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Abstract—This paper considers aircraft landing on a carrier. We propose two schemes for cal-
culating, first, the probability of a go-around due to disengaging the arresting gear and, second,
the maximum descent of the aircraft’s trajectory with respect to the deck level immediately
after leaving the deck. The instant to increase the aircraft’s thrust before touching the deck
is a control parameter affecting these characteristics. The requirements imposed on the prob-
ability of a go-around and the maximum descent of the aircraft’s trajectory allow determining
an admissible range for the thrust increase instant. Numerical results are presented for a real
aircraft landing on a real carrier.
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1. PROBLEM DESCRIPTION

As is well known, landing represents the most difficult and important stage of flight. The issues
of accurate and safe aircraft landing, particularly on carriers, were considered by many domestic
and foreign researchers; for example, see [1–13]. For a shipborne aircraft, additional complications
arise because the landing surface is movable and limited in length. As a result, tougher requirements
are applied for the accuracy of landing on carriers. This landing process has the following specifics:
with the help of a hook, the aircraft should engage one of the arresting gear cables stretched across
the landing section of the deck. If this engagement does not occur, the aircraft runs on the deck
to take off and perform a go-around.1 The number of such go-arounds is quite large, constituting
1–2% of the total number of landings according to available statistics.

In the case of disengaging the arresting gear, due to the small time of running on the deck
(1.5–2 s), the pilot does not manage to reach the required velocity at the instant of turning off.
As a result, immediately after leaving the deck, gravity prevails over the lifting force, and the
initial section of the aircraft’s trajectory has some descent with respect to the deck level. Under
fixed angles of attack and pitch at the instant of leaving the deck and a given elevator control law,
the maximum descent is uniquely determined by the aircraft’s velocity at the instant of leaving
the deck. To prevent water contact and ensure successful take-off, it is necessary to reduce the

1 Of course, the go-around maneuver can be decided before the expected instant of touching the deck if it becomes
clear that, for one reason or another, the probability of a successful landing is not high enough. This aspect of
landing on carriers was discussed in detail in [10].
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maximum descent as much as possible. The remedy is to increase the aircraft’s velocity at the
instant of leaving the deck.

The increase in velocity can be achieved through an additional aircraft’s thrust. Due to lagging, it
takes some time. Therefore, in the case of disengaging the arresting gear, the pilot must increase the
aircraft’s thrust before the expected instant of touching the deck to increase the velocity significantly
while the aircraft is moving on the deck. In this case, the following circumstance should be taken
into consideration. If the aircraft’s thrust is increased early, the velocity of leaving the deck will
be high and the maximum descent will be small. But an early increase in the aircraft’s thrust will
appreciably raise the landing velocity, causing a tendency to fly over the arresting gear zone (and
reduce the probability of a successful landing). If the increase in the aircraft’s thrust occurs late,
the aircraft will have an insufficient velocity of leaving the deck and an unacceptably high value of
the maximum descent in the case of disengaging the arresting gear.

Thus, we face the issue of finding an admissible range of instants to increase the aircraft’s thrust.
On the one hand, it is necessary to ensure a sufficiently high probability of a successful landing. On
the other hand, in the case of disengaging the arresting gear, it is necessary to reduce the maximum
descent to avoid a water touch. This paper aims to provide an answer.

2. THE PROPOSED SOLUTION SCHEME

We consider only the longitudinal motion of the aircraft. A landing trajectory without thrust
until the instant of touching the deck under no perturbations will be called the nominal trajectory.
The nominal trajectory is a straight line; see the sloping dashed line in Fig. 1. In the absence
of pitching, it intersects the deck at a given point O (Fig. 1). Let sag denote the length of the
deck section occupied by the arresting gear. To describe the landing trajectory, we introduce the
auxiliary planes A–A, B–B, C–C, C1–C1, D–D, and E–E that are perpendicular to the vertical
plane of the motions of the aircraft and ship. This plane coincides with that of Fig. 1. The lines
A–A, B–B, C–C, C1–C1, D–D, and E–E are the projections of the corresponding planes on the
plane of Fig. 1. The plane A–A is at a distance of a 2.5-second flight along the nominal trajectory
until touching the deck. In the ship-fixed coordinate system, this plane is stationary. The plane
B–B corresponds to the thrust increase instant: the pilot increases the engine thrust when the
aircraft crosses the plane B–B. The planes C–C and C1–C1 are associated with the ship and limit
the deck section occupied by the arresting gear. The plane D–D is also associated with the ship
and corresponds to the instant of leaving the deck in the case of disengaging the arresting gear.
In this paper, we assume that the arresting gear engagement does not occur only when flying over
the zone sag. Otherwise, the arresting gear is supposed engaged with probability 1. Finally, the
plane E–E corresponds to the instant of reaching the maximum descent by the aircraft after leaving
the deck.
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The proposed solution scheme is as follows. The probability Pag of flying over the arresting gear
zone sag (the probability of disengaging the arresting gear) is determined depending on the thrust
increase instant tth of the aircraft by the method2 described in [5, 13]; also, see the books [2, 9].
Random perturbations are atmospheric turbulence and pitching. The analysis below deals with the
trajectories corresponding to the factual overflight of the arresting gear zone. As it turns out, under
the given thrust increase instant tth, the magnitude v = |v| of the aircraft’s velocity vector v at the
instant of leaving the deck and the maximum descent |Hds| almost do not depend on the point of
initial contact of the aircraft with the deck: they are uniquely determined by the instant tth and
the angle θ between the vector v and the horizontal plane at the instant of leaving the deck. Hence,
the aircraft’s motion on the deck and after leaving the deck can be simplified to a deterministic
setting. In other words, the value Hds as a function of the variables tth and θ can be found by
numerically integrating the motion equations.

As a result, we obtain two functions Pag(tth) and Hds(tth, θ). There are conventional constraints
on Pag and Hds (for the latter function, in the absence of pitching, i.e., θ = 0). Therefore, we
make another simplification, neglecting pitching when the aircraft runs on the deck. The range of
admissible instants tth will be determined from satisfying these constraints on Pag and Hds.

3. THE PROBABILITY OF DISENGAGING THE ARRESTING GEAR

Assume that the aircraft’s thrust F (t) grows exponentially starting from the thrust increase
instant tth, i.e.,

F (t) =


F0 for t 6 tth

F0 +∆F

(
1− exp

{
− t− tth

τ

})
for t > tth,

(1)

where the constant τ characterizes the engine acceleration time and F0 and ∆F are some fixed
values. The aircraft hits the ship’s stern with a negligible probability.3 Hence, the probability
of disengaging the arresting gear, supposed equal to the probability of flying over the arresting
gear zone sag, can be calculated as the difference Pag = 1− P , where P denotes the probability of
landing on the deck section between the stern cut line and the line coinciding with the last arresting
gear cable (the right end of the section sag in Fig. 1).

To find the probability P, we use the method described in [5, 13]. This method consists in
linearizing the aircraft’s motion equations (equations (9) from the paper [5]) in a neighborhood of
the nominal landing trajectory along which the aircraft moves in the absence of perturbations. The
distinction from the papers [5, 13] has a purely technical nature: the nominal landing trajectory
below is a straight line only up to the thrust increase instant tth, deviating from the straight line
after this instant due to the new thrust law (1); in [5, 13], the aircraft’s thrust was considered
constant until touching the deck.

The calculations were performed for ∆F = F0, i.e., the aircraft’s thrust after the instant tth
asymptotically increased twice. We considered three values of the constant τ characterizing the
engine acceleration time: τ = 1 s, τ = 1.5 s, and τ = 2 s. The same automatic feedback control law
was applied to the same aircraft as in the papers [5, 13]. This aircraft is identical to the shipborne
MiG-29K by performance characteristics. The resulting values of the probability Pag are presented
in Table 2. The value ∆t = tland − tth on the horizontal axis of Fig. 2, determining the thrust
increase instant tth, is the time between the instant tth and the expected instant tland of touching
the deck in the case of no thrust increase. The values of the probability Pag to plot the graphs in
Fig. 2 are given in the Appendix; see Table 1.

2 This method is based on the results originally obtained in [14] and subsequently refined in [15, 16].
3 It is less than 10−5 under moderate sea state; see [1].
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4. AIRCRAFT’S VELOCITY AT THE INSTANT OF TOUCHING THE DECK

This velocity is necessary to find the descent Hds. Let the longitudinal motion of the aircraft
in a turbulent atmosphere be described by system (9) from [5]. We find the velocity in a deter-
ministic problem statement (no atmospheric turbulence and pitching). In the ship-fixed coordinate
system Oxy (Fig. 3), the system (9) mentioned above yields

m
dv

dt
= F (t) cosα−mg sin(ϑ− α)− qSCx

mv
d(ϑ− α)

dt
= qSCy + F (t) sinα−mg cos(ϑ− α)

dϑ

dt
= ωz

Iz
dωz

dt
= qSbAmz

dy

dt
= v sin(ϑ− α)

dx

dt
= v cos(ϑ− α)− V.

(2)

All the notations used here were described in detail in [5, 13]. They are conventional for aircraft
flight dynamics problems. In particular,

Cy = Cy0 + Cα
y α+ Cδ

yδ, Cx = Cx0 +AC2
y ,

mz = mz0 +mα
zα+mδ

zδ +
bA
v0
mw̄z

z wz, q =
ρv2

2
,

where: δ is the deviation of the longitudinal control lever; v is the magnitude of the aircraft’s
velocity vector in the stationary Earth-based coordinate system; Cy0, C

α
y , C

δ
y , A, Cx0, m

α
z , m

δ
z,

mz0, and m
w̄z
z are the aerodynamic coefficients of the aircraft; w̄z =

wzbA
v0

; Cx is the dimensionless
coefficient of the aerodynamic drag component X (Fig. 4): Cx = |X|/qS; Cy is the dimensionless
coefficient of the aerodynamic lift component Y: Cy = |Y|/qS; bA is the mean aerodynamic wing
chord; mz is the dimensionless coefficient of the longitudinal moment Mz: Mz = mzqSbA; Iz is the
corresponding moment of inertia of the aircraft; ϑ is the pitch angle, i.e., the angle between the
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fuselage axis and the horizontal plane; S is the wing planform area; finally, g = |g|, where g is the
gravity vector.

Let the control law for δ be the same as in the papers [5, 13]. With this control law, the system
of equations (2) becomes closed and can be integrated numerically.

According to real observations, in the case of disengaging the arresting gear, the aircraft’s
velocity at the instant of leaving the deck is almost independent of the point of initial contact with
the deck and is uniquely determined by the instant tth. Therefore, as the point of initial contact
with the deck, we can choose the point N (i.e., the aircraft touches the deck immediately after the
last arresting gear cable, see Fig. 3). Furthermore, we can find the aircraft’s velocity vtc at the
instant of touching as vtc = v(ttc), where the function v(t) is obtained by integrating system (2)
numerically and the instant ttc is determined in advance from the condition x(ttc) = sag (Fig. 3).

For the three values of the engine acceleration time τ (τ = 1 s, τ = 1.5 s, and τ = 2 s), the
velocities vtc calculated depending on the instant tth are presented in the Appendix, see Table 3.

5. AIRCRAFT’S VELOCITY AT THE INSTANT OF LEAVING THE DECK

The aircraft’s motion on the deck is described by the equation

m
dv

dt
= F (t)− ρv2

2
SCx − fG, (3)

where G = mg, f denotes the friction coefficient, and ρ is sea level atmospheric density. Let α ≡ 0
and δ ≡ 0 when the aircraft is on the deck. We represent v(t) as the sum

v(t) = vtc +∆v(t), ttc 6 t 6 tlv,

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023
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where tlv is the instant of leaving the deck. Note that ∆v(t)≪ vtc due to the small time tlv − ttc
of running on the deck. Therefore, we linearize equation (3) with respect to the function ∆v(t) to
obtain

d∆v

dt
+ ρ

Cx

m/S
vtc∆v = g

(
F0

G
− f − Cx

m/S

ρv2tc
2

)
+ g

F (t)− F0

G
,

where Cx = Cx0 +AC2
y0 because α = δ = 0, and ∆v(ttc) = 0. Solving this equation, we arrive at

the explicit formula

∆v(t) =
b1 + g∆F0/G

a1

(
1− exp{−a1(t− ttc)}

)
+
g∆F0

G

τ

1− a1τ
exp

{
− ttc − tp

τ

}(
exp

{
− t− ttc

τ

}
− exp{−a1(t− ttc)}

)
, ttc 6 t 6 tlv,

where

a1 = ρ
Cxvtc
m/S

, b1 = g

(
F0

G
− f − Cx

m/S

ρv2tc
2

)
.

Let T denote the aircraft’s running time on the deck from the instant ttc to the instant tlv, i.e.,
T = tlv − ttc, and let L denote the length of the deck section between the points of touching and
leaving by the aircraft (the instants ttc and tlv). As has been emphasized in Section 4, the aircraft’s
velocity at the instant of leaving the deck is almost independent of the point of initial contact with
the deck. Therefore, we assume that L = NK (Fig. 3) and, consequently,

NK =

ttc+T∫
ttc

(vtc +∆v(t)− V )dt =

(
vtc − V +

b1 + g∆F0/G

a1

)
T

+
g∆F0

G

τ2

1− a1τ
exp

{
− ttc − tp

τ

}(
1− exp

{
−T
τ

})

−
(
b1 + g∆F0/G

a1
+
g∆F0

G

τ

1− a1τ
exp

{
− ttc − tp

τ

})
1− exp{−a1T}

a1
.

Hence, T satisfies the equation

T = ψ(T ), (4)

where

ψ(T ) = ψ̃(T )
/(

vtc − V +
b1 + g∆F0/G

a1

)
,

ψ̃(T ) = NK +

(
b1 + g∆F0/G

a1
+
g∆F0

G

τ

1− a1τ
exp

{
− ttc − tp

τ

})

×1− exp{−a1T}
a1

− g∆F0

G

τ2

1− a1τ
exp

{
− ttc − tp

τ

}(
1− exp

{
−T
τ

})
.

The solution of (4) is found by the method of successive approximations:

T = lim
n→∞

Tn, Tn = ψ(Tn−1), n = 1, 2, . . . ,
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where T0 is an initial approximation. The aircraft’s velocity vlv at the instant of leaving the deck
is given by

vlv = vtc +∆v(ttc + T ),

where ∆v(ttc + T ) is the value of the function ∆v(t) for t = ttc + T . The numerical calculations
were performed for the ship characteristics corresponding to the aircraft carrier Admiral Kuznetsov.
The calculation results for the velocity vlv as a function of the thrust increase instant tth in the
three cases (the engine acceleration times τ = 1 s, τ = 1.5 s, and τ = 2 s) are presented in the
Appendix; see Table 4.

6. THE MAXIMUM DESCENT OF THE AIRCRAFT’S TRAJECTORY
AFTER LEAVING THE DECK

After leaving the deck, the aircraft’s motion is considered in the deterministic statement. In
other words, it is described by system (2) with the following initial conditions:

v = vlv, α = 0, ϑ = 0, ωz = 0, y = 0, x = sag +NK, (5)

where NK is the length of the deck section between the points N and K (Fig. 3). By assump-
tion, the deviation δ of the longitudinal control lever is constant and can be determined from the
balancing condition

mz0 +mα
zα+mδ

zδ = 0

with α = αbal = 15◦.

The maximum descent |Hds| (Fig. 1), representing the minimum value of the coordinate y, is
obtained by integrating numerically system (2) with the initial conditions (5). The resulting graphs
of Hds are shown in Fig. 5. As in Fig. 2, the value ∆t = tland − tth on the horizontal axis of Fig. 5,
determining the thrust increase instant tth, is the time between the instant tth and the expected
instant tland of touching the deck in the case of no thrust increase. The values of the descent Hds

to plot the graphs in Fig. 5 are given in the Appendix; see Table 2.
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7. ADMISSIBLE THRUST INCREASE INSTANTS

When choosing admissible thrust increase instants, a common technique is to consider con-
straints on the probability Peb of landing on the emergency barrier instead of the probability Pag

of disengaging the arresting gear. The probability Peb is set equal to the probability of disengaging
the arresting gear after n landing approaches, i.e., Peb = Pn

ag. Due to limited fuel reserves, the
value n = 3 is often chosen, and consequently, Peb = P 3

ag.

The aircraft can be seriously damaged during landing on the emergency barrier. According
the existing standards [1], Peb < 10−4, which is equivalent to Pag < 0.0464. Considering the above
results for Pag, we arrive at the following constraints on the time ∆t :

∆t < ∆tmax, where ∆tmax =


1.40 s for τ = 1 s
1.65 s for τ = 1.5 s
1.85 s for τ = 2 s.

In other words, we have the following picture for different engine acceleration times τ : for τ = 1 s,
the thrust should be increased not earlier than 1.40 s before the expected instant of touching the
deck; for τ = 1.5 s, not earlier than 1.65 s before the expected instant of touching the deck; for
τ = 2 s, not earlier than 1.85 s before the expected instant of touching the deck.

Now we study the constraints imposed on ∆t due to the limited maximum descent of the aircraft’s
trajectory after leaving the deck. In the previous section, we have determined the descent without
pitching. Clearly, in the presence of pitching, the maximum descent increases noticeably due to
leaving the deck with negative angles θ. Nevertheless, the descent is normalized in the absence of
pitching under the assumption that it will increase with pitching. For example, according to the
norms for US shipborne aircraft and carriers [1], the maximum descent in the absence of pitching
must satisfy the condition Hds > −3 m. Let us follow this criterion for the example above, where
the numerical values of the parameters characterize the aircraft and carrier under consideration.
As it turns out, thrust may remain the same up to the instant of touching the deck, and the only
constraint on the thrust increase instant is the condition ∆t < ∆tmax. However, this condition,
among other factors, is determined by the carrier’s height above the water surface. When a stricter
condition is imposed on Hds, e.g., Hds > −2 m, we arrive at a bilateral constraint on ∆t :

∆tmin < ∆t < ∆tmax, where ∆tmin =


0.30 s for τ = 1 s
0.75 s for τ = 1.5 s
1.20 s for τ = 2 s.

In other words, we have the following picture for different engine acceleration times τ : for
τ = 1 s, the thrust should be increased not earlier than 1.40 s but not later than 0.3 s before the
expected instant of touching the deck; for τ = 1.5 s, not earlier than 1.65 s but not later than 0.75 s
before the expected instant of touching the deck; for τ = 2 s, not earlier than 1.85 s but not later
than 1.20 s before the expected instant of touching the deck.

8. CONCLUSIONS

This paper has proposed an algorithm for finding an admissible range of the thrust increase
instant for aircraft landing on a carrier. Based on the previously published results, we have proposed
two schemes for calculating, first, the probability Pag of disengaging the arresting gear and, second,
the maximum descentHds of the aircraft’s trajectory with respect to the deck level immediately after
leaving the deck (if the arresting gear is not engaged). The probability Pag and the descent Hds

have been calculated numerically as functions of the thrust increase instant. As a result, the
conventional constraints on Pag and Hds have been adopted to determine an admissible range for
the thrust increase instant. The proposed scheme has been numerically implemented for the landing
process of the real shipborne aircraft MiG-29K on the real carrier Admiral Kuznetsov.
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APPENDIX

Table 1

∆t, s
Pag

τ = 1 s τ = 1.5 s τ = 2 s

0.2 0.0081 0.0079 0.0078

0.3 0.0086 0.0082 0.0079

0.4 0.0090 0.0085 0.0081

0.5 0.0096 0.0088 0.0083

1.0 0.0172 0.0129 0.0108

1.5 0.0545 0.0302 0.0206

1.7 0.1003 0.0498 0.0307

1.8 0.1385 0.0658 0.0389

1.9 0.1917 0.0885 0.0501

2.0 0.2635 0.1202 0.0658

2.1 0.3562 0.1642 0.0876

2.2 0.4689 0.2237 0.1178

2.3 0.5945 0.3015 0.1592

2.4 0.7205 0.3987 0.2148

2.5 0.8312 0.5123 0.2873

Table 2

∆t, s
Hds, m

τ = 1 s τ = 1.5 s τ = 2 s

0.2 −2.052 −2.334 −2.590
0.3 −1.993 −2.270 −2.523
0.4 −1.937 −2.208 −2.458
0.5 −1.881 −2.147 −2.394
1.0 −1.633 −1.871 −2.099
1.5 −1.425 −1.635 −2.844
1.7 −1.352 −1.552 −1.752
1.8 −1.317 −1.512 −1.708
1.9 −1.284 −1.473 −1.666
2.0 −1.251 −1.436 −1.625
2.1 −1.220 −1.400 −1.585
2.2 −1.190 −1.365 −1.546
2.3 −1.161 −1.332 −1.509
2.4 −1.133 −1.299 −1.472
2.5 −1.106 −1.268 −1.437

Table 3

∆t, s
vtc, m/s

τ = 1 s τ = 1.5 s τ = 2 s

0.2 67.210 67.039 66.944

0.3 67.389 67.174 67.053

0.4 67.591 67.322 67.173

0.5 67.786 67.482 67.304

1.0 68.930 68.407 68.079

1.5 70.166 69.464 68.991

1.7 70.664 69.904 69.380

1.8 70.912 70.125 69.577

1.9 71.157 70.348 69.776

2.0 71.402 70.570 69.976

2.1 71.644 70.793 70.177

2.2 71.883 71.014 70.379

2.3 72.120 71.235 70.581

2.4 72.354 71.455 70.783

2.5 72.585 71.674 70.985

Table 4

∆t, s
vlv, m/s

τ = 1 s τ = 1.5 s τ = 2 s

0.2 76.941 75.952 75.208

0.3 77.198 76.192 75.430

0.4 77.453 76.433 75.652

0.5 77.705 76.674 75.876

1.0 78.929 77.859 76.991

1.5 80.077 78.997 78.084

1.7 80.153 79.436 78.511

1.8 80.727 79.651 78.722

1.9 80.935 79.865 78.931

2.0 81.142 80.075 79.137

2.1 81.345 80.283 79.342

2.2 81.543 80.487 79.545

2.3 81.739 80.689 79.746

2.4 81.931 80.888 79.944

2.5 82.120 81.084 80.140
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