
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2023, Vol. 84, No. 3, pp. 341–364.
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2023.
Russian Text c⃝ The Author(s), 2023, published in Avtomatika i Telemekhanika, 2023, No. 3, pp. 139–168.

OPTIMIZATION, SYSTEM ANALYSIS, AND OPERATIONS RESEARCH

Greedy and Adaptive Algorithms

for Multi-Depot Vehicle Routing

with Object Alternation

S. N. Medvedev
Voronezh State University, Voronezh, Russia

e-mail: s n medvedev@mail.ru

Received July 22, 2022

Revised September 28, 2022

Accepted October 26, 2022

Abstract—This paper considers the multi-depot vehicle routing problem with object alterna-
tion. We propose a formal statement of the problem with two types of objects and a mathemat-
ical model with two blocks of Boolean variables. First, the model is studied without gathering
vehicles (mobile objects). Then, a special object (a single collection point) is introduced in
the model. We show additional constraints of the mathematical model with this object. Spe-
cial attention is paid to the condition of no subcycles. This condition is considered based on
the adjacency matrix. Five greedy algorithms are proposed for solving the problem, two of
which are iterative. One of the greedy algorithms is given a probabilistic modification based
on the randomization of variables (an adaptive algorithm). Finally, the proposed algorithms
are compared in terms of the average value of the objective function and the running time in a
computational experiment. Also, the results of another experiment—the parametric tuning of
the adaptive algorithm—are presented.

Keywords: vehicle routing problem, adaptive algorithm, greedy algorithm

DOI: 10.25728/arcRAS.2023.81.72.001

1. INTRODUCTION

There are two global lines of research on vehicle routing problems (VRP): modeling various
modifications and supplements of the classical problem and developing efficient solution algorithms.

Possible VRP statements were surveyed in [1]. They include the graph statement, the statement
based on mathematical integer programming, two- and three-index statements of the problem, and
the statement based on scheduling theory. Analyzing the latter statement, the author came to the
following conclusion: it is possible to apply heuristics related to the traveling salesman problem to
determine an upper estimate for the number of vehicles required. In the paper [2], the territory
design model of VRP was investigated by introducing additional constraints. This model divides
the customers into zones to find the best routes in each zone. The study [3] was devoted to the
continuous VRP model. Special attention was paid to the analysis of the speed of mobile objects.
The paper [4] presented a mathematical model with the constraints of many well-known VRP
statements. An algorithm based on ant colony optimization with an evolutionary strategy was
developed therein.

The researchers [5] proposed an ant colony optimization algorithm for VRP with an adaptive
gradient descent-based learning mechanism. This approach integrates the classical method (calcu-
lating and putting the pheromone on the route of the best ant in the population) with adaptation
(updating the pheromone matrix adaptively using gradients). According to the results of the cal-
culations, the proposed algorithm yields the best solution compared to other algorithms on all the

341



342 MEDVEDEV

test data considered. In [6], a genetic algorithm was developed for solving a multi-depot VRP
with time windows. Note that it includes a special population initialization technique. Another
approach provided in [7] combines genetic algorithms with ant colony optimization.

In [8, 9], the authors described various mathematical models for VRP with object alternation
and a single collection point, including heuristic algorithms for solving them based on ant colony op-
timization and genetic algorithms. The paper [10] proposed an exact branch-and-bound algorithm
for solving this problem.

Many VRP studies have an application-oriented nature since the scope of such problems is ex-
tremely wide. VRP variations can be used, e.g., when grouping geographical objects into different
clusters [2] for rational planning of sales and transportation processes, maintenance, garbage col-
lection, medical care, etc. Other applications include optimal routing for manned and unmanned
vehicles in urban and intercity transport networks, harvesting in fields, and extinguishing fires by
air and ground means [1, 5, 8]. Also, such problems arise when designing calculations, when certain
processes need to be assigned to several devices [11]. Thus, research focused on the models and
algorithms of various VRP modifications is topical both theoretically and practically.

In this study, we propose a discrete optimization model for the VRP with object alternation and
a single collection point under the condition of no subcycles. (Subcycles are also called subtours
in the literature.) The emphasis below is on constructing a mathematical model with two blocks
of two-index variables and deriving an alternative condition of no subcycles. Also, the problem
statement does not involve a fixed number of mobile objects (vehicles). We develop iterative and
noniterative greedy algorithms for solving the problem and an adaptive algorithm representing
a probabilistic modification of one of the greedy algorithms. With the two blocks of two-index
variables in the mathematical model, we select a block of the adaptive algorithm that does not
require updating the probabilities at each step.

2. PROBLEM STATEMENT

Let us recall the multi-depot VRP statement with object alternation [10].

Consider a set of fixed objects (vertices) of two types: targets (type A) and depots (type B).
The cost of moving between objects is known. Several mobile objects (vehicles) in the aggregate
must visit all the fixed objects of type A with the minimum total cost. Moreover, the targets and
depots must alternate in the routes of vehicles. In addition, each target may be visited once in the
aggregate, whereas any depot may be visited an unlimited number of times. In this case, all mobile
objects start and end their route at some fixed collection point.

The cost can be understood as distance, time, price, etc.

B

B

B

A

A

A

A

Collection
point

Fig. 1. Multi-depot VRP with object alternation and a single collection point.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



GREEDY AND ADAPTIVE ALGORITHMS 343

Note that the number of mobile agents in this problem statement is not specified: several or
only one.

Figure 1 shows a graphical interpretation of this problem: the targets are indicated by circles,
depots by squares, and the collection point by a rectangle. The arcs (dashed and solid) correspond
to some route.

The route in Fig. 1 has two visits to the collection point. According to the classical VRP
interpretation, there are two mobile objects, one moving along dotted arcs and the other along
solid ones. Another interpretation is when only one mobile object visits the collection point twice.
This paper focuses on the number of visits to a single collection point (by one or more vehicles)
rather than on the number of mobile objects.

Note that the need to consider the exact number of available mobile objects will lead to a
different mathematical model and other solution algorithms.

3. THE MATHEMATICAL MODEL

First, we construct a mathematical model of the problem without requiring that all mobile
objects start and end their route at some fixed collection point (Fig. 2).

Let us introduce the following notations:

n is the number of targets (the fixed objects of type A);

m is the number of depots (the fixed objects of type B);

(c1ij)m×n is a matrix specifying the cost of moving between the ith depot (type B) and the
jth target (type A);

(c2ji)n×m is a matrix specifying the cost of moving between the jth target (type A) and the
ith depot (type B).

We define two blocks of variables:

xij , yji = {0, 1}, i = 1, . . . ,m, j = 1, . . . , n.

Here, xij = 1 if the mobile object from the ith depot arrives at the jth target and xij = 0
otherwise.

By analogy, yji = 1 if the mobile object from the jth target arrives at the ith depot and yji = 0
otherwise.

The objective function is to minimize the total cost:

L(X,Y ) =
m∑
i=1

n∑
j=1

(c1ijxij + c2ijyij)→ min, (1)

where X = (xij)m×n and Y = (yji)n×m are the matrices of the corresponding variables.

We proceed to the problem constraints, which form an admissible set of solutions.

B

B

B

A

A

A

A

Fig. 2. Multi-depot VRP with object alternation and without any collection point.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



344 MEDVEDEV

By the problem statement, only one mobile object must arrive at each target and only one
mobile object must depart from each target. This requirement can be written as the nonlinear
constraint (

m∑
i=1

xij

)(
m∑
i=1

yji

)
= 1, j = 1, . . . , n.

It can be replaced by the equivalent constraints

m∑
i=1

xij = 1, j = 1, . . . , n, (2)

m∑
i=1

yij = 1, j = 1, . . . , n, (3)

belonging to the class of constraints of the classical traveling salesman problem. As a result, the
mathematical model of the problem becomes linear.

The following conditions must be considered to make the route of each mobile object inseparable:
if a mobile object arrives at a target, it must also leave this target; if a mobile object departs from
a target, it must also have arrived at this target. Such conditions can be expressed as the nonlinear
constraints (

m∑
i=1

xij

)(
1−

m∑
i=1

yji

)
= 0, j = 1, . . . , n,

(
m∑
i=1

yji

)(
1−

m∑
i=1

xij

)
= 0, j = 1, . . . , n.

They are equivalently transformed to the linear constraint

m∑
i=1

xij =
m∑
i=1

yji, j = 1, . . . , n. (4)

This condition is redundant due to (2) and (3).

Similarly, the following conditions must be considered to ensure the inseparability of a route: if
a mobile object arrives at a depot, it must also leave from this depot; if a mobile object departs
from a depot, it must also have arrived at this depot. Such conditions are written as follows: n∑

j=1

yji

 n∑
j=1

yji −
n∑

j=1

xij

 = 0, i = 1, . . . ,m,

 n∑
j=1

xij

 n∑
j=1

xij −
n∑

j=1

yji

 = 0, i = 1, . . . ,m.

These nonlinear constraints are equivalently transformed to the linear constraint

n∑
j=1

xij =
n∑

j=1

yji, i = 1, . . . ,m. (5)

It means that the number of arrivals at a depot coincides with the number of departures from
this depot.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



GREEDY AND ADAPTIVE ALGORITHMS 345

B

B

B

B

A

A

A

A

A

Fig. 3. Multi-depot VRP with object alternation and a single collection point defined by a “target–depot”
pair.

The constraints (2), (3), and (5) on the variables xij , yji = {0, 1}, i = 1, . . . ,m, j = 1, . . . , n,
form the admissible set of solutions Ω.

Thus, the mathematical model (1)–(3), (5) describes the multi-depot VRP with object alterna-
tion.

Now we consider the case where all mobile objects start and end their route at some fixed
collection point.

For example, the collection point can be a dummy target (an object of type A), a dummy depot
(an object of type B), a pair of dummy objects with the “target–depot” passage direction (A–B),
and a pair of dummy objects with the “depot–target” passage direction (B–A). (For pairs of dummy
objects, the distance between them is 0.)

Each of these cases can be dictated by a particular application. For example, it is convenient to
use the “target–depot” pair (Fig. 3) for vehicles harvesting stacks from a field, the “depot–target”
pair for dump trucks working in a sand pit, a dummy object of type B for airplanes extinguishing
landscape fires, and a dummy object of type A for couriers delivering documents.

This study will use the “target–depot” pair. (As has been already mentioned, a possible appli-
cation is harvesting stacks from a field.) Let targets be stacks and depots be the places or machines
into which stacks are loaded. Obviously, from the collection point the mobile objects (tractors) must
move to the stacks, not to the machines. Similarly, after the last stack is loaded onto the machine,
the tractor must move from it to the collection point. For preserving the alternation, the route must
be as follows: “dummy stack–dummy machine–stack–machine–. . . –stack–machine–dummy stack.”

Thus, the problem under consideration has a collection point given by the “target–depot” pair
(Fig. 3).

We add a dummy target and a dummy depot, assigning the indices j = 0 and i = 0 to them,
respectively. The following conditions are imposed on this pair:

1) A mobile object from the dummy target may arrive at the dummy depot only.

2) A mobile object may not arrive at the dummy target from the dummy depot.

3) A mobile object may not arrive at the dummy depot from a common target.

4) A mobile object may not arrive at a common depot from a dummy target.

It is necessary to introduce the new variables x0j , xi0, yj0, and y0i, j = 0, . . . , n, i = 0, . . . ,m.
Here, x0j ∈ {0, 1}, j = 0, . . . , n, and x0j = 1 if the mobile object from the dummy depot arrives at
the jth target and x0j = 0 otherwise. The variables xi0 ∈ N ∪ {0}, i = 0, . . . ,m, show the number
of visits to the dummy target from the ith depot. Note that x00 = 0 by condition 2. The variables
yj0 = 0 and y0i = 0, j = 1, . . . , n, i = 1, . . . ,m, by conditions 3 and 4, and y00 ∈ N.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



346 MEDVEDEV

The integer variables xi0 and y00 are used instead of the Boolean ones due to the constraint (5)
extended for i = 0 and j = 0. Writing this constraint for i = 0, we obtain

n∑
j=0

x0j =
n∑

j=0

yj0.

If y00 is a Boolean variable (y00 = 1 since the route must be closed), condition 3 leads to

n∑
j=0

x0j =
n∑

j=0

yj0 = y00 = 1,

i.e.,

n∑
j=0

x0j = 1.

Thus, only one mobile object may depart from the dummy depot. This feature does not reflect
the essence of the collection point of mobile objects; in general, it is not true. Therefore, we
introduce a positive integer variable y00.

Similar reasoning yields xi0 ∈ N ∪ {0}, i = 0, . . . ,m. Here, the zero element is added because a
mobile object will not necessarily arrive at the dummy target from each depot.

Consider the additional constraints imposed on dummy objects.

Note that the number of departures from the collection point and the number of arrivals at
the collection point are unknown from the problem statement. Hence, it is impossible to write
the analogs of the constraints (2) and (3) for j = 0. However, we can write an analog of the
constraint (4):

m∑
i=0

xi0 =
m∑
i=0

y0i.

It has the following interpretation: the number of arrivals at the dummy target equals the number
of departures from it.

The extension of the constraint (5) has been described above:

n∑
j=0

x0j =
n∑

j=0

yj0.

In other words, the number of arrivals at the dummy depot equals the number of departures from
it.

According to the aforesaid, the variables yj0 = 0, y0i = 0, j = 1, . . . , n, i = 1, . . . ,m. Therefore,
the two latter equalities can be represented as

m∑
i=0

xi0 = y00,

n∑
j=0

x0j = y00.

As a result, we write another constraint:

m∑
i=0

xi0 =
n∑

j=0

x0j .

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



GREEDY AND ADAPTIVE ALGORITHMS 347

Obviously, it is redundant but reflects an important property of the collection point: the number
of arrivals at this point coincides with the number of departures from it.

Well, the resulting mathematical model has the following form:

L(X,Y ) =
m∑
i=0

n∑
j=0

(c1ijxij + c2ijyij)→ min, (6)

m∑
i=0

xij = 1, j = 1, . . . , n, (7)

m∑
i=0

xi0 = y00, (8)

m∑
i=0

yji = 1, j = 1, . . . , n, (9)

n∑
j=0

x0j = y00, (10)

n∑
j=0

xij =
n∑

j=0

yji, i = 0, . . . ,m, (11)

x00 = 0, (12)

yj0 = 0, j = 1, . . . , n, (13)

y0i = 0, i = 1, . . . ,m, (14)

xij , yij = {0, 1}, i = 1, . . . ,m, j = 1, . . . , n, (15)

x0j = {0, 1}, j = 0, . . . , n, (16)

xi0 ∈ N ∪ {0}, i = 0, . . . ,m, (17)

y00 ∈ N. (18)

For brevity, let K denote the sum
∑n

j=0 x0j (the number of visits to the collection point, either
arrivals or departures).

Note that within this model, the route of any mobile object may contain subcycles. Therefore,
we consider the condition of no subcycles.

4. THE CONDITION OF NO SUBCYCLES

Within the current model, for some mobile object, there may exist an inseparable route not
passing through the dummy pair (the collection point). The case in Fig. 4 is possible and does not
contradict the mathematical model (6)–(18).

Such a solution contains subcycles; see the dotted line in the figure. Thus, it is necessary to
introduce an additional condition of no subcycles into the mathematical model. It can be formulated
in terms of the adjacency matrix.

Definition 1. Two depots l and h are said to be adjacent if there exists a target j such that
xlj = 1 and yjh = 1.

We say that two such depots are connected by a route of length 1 provided that l ̸= h.

If a depot is included in a route, it is supposed adjacent to itself.

Consider the process of constructing the adjacency matrix A = (alh)(m+1)×(m+1), l, h = 0, . . . ,m.
The diagonal elements all are 1 if there exists an index j such that xlj = 1, i.e.,

∑n
j=0 xlj > 1, and

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



348 MEDVEDEV

B

B

B

A

A

A

A

Collection

point

Fig. 4. An inseparable route not passing through the collection point.

are 0 otherwise. The other elements alh, l ̸= h, are 1 if there exists an index j such that xlj = 1
and yjh = 1, i.e.,

∑n
j=0 xljyjh > 1, and are 0 otherwise.

Using the Iverson bracket, these conditions can be written as

all =

 n∑
j=0

xlj > 1

 , alh =

 n∑
j=0

xljyjh > 1

 , l, h = 0, . . . ,m.

Let the adjacency matrix A = (alh)(m+1)×(m+1) of depots be constructed along the route by the
following rule: if there exists an index j such that xlj = 1 and yjh = 1, then alh = 1. The elements
of the matrix A ·A · . . . ·A︸ ︷︷ ︸

k

= Ak = (aklh)(m+1)×(m+1) determine the number of routes of length k

between the corresponding depots [12]. If there are (m+ 1) depots in total, the longest route
between them will have length m. Thus, if the matrix Am contains no zero elements, then it is
possible to move between any pair of depots: they are all connected with each other, and there are
no subcycles in the route.

Consider the matrix AM = (alh)M×M obtained from the matrix A by removing the zero rows and
columns, M 6 m. Consequently, the matrix AM is an adjacency matrix with the depots included
in the route only. If the matrix (AM )k with any number k >M contains no zero elements, then
all the depots included in the route are interconnected.

Thus, the condition of no subcycles can be formulated as follows:

a
(m)
lh > 1, l, h = 0, . . . ,m, (19)

where a
(m)
lh are the elements of the matrix (AM )m constructed for the variables xij and yji.

The constraints (7)–(19) form the admissible set of solutions Ω.

Thus, the objective function (6) and the constraints (7)–(19) describe the mathematical model
of the multi-depot VRP with object alternation and a single collection point.

5. GREEDY HEURISTIC ALGORITHMS

Let us consider a variant of the greedy algorithm for solving the problem. The general idea is
to accept locally optimal solutions at each stage, assuming that the final solution will also turn out
to be optimal. The algorithm consists in constructing a connected route with the nearest object of
the desired type chosen at each stage [13].

In the following, the set of targets will be denoted by J .

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



GREEDY AND ADAPTIVE ALGORITHMS 349

Algorithm 1. The direct greedy algorithm.

1. Specify L = 0, J = {0, . . . , n}, K = 0, and i = 0.

2. If i = 0, then find j′ = argminj∈J\{0}{c1ij};
otherwise, find j′ = argminj∈J{c1ij}.
3. Let xij′ = 1, L = L+ c1ij′ .

4. If j′ = 0, then i′ = 0, let y00 = y00 + 1 and K = K + 1;

otherwise, find i′ = argmini=1,...,m{c2ji} and let yj′i′ = 1 and L = L+ c2j′i′ .

5. If j′ ̸= 0, then update J by J = J\(j′).
6. Check: J = {0}?
If “no,” then let i = i′ and return to Step 2;

If “yes,” then let xi′0 = xi′0 + 1, L = L+ c1i′0, y00 = y00 + 1, and K = K + 1. The answer is
obtained.

At Step 5 of the algorithm, the situation with J = {0} and j′ = 0 is impossible: for j′ = 0,
the set J is not updated; if it contained the zero element, the algorithm would terminate at the
previous step with the previous number j′ ̸= 0. Thus, the “yes” branch of Step 6 will not duplicate
the increase of y00 at Step 4 and will not yield the value x00 = 1. Also, the constraint (11) is
satisfied for i = 0 at Step 6.

The answer is the matrix-form route with length L and K visits to the collection point.

Note that this algorithm provides at least one departure from and one arrival at the collection
point. This is ensured by Steps 1 and 6 on the “yes” branch. Also, the route is closed due to
construction. Thus, the route constraints hold.

Algorithm 1 is an intuitive direct solution of the problem. Each of its steps can be a command
to a mobile object initially located at the collection point.

Another version of the greedy algorithm does not require starting the route at the collection
point. However, it ensures at least one arrival at and one departure from the collection point, i.e.,
meets the constraints. This algorithm starts at an arbitrary depot. Generally speaking, greedy
algorithms do not necessarily start at the first object (the first row of the cost matrix, the first
column, the first city, etc.). The problem under consideration has two types of objects. For each
of them, we develop the corresponding schemes; see Algorithm 2 and Algorithm 4 below.

Algorithm 2. The greedy algorithm for depots.

1. Specify L = 0, J = {0, . . . , n}, K = 0, and an arbitrary index iini = {0, . . . ,m}.
2. If iini = 0, then execute Algorithm 1 and terminate Algorithm 2; otherwise, proceed to Step 3.

3. Let xiini0 = 1, L = L+ c1iini0, y00 = 1, K = K + 1, and i = 0.

4. If i = 0, then find j′ = argminj∈J\{0}{c1ij};
otherwise, find j′ = argminj∈J{c1ij}.
5. Let xij′ = 1 and L = L+ c1ij′ .

6. If j′ ̸= 0, then update J : J = J\(j′).
7. Check: J = {0}?
If “yes,” then go to Step 10;

if “no,” then proceed to Step 8.

8. If j′ = 0, then let i′ = 0, y00 = y00 + 1, and K = K + 1;

otherwise, let i′ = argmini=1,...,m{c2ji}, yj′i′ = 1, and L = L+ c2j′i′ .

9. Let i = i′ and return to Step 4.

10. Let yj′iini = 1 and L = L+ c2j′iini . The answer is obtained.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



350 MEDVEDEV

We emphasize a mandatory pass through the collection site at Step 3 (the beginning of the
algorithm). This step is necessary; otherwise, the algorithm does not ensure visits to dummy
objects. At Step 10, the route becomes closed, i.e., the constraint (11) is satisfied for iini.

This algorithm has an iterative modification: on each iteration, the route construction procedure
starts at a new depot. Here we adopt the classical iterative modification scheme of greedy algorithms
based on enumerating all possible starting points. We propose two iterative greedy algorithms
(Algorithm 3 and Algorithm 5) for the two types of objects.

Algorithm 3. The iterative greedy algorithm for depots.

1. Specify icur = 0 and L∗ =∞.

2. Execute Algorithm 2 with iini = icur. The resulting solution is Licur, (xij)
icur, (yji)

icur, Kicur.

3. Check: Licur < L∗?

If “yes,” then update L∗ by L∗ = Licur , let (xij)
∗ = (xij)

icur , (yji)
∗ = (yji)

icur , and K∗ = Kicur ,
and proceed to Step 4;

otherwise, proceed to Step 4 directly.

4. Check: icur = m?

If “yes,” then go to Step 6.

If “no,” then proceed to Step 5.

5. Let icur = icur + 1 and return to Step 2.

6. The answer L∗, (xij)
∗, (yji)

∗, and K∗ is obtained.

Other variants of the greedy algorithm and its iterative modification consist in starting the route
at some target. In this case, the mandatory passage through the collection point occurs at the end
of the algorithm.

Algorithm 4. The greedy algorithm for targets.

1. Specify L = 0, J = {0, . . . , n}, K = 0 and an arbitrary index jini = {0, . . . , n}.
2. If jini = 0, then let i = 0 and execute Algorithm 1 and terminate Algorithm 4;

otherwise, proceed to Step 3.

3. Let j = jini.

4. If j = 0, then let i′ = 0, y00 = y00 + 1, and K = K + 1;

otherwise, find i′ = argmini=1,...,m{c2ji} and let yji′ = 1 and L = L+ c2ji′ .

5. If j ̸= 0, then update J by J = J\(j).
6. Check: J = {0}?
If “yes,” then go to Step 9;

If “no,” then proceed to Step 7.

7. If i′ = 0, then find j′ = argminj∈J\{0}{c1i′j};
otherwise, find j′ = argminj∈J{c1i′j}.
8. Let xi′j′ = 1, L = L+ c1i′j′ , and j = j′ and return to Step 4.

9. Let xi′0 = xi′0 + 1, L = L+ c1i′0, y00 = y00 + 1, K = K + 1, x0jini = 1, and L = L+ c10jini .
The answer is obtained.

In this algorithm, the route closure at jini and the mandatory visits to dummy objects (the ful-
fillment of the constraints (7) and (9)) occur at Step 9.

Let us also consider an iterative modification of this algorithm.

Algorithm 5. The iterative greedy algorithm for targets.

1. Specify jcur = 0 and L∗ =∞.

2. Execute Algorithm 4 with jini = jcur. The resulting solution is Licur , (xij)
icur , (yji)

icur , Kicur .

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



GREEDY AND ADAPTIVE ALGORITHMS 351

3. Check: Licur < L∗?

If “yes,” then update L∗ by L∗ = Licur , let (xij)
∗ = (xij)

icur , (yji)
∗ = (yji)

icur , and K∗ = Kicur ,
and proceed to Step 4;

otherwise, proceed to Step 4 directly.

4. Check: jcur = n?

If “yes,” then go to Step 6.

If “no,” then proceed to Step 5.

5. Let jcur = jcur + 1 and return to Step 2.

6. The answer L∗, (xij)
∗, (yji)

∗, and K∗ is obtained.

6. THE ADAPTIVE ALGORITHM

Adaptive algorithms [14] are another possible modification of greedy algorithms. They are based
on the transition to a probabilistic problem statement.

An original problem

L(X,Y )→ min
X,Y ∈Ω

is replaced by a probabilistic one of the form

M(L(X,Y ))→ min
{X}:X∈Ω,{Y}:Y ∈Ω

,

where {X} and {Y} denote the sets of random variables X and Y with realizations X and Y,
respectively, from a set Ω.

They have the following structures: X = [X1, . . . ,Xn] is the matrix of dimensions (m+ 1)×
(n+ 1) composed of the rows Xi = (Xi0,Xi1, . . . ,Xin), where Xij is a random variable, i = 0, . . . ,m,
j = 0, . . . , n; Y = [Y1, . . . ,Yn] is the matrix of dimensions (n+ 1)× (m+ 1) composed of the rows
Yj = (Yj0,Yj1, . . . ,Yjm), where Yji is a random variable, i = 0, . . . ,m, j = 0, . . . , n.

Remark 1. To construct the adaptive algorithm, we need only the factual departure of a mobile
object (or its absence) from a depot to the dummy target and the factual departure from the
dummy target to the dummy depot: the number of such departures does not matter. Thus, the
random variables Xi0, i = 0, . . . ,m, and Y00 are supposed to take only two possible values: 0 and 1.

Well, the random variables have the distribution series presented in Table 1.

Table 1. Distribution series

Xij Yji

Values 1 0 Values 1 0

Probabilities p1ij q1ij = 1− p1ij Probabilities p2ij q2ij = 1− p2ij

For each j = 0, . . . , n, we introduce the exhaustive events Aij and Bij as follows. The event Aij

is that xij takes value 1 for some i = 0, . . . ,m and the event Bji is that yji takes value 1 for some
i = 0, . . . ,m:

m∑
i=0

p1ij = 1, j = 0, . . . , n, (20)

m∑
i=0

p2ji = 1, j = 0, . . . , n. (21)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



352 MEDVEDEV

There are no initial assumptions about the possible route, and a mobile object may arrive at the
target from any depot with equal probability. Therefore, considering the set Ω and conditions (20)
and (21), we can define the distributions, e.g., by Table 2.

Table 2. Distribution series

X00 Y00

Values 1 0 Values 1 0

Probabilities p100 = 0 q100 = 1 Probabilities p200 = 1 q200 = 0

Xi0, i = 1, . . . ,m Yj0, j = 1, . . . , n,Y0i, i = 1, . . . ,m

Values 1 0 Values 1 0

Probabilities p1i0 =
1

m
q1i0 =

m− 1

m
Probabilities

p2j0 = 0,

p20i = 0

q2j0 = 1,

q20i = 1

Xij , i = 0, . . . ,m, j = 1, . . . , n Yji, j = 1, . . . , n, i = 1, . . . ,m

Values 1 0 Values 1 0

Probabilities p1ij =
1

m+ 1
q1ij =

m

m+ 1
Probabilities p2ji =

1

m
q2ji =

m− 1

m

In other words, the probability matrices P 1 and P 2 for possible positive values have the form

P 1 = (p1ij)(m+1)×(n+1) =



0
1

m+ 1
. . .

1

m+ 1

1

m

1

m+ 1
. . .

1

m+ 1
...

...
. . .

...

1

m

1

m+ 1
. . .

1

m+ 1


,

P 2 = (p2ij)(n+1)×(m+1) =



1 0 . . . 0

0
1

m
. . .

1

m
...

...
. . .

...

0
1

m
. . .

1

m

 .

The adaptive algorithm rests on Stages I–III [13]:

I. Specify a motion in the set of random variables Xij and Yji.

II. Resolve the local improvement condition (LIC), i.e., the inequality

M
[
L
(
(Xij)

N+1, (Yji)
N+1)− L((Xij)

N , (Yji)
N)] 6 0.

III. Recalculate the probabilities p1ij and p2ji, i = 0, . . . ,m, j = 0, . . . , n, according to the LIC
results.

This algorithm is iterative, and the values (Xij)
N+1 and (Yji)

N+1 on the (N + 1)th iteration
must be chosen to improve the value of the objective function compared to the previous iteration.

The theoretical grounds of the algorithm were presented in [13]. We just recall the necessary
considerations and formulas below.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



GREEDY AND ADAPTIVE ALGORITHMS 353

At Stage I, the motion in the set of random variables is defined by

(X)N+1 = u(X)N + u(χ)N+1,

(Y)N+1 = v(Y)N + v(γ)N+1.

Here, (χ)N+1 and (γ)N+1 are the unknown random variables specifying the direction of motion
on the (N + 1) iteration. Note that (χ)N+1 ∈ X and (γ)N+1 ∈ Y, and the random variables χij

and γji have the distribution series given by Table 3.

Table 3. Distribution series

(χ)ij (γ)ji

Values 1 0 Values 1 0

Probabilities π1
ij 1− π1

ij Probabilities π2
ji 1− π2

ji

For the random variables u and v, the distribution series are given by Table 4.

Table 4. Distribution series

u v

Values 1 0 Values 1 0

Probabilities pu qu = 1− pu Probabilities pv qv = 1− pv

At Stage III, the probabilities are recalculated considering the motion by the formulas

(p1ij)
N+1 = qu(p

1
ij)

N + pu(π
1
ij)

N+1, i = 0, . . . ,m, j = 0, . . . , n,

(p2ji)
N+1 = qv(p

2
ji)

N + pv(π
2
ji)

N+1, i = 0, . . . ,m, j = 0, . . . , n.

The probabilities π1ij and π2ji are found from the LIC (Stage II).

The objective function (6) is representable as the sum of two functions of the variables x and y.
Therefore, the LIC (Stage II) take the form

M
[
LX

(
(Xij)

N+1)− LX

(
(Xij)

N)]+M
[
LY

(
(Yji)

N+1)− LY

(
(Yji)

N)] 6 0.

According to [13], the LIC can be written as

M
[
LX

(
(χij)

N+1)− LX

(
(Xij)

N)]+M
[
LY

(
(γji)

N+1)− LY

(
(Yji)

N)]
=M

[
LX

(
(χij)

N+1)]−M[
LX

(
(Xij)

N)]+M
[
LY

(
(γji)

N+1)]−M[
LY

(
(Yji)

N)] 6 0.

Let Algorithm 4 be basic for the probabilistic modification. In other words, the algorithm finds
the variable yji′ = 1 prior to the variable xi′j′ = 1.

The LIC inequality has an infimum of solutions. We apply the coordinate descent algorithm.

Assume that the lth row of the matrices (c2ji) and γ (i.e., the unknown random variable γl) is

considered on the current (N + 1)th iteration of the algorithm. Suppose that (π2ji)
N+1 = (p2ji)

N ,

i.e., the random variables (γji)
N+1 and (Yji)

N have the same distribution, i = 0, . . . ,m, j ∈ J ,

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



354 MEDVEDEV

j ̸= l. We resolve the inequality for the unknown variable γl:

M
[
LX

(
(χij)

N+1)]−M[
LX

(
(Xij)

N)]+M
[
LY

(
(γji)

N+1)]−M[
LY

(
(Yji)

N)]
=M

[
LX

(
(χij)

N+1)]−M[
LX

(
(Xij)

N)]
+M

 m∑
i=0

c2li(γli)
N+1 +

m∑
i=0

∑
j∈J,j ̸=l

c2ji(γji)
N+1


−M

 m∑
i=0

c2li(Yli)
N +

m∑
i=0

∑
j∈J,j ̸=l

c2ji(Yji)
N

 6 0.

In view of
m∑
i=0

p2li = 1, we fix a realization of the random variable Yl. Let Y l = ei1 , where ei1 is

a unit vector of dimension (n+ 1) with 1 at the i1th position: yli1 = 1, yij = 0, i ̸= i1, j ̸= l. Then

the expression M

[
m∑
i=0

c2li(Yli)
N +

m∑
i=0

∑
j∈J,j ̸=l

c2ji(Yji)
N

]
with Y : Y ∈ Ω takes the form

c2li1 +MY|Y l=ei1

 m∑
i=0

∑
j∈J,j ̸=l

c2ji(Yji)
N

 = c2li1 +
m∑
i=0

∑
j∈J,j ̸=l

c2ji(p
2
ji)

N .

By analogy, for some realization ei2 of the random variable γl, due to γ ∈Y: Y ∈Ω and

(π2ji)
N+1=(p2ji)

N, i=0, . . . ,m, j ∈J , j ̸= l, the expressionM
[

m∑
i=0
c2li(γli)

N+1+
m∑
i=0

∑
j∈J,j ̸=l

c2ji(γji)
N+1

]
takes the form

c2li2 +
m∑
i=0

∑
j∈J,j ̸=l

c2ji(p
2
ji)

N .

As a result, the expression M
[
LY

(
(γji)

N+1
)]
−M

[
LY

(
(Yji)

N
)]

in the LIC inequality becomes

c2li2 + m∑
i=0

∑
j∈J,j ̸=l

c2ji(p
2
ji)

N

−
c2li1 + m∑

i=0

∑
j∈J,j ̸=l

c2ji(p
2
ji)

N

 = c2li2 − c
2
li1 . (22)

Now we study the other part of the LIC inequality.

Consider the i2th row of the matrices (c1ij) and χ, i.e., the unknown random variable χi2 . Assume

that (π1ij)
N+1 = (p1ij)

N , i.e., the random variables (χij)
N+1 and (Xij)

N have the same distribution,

i = 0, . . . ,m, i ̸= i2, j ∈ J . We resolve the inequality for the unknown variable χi2 .

Let the realization of the random row Xi2 be fixed, e.g., on the previous iteration of the algorithm,
i.e., Xi2 = el1,...,lL , where el1,...,lL is the vector of zeros of dimension (n+ 1) with 1 at the positions
l1, . . . , lL. In this case, xi2l1 = 1, . . . , xi2lL = 1. In view of X : X ∈ Ω (the constraint (7)), the math-

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



GREEDY AND ADAPTIVE ALGORITHMS 355

ematical expectation M
[
LX

(
(Xij)

N
)]

=M

∑
j∈J

c1i2j(Xi2j)
N +

m∑
i=0
i ̸=i2

∑
j∈J

c1ij(Xij)
N

 takes the form

c1i2l1 + . . .+ c1i2lL +MX|Xi2=el1,...,lL

 m∑
i=0
i ̸=i2

∑
j∈J,j ̸=l1,...,j ̸=lL

c1ij(Xij)
N


= c1i2l1 + . . .+ c1i2lL +

m∑
i=0
i ̸=i2

∑
j∈J,j ̸=l1,...,j ̸=lL

c1ij(p
1
ij)

N

= c1i2l1 + . . .+ c1i2lL +
m∑
i=0
i̸=i2

∑
j∈J

c1ij(p
1
ij)

N

−

 m∑
i=0
i̸=i2

c1il1(p
1
il1)

N + . . .+ c1ilL(p
1
ilL

)N

 .

Some index lk = 0 (if any) will not affect the sum in the expectation formula.

Note that several unit variables xij , j ∈ J may be selected on one iteration. However, there
may exist only one such variable at each step of the algorithm. Thus, one value xi2q = 1
is selected at the current step of the algorithm, i.e., the intermediate realization eq of χi2 is
fixed. Due to χ∈X : X ∈Ω and (π1ij)

N+1 = (p1ij)
N , i = 0, . . . ,m, i ̸= i2, j ∈ J , the expression

M
[
LX

(
(χij)

N+1
)]

=M

∑
j∈J

c1i2j(χhj)
N+1 +

m∑
i=0
i̸=i2

∑
j∈J

c1ij(χij)
N+1

 takes the form

c1i2q +
m∑
i=0
i̸=i2

∑
j∈J,j ̸=q

c1ij(p
1
ij)

N = c1i2q +
m∑
i=0
i̸=i2

∑
j∈J

c1ij(p
1
ij)

N −

 m∑
i=0
i̸=i2

c1iq(p
1
iq)

N

 .

Then the expression M
[
LX

(
(χij)

N+1
)]
−M

[
LX

(
(Xij)

N
)]

in the LIC inequality becomes

c1i2q + m∑
i=0
i ̸=i2

∑
j∈J

c1ij(p
1
ij)

N −

 m∑
i=0
i̸=i2

c1iq(p
1
iq)

N




−

c1i2l1 + . . .+ c1i2lL +
m∑
i=0
i̸=i2

∑
j∈J

c1ij(p
1
ij)

N −

 m∑
i=0
i̸=i2

c1il1(p
1
il1)

N + . . .+ c1ilL(p
1
ilL

)N




=

c1i2q −
 m∑

i=0
i̸=i2

c1iq(p
1
iq)

N


−

c1i2l1 + . . .+ c1i2lL −

 m∑
i=0
i ̸=i2

c1il1(p
1
il1)

N + . . .+ c1ilL(p
1
ilL

)N


 6 0.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



356 MEDVEDEV

Considering (22), the LIC is finally reduced to

c2li2 − c
2
li1 +

c1i2q − m∑
i=0
i ̸=i2

c1iq(p
1
iq)

N



−

c1i2l1 + . . .+ c1i2lL +

 m∑
i=0
i ̸=i2

c1il1(p
1
il1)

N + . . .+
m∑
i=0
i ̸=i2

c1ilL(p
1
ilL

)N


 6 0 (23)

or, equivalently, c2li2 + c1i2q −
m∑
i=0
i̸=i2

c1iq(p
1
iq)

N



−

c2li1 + c1i2l1 + . . .+ c1i2lL +

 m∑
i=0
i̸=i2

c1il1(p
1
il1)

N + . . .+
m∑
i=0
i̸=i2

c1ilL(p
1
ilL

)N


 6 0. (24)

Well, under the fixed realization Y l = ei1 of the random variable Yl on the previous iteration,
the LIC inequalities (23) will hold if the indices i2 and q are chosen by minimizing the values c2li2

and

c1i2q − m∑
i=0
i̸=i2

c1iq(p
1
iq)

N

 . (Recall that the random variable Xi2 is fixed on the previous iteration:

Xi2 = el1,...,lL .)

As a result, the unknown values (γ)N+1 are given by

(γlµ)
N+1 : π2lµ = 1 if min

i=0,...,m
{c2li} = c2lµ,

(γli)
N+1 : π2li = 0, for i = 0, . . . ,m, i ̸= µ,

(γj)N+1 = (Yj)N+1.

At Stage III, the probabilities are recalculated as follows:

(p2lµ)
N+1 = qν(p

2
lµ)

N + pν , (25)

(p2li)
N+1 = qν(p

2
li)

N for i = 0, . . . ,m, i ̸= µ, (26)

(p2ji)
N+1 = (p2ji)

N for i = 0, . . . ,m, i ∈ J, j ̸= l. (27)

The value (χ)N+1 is given by

(χµν)
N+1 : π1µν = 1 if min

j∈J

c1µj −
 m∑

i=0
i̸=µ

c1ij(p
1
ij)

N


 = c1µν −

 m∑
i=0
i̸=µ

c1iν(p
1
iν)

N

 ,
(χiν)

N+1 : π1iν = 0 for i = 0, . . . ,m, i ̸= µ,

(χij)
N+1 = (Xij)N+1 for i = 0, . . . ,m, j ∈ J, j ̸= ν.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



GREEDY AND ADAPTIVE ALGORITHMS 357

The probabilities are recalculated as follows:

(p1µν)
N+1 = qu(p

1
µν)

N + pu, (28)

(p1iν)
N+1 = qu(p

1
iν)

N for i = 0, . . . ,m, i ̸= µ, (29)

(p1ij)
N+1 = (p1ij)

N for i = 0, . . . ,m, i ∈ J, j ̸= ν. (30)

The probabilities are not involved in choosing the minimum element of the matrix (c2ij). Hence,
the algorithm will correctly work without recalculating the probability matrix (p2ij) by formu-
las (25)–(27).

The resulting probabilities (28)–(30) must be recalculated using the absolute probability formula
assuming the uniform distribution of all the hypotheses involved:

(p)N+1 =
N

N + 1

(
(p)N +

1

N
(p)N+1

)
. (31)

Here (p)N+1 is the absolute probability and (p)N+1 is the conditional probability obtained by
formulas (28)–(30).

Thus, the probabilities are adjusted or adapted at each stage based on the previous iterations
of the algorithm.

With the proposed solution of the LIC inequality, we modify Step 6 of Algorithm 4 as follows:

Given i′, find

j′ = argmin
j∈J

c1i′j −
 m∑

i=0
i ̸=i′

c1ij(p
1
ij)

N


 .

Therefore, the adaptive algorithm for solving the problem includes several steps.

Algorithm 6. The adaptive algorithm.

1. Specify the record value L∗ =∞, the maximum number Nmax of iterations, the current
iteration number N = 1, the initial probability distribution (p1ij)

N (Table 2), and pu.

2. Specify L = 0, J = {0, . . . , n}, K = 0, and j = 0.

3. If j = 0, then let i′ = 0, y00 = y00 + 1, and K = K + 1;

otherwise, find i′ = argmini=1,...,m{c2ji} and let yji′ = 1 and L = L+ c2ji′ .

4. If j ̸= 0, then update J by J = J\(j).
5. Check: J = {0}?
If “yes,” then go to Step 10;

if “no,” then move to Step 9.

6. If i′ = 0, then find j′ = argminj∈J\{0}

c1i′j −
 m∑

i=0
i̸=i′

c1ij(p
1
ij)

N


 ;

otherwise, find j′ = argminj∈J

c1i′j −
 m∑

i=0
i̸=i′

c1ij(p
1
ij)

N


.

7. Update the probabilities by formulas (28)–(30).

8. Update the absolute probabilities by formula (31).

9. Let xi′j′ = 1, L = L+ c1i′j′ , and j = j′ and return to Step 3.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



358 MEDVEDEV

10. Let xi′0 = xi′0 + 1, L = L+ c1i′0, y00 = y00 + 1, K = K + 1, x0jini = 1, and L = L+ c10jini .

The resulting solution on the current iteration is LN , (xij)
N , (yji)

N , and KN .

11. Check: LN < L∗?

If “yes,” then update L∗ by L∗ = LN , let (xij)
∗ = xNij , (yji)

∗ = yNji , and K
∗ = KN and proceed

to Step 12;

otherwise, proceed to Step 12 directly.

12. Check: N = Nmax?

If “yes,” then go to Step 14;

otherwise, proceed to Step 13.

13. Let N = N + 1 and return to Step 2.

14. The answer L∗, (xij)
∗, (yji)

∗, and K∗ is obtained.

7. A COMPUTATIONAL EXPERIMENT

The proposed algorithms were implemented on the C# language in Visual Studio 2019. A com-
putational experiment was carried out on a PC (CPU Intel Pentium N4200 1.1GHz, 4GB RAM,
64-bit operating system) to compare the performance of the algorithms.

For the experiment, we generated cost matrices of different dimensions, 500 matrices for each
case. The distances between objects were taken as the cost. The problem dimensions were chosen
based on practical considerations that the number of depots is often much smaller than that of
targets. The tables below show the results, including the average values of the objective function
and the number of visits to the collection site (K). Note that the dimensions in the tables are
without the dummy objects of types A and B.

Algorithms 2 and 4 are executed as Algorithm 1 in the case of zero initial indices. Therefore, in
the experiment, their initial indices were set equal to 1. Note also that the results for Algorithm 1
are omitted in the tables, as they are similar to those of Algorithm 2.

Table 5 provides the values of the objective function L∗ and the obtained value K∗. For the
adaptive Algorithm 6, we selected the following parameters: Nmax = 100 and pu = 0.1.

In Table 5, the best (or two close) values of the objective function for each dimension are set
in bold. Note that for most test data, the best results are obtained by the adaptive algorithm;
also, good results are shown by Algorithm 5 (the iterative algorithm for targets). The value of the
objective function grows with increasing the number of targets (the objects of type A). This result
seems obvious: the number of visits for mobile objects raises accordingly. On the other hand, the
value of the objective function declines with increasing the number of depots (the objects of type B),
which is due to the higher variability of possible routes when mobile objects return from targets.
Among the noniterative Algorithms 2 and 4, the best results are demonstrated by Algorithm 2. On
the contrary, its iterative modification (Algorithm 3) has a worse performance than the iterative
Algorithm 5. This is due to the higher variability of choice when enumerating targets than when
enumerating depots.

As has been emphasized, the purpose of this paper is to compare the greedy algorithm with the
adaptive algorithm and perform the corresponding analysis. However, based on the publication [10]
with similar test data for the exact algorithm, we arrive at the following conclusion: the results
of the adaptive algorithm are 2–15% worse than the optimal value, depending on the problem
dimension.

According to [15], the optimal value of K is 1 in the case of distance-based cost. This outcome is
confirmed by the experiment above. In Table 5, the smallest values of K correspond to the smallest
values of the objective function. An additional regression analysis was performed to find a linear

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



GREEDY AND ADAPTIVE ALGORITHMS 359

Table 5. Objective function values and the number of mobile objects

Type B Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5 Algorithm 6
× (iter.) (iter.) (adapt.)

Type A

L∗ K∗ L∗ K∗ L∗ K∗ L∗ K∗ L∗ K∗

1× 10 1106 1.932 1106 1.932 1155 1.87 1071 1.298 1086 1

1× 30 3188 3.67 3188 3.67 3255 3.582 3159 2.716 3052 1.002

1× 50 5261 5.478 5261 5.478 5334 5.398 5237 4.502 4989 1.006

1× 100 10513 10.012 10513 10.012 10591 9.932 10496 9.038 9891 1.012

2× 10 723 1.004 711 1.004 778 1.006 709 1.001 768 1.034

2× 30 1960 1.005 1956 1.002 2043 1.004 1954 1.001 2033 1.116

2× 50 3211 1.004 3207 1.002 3303 1.01 3206 1.001 3298 1.258

2× 100 6356 1.007 6354 1.003 6460 1.02 6353 1.003 6461 1.526

5× 10 677 2.092 652 2.092 701 1.884 618 1.444 612 1.078

5× 30 1516 1.798 1488 1.798 1592 2.334 1476 1.484 1447 1.11

5× 50 2802 3.88 2770 3.88 2854 3.8 2745 3.21 2657 1.37

5× 100 5447 2.02 5439 2.02 5547 2.024 5426 1.384 5428 1.816

8× 10 598 1.512 583 1.512 644 1.648 564 1.162 553 1.042

8× 30 1554 3.508 1550 3.508 1643 3.522 1529 2.626 1425 1.202

8× 50 2383 2.726 2368 2.726 2439 2.878 2336 2.146 2281 1.28

8× 100 5097 5.268 5041 5.268 5117 5.236 4981 4.13 4740 1.636

10× 10 564 1.644 545 1.644 598 1.678 513 1.17 510 1.04

10× 30 1282 3.08 1277 3.08 1349 3.022 1233 2.08 1168 1.126

10× 50 2287 2.498 2283 2.498 2362 2.62 2259 1.804 2215 1.214
10× 100 3465 6.13 3384 6.13 3443 5.512 3331 4.898 3255 1.566

Table 6. The coefficients of determination

Type B R-squared Type B R-squared Type B R-squared
× value × value × value

Type A of model 1 Type A of model 2 type A of model 3

1× 10 0.429364 1× 10 1× 10
1× 30 0.840595 1× 30 0.98947 2× 10
1× 50 0.938962 1× 50 5× 10 0.561744
1× 100 0.984294 1× 100 8× 10
2× 10 0.359795 2× 10 10× 10
2× 30 0.311298 2× 30 0.995703 1× 30
2× 50 0.369441 2× 50 2× 30
2× 100 0.997976 2× 100 5× 30 0.684219
5× 10 0.599609 5× 10 8× 30
5× 30 0.91009 5× 30 0.984412 10× 30
5× 50 0.788263 5× 50 1× 50
5× 100 0.219113 5× 100 2× 50
8× 10 0.789282 8× 10 5× 50 0.666925
8× 30 0.775139 8× 30 0.994379 8× 50
8× 50 0.854995 8× 50 10× 50
8× 100 0.964218 8× 100 1× 100
10× 10 0.759837 10× 10 2× 100
10× 30 0.797575 10× 30 0.904579 5× 100 0.653224
10× 50 0.729778 10× 50 8× 100
10× 100 0.751988 10× 100 10× 100

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



360 MEDVEDEV

Table 7. Comparison of iterative Algorithms 3, 5, and 6

Type B Algorithm 3 Algorithm 5 Algorithm 6 Algorithm 6
× (iter.) (iter.) (adapt.) (adapt.) 100 it.

Type A

10× 10 545 513 523 510
30× 30 936 892 856 844
50× 50 1300 1223 1159 1152
100× 100 1647 1547 1501 1501

relationship between K and the values of the objective function. The model was assessed using
three data sets: the first model was constructed on the values of all algorithms for one dimension;
the second model, for a fixed number of depots (the objects of type B) based on the results of the
adaptive algorithm; the third model, for a fixed number of targets (the objects of type A) based
on the results of the adaptive algorithm. Table 6 shows the coefficients of determination of these
models.

For the first data set, we see a very pronounced linear dependence in most cases (the coefficient
of determination is close to 1), but there are dimensions with unconfirmed linear dependence (set
in bold in the table). The second data set validated the linear dependence of K on the values of
the objective function. In the third case, the coefficient of determination varies from 0.56 to 0.66,
which cannot confirm the linear dependence.

Based on this table, we can hypothesize the linear (or almost linear) dependence of K on the
values of the objective function. However, this issue needs a detailed study, going beyond the scope
of the paper.

In Table 5, the fixed value Nmax = 100 was chosen for the adaptive algorithm in all dimensions.
However, in iterative greedy algorithms, the number of iterations varies depending on the problem
dimension. Three iterative algorithms were compared under the same number of iterations. For
this purpose, we generated additional cost matrices of dimensions 30× 30, 50× 50, and 100× 100.
The results are presented in Table 7, which has two columns for the adaptive Algorithm 6. In the
first case, the number of iterations was equal to the problem dimension, coinciding with the number
of iterations of Algorithms 3 and 5; in the second case, Nmax = 100.

Clearly, Algorithm 3 (the iterative algorithm for depots) has worse performance than Algorithm 5
(the iterative algorithm for targets). The adaptive Algorithm 6 gives a better or similar result under
the same number of iterations as the other algorithms; moreover, this algorithm improves its own
result under more iterations.

Table 8 presents a similar comparative analysis. Here, the adaptive algorithm is compared to
Algorithm 5 under the same number of iterations. The data from Table 5 with Nmax = 100 are
provided as well.

Algorithm 5 produces significantly better results than the adaptive Algorithm 6 only in the
problems with 2 depots (the objects of type B).

Table 9 shows the running time of the algorithms in milliseconds.

Obviously, Algorithms 2 and 4 work very fast. The iterative Algorithm 3 for depots does so as
well, and its running time is more dependent on the number of depots. The running time of the
iterative Algorithm 5 depends on the number of targets, significantly exceeding that of Algorithm 3
since the number of targets is greater than the number of depots. The adaptive Algorithm 6 works
much longer than the others. This result is due to a given number of iterations, recalculation of
probabilities, and, most importantly, additional computation of the sums to find the minimum
(Step 6). Additional modifications to the procedures for calculating and recalculating these sums
would significantly improve its running time.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



GREEDY AND ADAPTIVE ALGORITHMS 361

Table 8. Comparison of iterative Algorithms 5 and 6

Type B Algorithm 5 Algorithm 6 Algorithm 6
× (iter.) (iter.) (adapt.) 100 it.

Type A

1× 10 1071 1086 1086
1× 30 3159 3052 3052
1× 50 5237 4989 4989
1× 100 10496 9891 9891
2× 10 709 768 768
2× 30 1954 2033 2003
2× 50 3206 3298 3298
2× 100 6353 6461 6461
5× 10 618 616 612
5× 30 1476 1451 1447
5× 50 2745 2658 2657
5× 100 5426 5428 5428
8× 10 564 564 553
8× 30 1529 1431 1425
8× 50 2336 2283 2281
8× 100 4981 4740 4740
10× 10 513 523 510
10× 30 1233 1175 1168
10× 50 2259 2217 2215
10× 100 3331 3255 3255

Table 9. Running time of algorithms

Type B Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5 Algorithm 6
× (iter.) (iter.) (adapt.)

Type A

1× 10 < 0.001 < 0.001 < 0.001 0.002 23.19
1× 30 < 0.001 < 0.001 < 0.001 1.006 51.738
1× 50 0.012 0.001 0.002 4.37 74.648
1× 100 < 0.001 0.002 < 0.001 28.63 95.238
2× 10 < 0.001 < 0.001 < 0.001 0.003 22.236
2× 30 < 0.001 < 0.001 < 0.001 1.002 44.26
2× 50 < 0.001 0.002 0.001 4.324 66.134
2× 100 0,004 0.014 0.002 27.744 119.342
5× 10 < 0.001 < 0.001 < 0.001 0.004 23.758
5× 30 < 0.001 < 0.001 0.001 1.006 49.384
5× 50 < 0.001 0.004 < 0.001 4.67 81.254
5× 100 < 0.001 1 < 0.001 30.418 185.048
8× 10 < 0.001 0.001 < 0.001 0.002 25.652
8× 30 < 0.001 0.001 < 0.001 1.036 63.858
8× 50 < 0.001 0.01 < 0.001 4.766 95.93
8× 100 < 0.001 2.002 < 0.001 29.062 217.754
10× 10 < 0.001 < 0.001 < 0.001 0.004 25.658
10× 30 < 0.001 0.001 < 0.001 1.038 56.93
10× 50 < 0.001 0.144 < 0.001 4.876 97.696
10× 100 < 0.001 2.83 < 0.001 30.914 238.14

An important advantage of the adaptive Algorithm 6 compared to Algorithms 2–5 is the presence
of tunable parameters: pu and Nmax. Their competent choice can improve the search capabilities
of the algorithm.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



362 MEDVEDEV

Table 10. The effect of parameter pu
pu 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5× 30 1447 1457 1466 1473 1479 1485 1490 1494 1498 1503

pu 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

5× 30 1438 1439 1439 1441 1441 1442 1444 1445 1446 1447

pu 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

5× 30 1485 1460 1450 1445 1443 1441 1439 1438 1439 1438

Table 11. The effect of iterations

Nmax 10 20 30 40 50 60 70 80 90 100

5× 30 1495 1466 1454 1448 1445 1442 1440 1439 1438 1438

Nmax 100 200 300 400 500 600 700 800 900 1000

5× 30 1438 1437 1436 1436 1436 1436 1436 1436 1436 1436

Tables 10 and 11 show the tuning results for these parameters. In Table 10, Nmax = 100.

During the first experiment, we varied the parameter pu from 0.1 to 1. As was discovered, the
results improve with decreasing the values of this parameter. Therefore, the values from 0.01 to 0.1
were taken for the next experiment; the results were better for smaller values. However, in the
third experiment with the values from 0.001 to 0.01, this trend disappeared, and further decrease
of the parameter pu led to higher values of the objective function. Thus, the optimal value of the
parameter pu was found to be 0.01. However, this parameter value is optimal for the dimension
5× 30.

The next experiment was conducted to tune the maximum number of iterations Nmax under the
given value pu = 0.01.

Recall that the algorithm depends on the probabilities that are changed and adjusted between
iterations. Therefore, it seems reasonable to expect better results from increasing the number
of iterations. This hypothesis was confirmed in the two experiments performed. Note that the
algorithm has a noticeable improvement in the results when increasing the maximum number of
iterations from 10 to 100; however, the increase from 100 to 1000 changes the results by 2 units
only. Moreover, increasing the maximum number of iterations further to 5000 even reduces the
value of the objective function by 1 unit, to 1435. Thus, the number of iterations above 100 does
not significantly improve the results of the algorithm.

Based on the results of the experiments, we can draw the following general conclusions:

1. Noniterative greedy algorithms are fast, but their results are worse compared to the other
algorithms.

2. Iterative greedy algorithms improve the results of noniterative algorithms but take longer
to execute. The iterative algorithm for targets gives the average value of the objective function
smaller than the iterative algorithm for depots. This outcome equally applies to the case with more
targets than depots (i.e., a different number of iterations in the algorithms) and the case with equal
targets and depots (i.e., the same number of iterations in the algorithms).

3. The adaptive algorithm yields a smaller value of the objective function than the other
algorithms, but its running time is much higher. This result is again confirmed for the different
number of iterations in the adaptive algorithm compared to the iterative greedy ones.

4. The adaptive algorithm depends on the parameters and their proper tuning can improve the
performance.

5. The value K is hypothesized to have a linear dependence on the values of the objective
function.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



GREEDY AND ADAPTIVE ALGORITHMS 363

8. CONCLUSIONS

This paper has presented the multi-depot vehicle routing problem with object alternation. Math-
ematical models with two blocks of variables have been constructed for the problem with and with-
out a single collection point. Greedy, iterative greedy, and adaptive algorithms have been proposed
for solving the problem with a single collection point. The algorithms have been implemented on
the C# language in Visual Studio 2019, and a computational experiment has been conducted; see
the main results in the corresponding section. In the future, a detailed study should address the
dependence of the value K on the values of the objective function. Since the adaptive algorithm
strongly depends on the parameters, further research should aim at finding their optimal values
depending on the problem dimension. It is also necessary to consider the functional change of the
parameter pu depending on the current iteration number or the Hamming distance between two
solutions.

REFERENCES

1. Benediktovich, V.I., Demidenko, V.M., Dymkov, M.P., and Brilevskii, A.O., Vehicle Routing Models
and Their Application in Logistic Supply Chains of Commodity Distribution Networks, in Ekonomika,
modelirovanie, prognozirovanie (Economics. Modeling. Forecasting), vol. 6, 2012, pp. 94–106.

2. Litvinchev, I.S., Cedillo, G., and Velarde, M., Integrating Territory Design and Routing Problems, J.
Comput. Syst. Sci. Int., 2017, vol. 56, no. 6, pp. 969–974. https://doi.org/10.1134/S1064230717060120

3. Kosonogova, L.G., Koroleva, A.A., and Dubasov, A.V., Analysis of the Optimal Traffic Flow Distribution
When Routing the Number of Vehicles, Vestnik: Nauchnyi Zhurnal , 2021, no. 6(48), pp. 81–85.

4. Yusupova, N.I. and Valeev, R.S., A Routing Problem for the Delivery of a Homogeneous Product to
Various Clients by Motor Vehicles, Modern High Technologies, 2020, no. 4, pp. 84–88.

5. Zhou, Y., Li, W., Wang, X., Qiu, Y., and Shen, W., Adaptive Gradient Descent Enabled Ant
Colony Optimization for Routing Problems, Swarm and Evolutionary Computation, 2022, vol. 70(3),
art. no. 101046. https://doi.org/10.1016/j.swevo.2022.101046

6. Ramalingam, A. and Vivekanandan, K., Genetic Algorithm Based Solution Model for Multi-depot Ve-
hicle Routing Problem with Time Windows, International Journal of Advanced Research in Computer
and Communication Engineering , 2014, vol. 3, no. 11, pp. 8433–8439.

7. Mazidi, A., Fakhrahmad, M., and Sadreddini, M., A Meta-heuristic Approach to CVRP Problem: Local
Search Optimization Based on GA and Ant Colony, Journal of Advances in Computer Research, 2016,
vol. 7, no. 1, pp. 1–22.

8. Medvedev, S.N., Medvedeva, O.A., Zueva, Y.R., and Chernyshova, G.D., Formulation and Algorithmiza-
tion of the Interleaved Vehicle Routing Problem, Journal of Physics: Conference Series, 2019, vol. 1203,
art. no. 012053. https://doi.org/10.1088/1742-6596/1203/1/012053

9. Medvedev, S., Sorokina, A., and Medvedeva, O., The Vehicle Routing Problem for Several Agents among
the Objects of Two Types, Proc. 2019 XXI International Conference “Complex Systems: Control and
Modeling Problems” (CSCMP), Samara, 2019, pp. 535–540.

10. Medvedev, S.N., A Mathematical Model and an Algorithm for Solving a Multi-Depot Vehicle Routing
Problem with a Single End Point, Proceedings of Voronezh State University. Series: Systems Analysis
and Information Technologies, 2021, no. 1, pp. 21–32. https://doi.org/10.17308/sait.2021.1/3368

11. Kenzin, M.Y., Bychkov, I.V., and Maksimkin, N.N., Rich Vehicle Routing Problem for the Multi-robot
Environmental Monitoring, Izvestiya SFedU. Engineering Sciences, 2019, no. 7, pp. 82–92.

12. Christofides, N., Graph Theory. An Algorithmic Approach, Academic Press, 1975.

13. Gol’shtein, E.G. and Yudin, D.B., Zadachi lineinogo programmirovaniya transportnogo tipa (Transporta-
tion Linear Programming Problems), Moscow: Nauka, 1969.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



364 MEDVEDEV

14. Medvedev, S.N. and Medvedeva, O.A., An Adaptive Algorithm for Solving the Axial Three-Index As-
signment Problem, Autom. Remote Control , 2019, vol. 80, no. 4, pp. 718–732.

15. Medvedev, S.N., On the Optimal Solution of the Vehicle Routing Problem with Object Alternation
and a Single Collection Point, Trudy Vserossiiskoi nauchnoi konferentsii “Sovremennye metody priklad-
noi matematiki, teorii upravleniya i komp’yuternykh tekhnologii” (PMTUKT-2021) (Proc. All-Russian
Sci. Conf. “Modern Methods of Applied Mathematics, Control Theory and Computer Technolgies”
(AMCTCT-2021)), Voronezh, 2021, pp. 97–101.

This paper was recommended for publication by A.A. Lazarev, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023


