.9)) can be represented as follows:

a11 = p2
(
1− b1l

2

2ac2
p+O

(
p2
))

= p2 (1 +O (p)) , (B.7)

a12 = βp2
(

l3

6ac2
p+ κ

l2

2c2
+O

(
p2
))

= βκ
l2

2c2
p2 (1 +O (p)) , (B.8)

a21 = βthermp
3

(
l2

2ac2
+ κ

l3

6ac2
+O

(
p2
))

= βthermp
3 l2

2ac2

(
1 + κ

l

3

)(
1 +O

(
p2
))
, (B.9)

a22 =
b1l

ac2
p+ 2κ+ l

(
κ2 − b2

ac2
p

)
− κp l

2

c2

(
p+

ββtherm
2a

)

− κ2p2 l
3

6c2
+O

(
p2
)
= κ (2 + κl) (1 +O (p)) . (B.10)
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4. In the neighborhood of the origin on the plane C, the function ΔA (see the explanations
for (A.10)) and the ratios

a2j
ΔA

(j = 1, 2; see (2.4) and (2.5)) can be represented as

ΔA = p2κ (2 + κl) (1 +O (p))− p5κββtherml
4

4ac4

(
1 + κ

l

3

)
(1 +O (p))

= p2κ (2 + κl) (1 +O (p)) (B.11)

a21
ΔA

= p
βtherml

2 (1 + κl/3)

2κac2 (2 + κl)
(1 +O (p)) = p

βtherml
2 (3 + κl)

6κac2 (2 + κl)
(1 +O (p)) , (B.12)

a22
ΔA

=
1

p2
(1 +O (p)) . (B.13)

5. In the neighborhood of the origin on the planeC, the transfer functionsWu→ϕ(x) andWu→θ(x)

can be represented as

Wu→ϕ(x) =
1

p2

(
1− p b1

2ac2
x2
)(

1 +O
(
p2
))

− pββtherml
2 (1 + κl/3)

2ac2κ (2 + κl)

(
κ
x2

2c2
+ p

x3

6ac2
+O

(
p2
))

=
1

p2
(1 +O (p)) , (B.14)

Wu→θ(x) = pβtherm

[
x3

6ac2
− l2 (3 + κl)

6ac2κ (2 + κl)

(
1 + κx− px2 b2

2ac2
− p2x3 κ

6c2

)]
(1 +O (p))

= p
βtherm
6ac2

[
x3 − l2 3 + κl

2 + κl

(
x+

1

κ

)]
(1 +O (p)) . (B.15)

APPENDIX C

Proof of Theorem 3.

1. Due to (3.5) and (3.6), in the neighborhood of the origin on the plane C, the functions ajk
(j, k = 1, 2) for κ = 0 can be represented as follows:

a11 = p2 (1 +O (p)) (coincides with (B.7)), (C.1)

a12 = βp3
(

l3

6ac2
+O

(
p2
))

= βp3
l3

6ac2

(
1 +O

(
p2
))
, (C.2)

a21 = βthermp
3

(
l2

2ac2
+O

(
p2
))

= βthermp
3 l2

2ac2

(
1 +O

(
p2
))
, (C.3)

a22 = p
l

ac2
(b1 − b2) +O

(
p2
)
= p

l

ac2

(
c2 − ap

)
+O

(
p2
)
= p

l

a
(1 +O (p)) . (C.4)

2. Consequently,

ΔA = p3
l

a
(1 +O (p))− ββthermp6

l5

12a2c4

(
1 +O

(
p2
))

= p3
l

a
(1 +O (p)) , (C.5)

a21
ΔA

= βtherm
l

2c2
(1 +O (p)) ,

a22
ΔA

=
1

p2
(1 +O (p)) . (C.6)
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3. As a result, we obtain

Wu→ϕ(x) =
1 +O (p)

p2

[
1 +O

(
p2
)
− b1p

(
x2

2ac2
+O

(
p2
))]

− pββtherm
(

lx3

12ac4
+O

(
p2
))

=
1

p2
(1 +O (p)) , (C.7)

Wu→θ(x) = pβtherm
x3

6ac2
(1 +O (p))

+ βtherm
l

2c2
(1 +O (p))

[
pb2

x2

2ac2
− 1 +O

(
p2
)]

= −βtherm
l

2c2
(1 +O (p)) . (C.8)
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