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Abstract—Control of any robotic system cannot be executed without a preliminary solution of
the inverse kinematic problem. This problem implies determining the control actions of the
actuators required to perform a given motion trajectory and embedded into the control system.
The current study considers the inverse kinematics of a hybrid (parallel-serial) manipulator with
five degrees-of-freedom (5-DOF). The article first briefly describes the manipulator structure,
which includes 3-DOF parallel and 2-DOF serial parts, and then explains an algorithm for
solving the inverse kinematics. The algorithm relies on the product-of-exponentials (PoE)
formula applied to an equivalent manipulator with a serial structure. The proposed algorithm
results in a closed-form solution with no assumptions about the manipulator geometry. A case
study confirms the algorithm correctness. The method for solving the inverse kinematic problem
can be adapted for other hybrid manipulators.

Keywords: manipulator, parallel-serial (hybrid) structure, kinematic analysis, inverse kinema-
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1. INTRODUCTION

Hybrid manipulators—mechanical devices that consist of several kinematic chains with a parallel
and/or serial structure—serve as a basis for many robotic systems [1]. The advanced characteristics
of these manipulators include an increased workspace [2] and the ability to pass over or avoid
singular configurations [3].

The current article considers a class of hybrid manipulators with five degrees-of-freedom (DOFs),
in which a serial kinematic chain is stacked over the parallel one. There are several known manipu-
lators of this type, for example: CaHyMan—a manipulator with a 3-DOF parallel part and a 2-DOF
serial part [4]; a machine tool with a 2-DOF parallel part and a 3-DOF serial part [5]; a polishing
machine with a 3-DOF parallel module, which provides a vertical motion and a rotation about the
horizontal axes, and a 2-DOF serial module for positioning about these axes [6].

Within the control problem of robotic systems (in particular, the hybrid manipulators), one has to
find a solution to the inverse kinematic problem (inverse positioning problem). This problem implies
determining displacements of the actuators required to perform a given motion trajectory of the
output link. The problem is crucial because its solution is embedded directly into the manipulator
control system.

Multiple studies have proposed methods for solving the inverse kinematics of hybrid manipu-
lators. One of the first works in this field was [7], where the problem solution involved solving
three sextic algebraic equations; the solution was found by numerical methods. The author of [8]
matched the initial hybrid manipulator with an equivalent serial one; the closed-form solution was
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found from the kinematic relations, derived by the classical Denavit-Hartenberg method [9, p. 506]
and homogeneous matrices. A similar Denavit-Hartenberg method was applied to other hybrid
manipulators in [10] (together with a geometrical approach) and [5, 11]. Work [12] also represented
the initial hybrid manipulator as an equivalent serial one, but its authors used the product-of-
exponentials (PoE) formula [9, p. 119] instead of the Denavit-Hartenberg method. Papers [13, 14]
implemented this formula too. Structural and geometrical features of the manipulators in the men-
tioned studies [12–14] allowed their authors to find a closed-form solution to the inverse kinematics.
Such features, together with the kinematic decoupling between the translational and rotational
motions of the output link, allowed the authors of [15] to consider the serial and parallel parts of
the manipulator separately and get a simplified solution. Papers [3, 16–19] analyzed kinematics of
other manipulators: most algorithms relied on algebraic or geometric approaches specific to each
manipulator.

Earlier, [1] introduced several novel hybrid manipulators, but the inverse kinematics, related
directly to the manipulator control problem, was solved for only one of them [20]. The current
study continues these articles and considers the inverse kinematics of another hybrid manipulator,
described in the subsequent section.

The article has the following organization. Section 2 describes the manipulator structure. Sec-
tion 3 develops an algorithm for solving the inverse positioning problem, and Section 4 considers a
numerical example, which implements the proposed algorithm. Section 5 discusses the algorithm
features and briefly compares it with other studies. Section 6 summarizes the results and mentions
directions for future research. The article also includes two appendices: Appendix A outlines the
theoretical foundations behind the proposed algorithm, and Appendix B contains expressions for
coefficients used in equations.

2. MANIPULATOR STRUCTURE

Figure 1 illustrates the kinematic scheme of the considered manipulator and has the following
notations: 1—base; 2, . . . , 5—intermediate links; 6—platform; 7—carriage; 8—output link. The
manipulator includes a parallel part, formed by links 1, . . . , 6, and a serial part, formed by links 7
and 8. Intermediate links 2, . . . , 5 are coupled with base 1 and platform 6 by revolute (R) joints;
links 2 and 3 are coupled by a revolute joint, and links 4 and 5—by a prismatic (P) joint. Thus,
there are two RRR and two RPR kinematic chains between platform 6 and base 1. All the revolute
joints mentioned above have parallel axes—such a structure provides platform 6 with a 3-DOF
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Fig. 1. Kinematic scheme of the considered manipulator.
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planar motion. Carriage 7 couples with platform 6 by a prismatic pair and with output link 8 by
a revolute one; thus, output link 8 has two DOFs relative to platform 6 and five DOFs relative to
base 1. Output link 8 misses one DOF—rotation about the axis orthogonal to the axes of all the
revolute joints. Therefore, we can consider output link 8 has three translational and two rotational
DOFs.

In Fig. 1, parameters q1, . . . , q6 represent the actuated (controlled) joints of the manipulator:
• q1 and q2 correspond to the actuator rotations in chains RRR;
• q3 and q4 correspond to the actuator translations in chains RPR;
• q5 corresponds to the actuator translation of carriage 7;
• q6 corresponds to the actuator rotation of output link 8.
One can see the manipulator is redundantly actuated: four actuators displace platform 6 relative

to base 1, while it has three DOFs. Although such a structure requires coordinated operation of
the actuators, this redundancy allows increasing the manipulator stiffness and excluding singular
configurations, inherent to parallel manipulators [21]. Furthermore, the fourth kinematic chain
makes the manipulator symmetric and increases its workspace dimensions for operations with long-
length objects, and these operations are one application of the considered manipulator [1].

3. INVERSE KINEMATICS

The inverse kinematic problem aims to determine displacements in the actuated joints when
the output link configuration is given. Hence, we should first consider how to describe these dis-
placements and configuration. We can represent the former by vector q =

[
q1 . . . q6

]T
∈ R6 of

actuated coordinates, which correspond to the previous section. Configuration of the output link
can be described by vector pS ∈ R3, which defines a position of some point S on the output link,
and unit vector n̂ ∈ R3, ∥n̂∥2 = 1, which defines its orientation (Fig. 2a). Parameters pS and n̂
are set relative to stationary reference frame OXY Z, located on the manipulator base. Since the
output link has only two rotational DOFs, vector n̂ suffices to describe its orientation (there is no
need to use a rotation matrix).

Thus, the inverse kinematics has reduced to finding vector-function f : R3 × R3 → R6:

q = f(pS , n̂), ∥n̂∥2 = 1. (1)

We can represent a method for solving the inverse kinematics as follows.

(a) (b)

Fig. 2. Kinematic analysis: (a)—reference frames and actuated coordinates; (b)—equivalent kinematic chain
with a serial structure.
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According to the manipulator structure, the platform performs a planar motion with three DOFs.
We can imagine the platform couples to the base by a “virtual” PPR kinematic chain; the axes of
the prismatic pairs are parallel to the motion plane, and the axis of the revolute pair is orthogonal
to it (Fig. 2b). Thus, we can consider a connection between the base and the output link as an
equivalent serial kinematic chain with a PPRPR structure. As we will see next, such a representation
allows using familiar methods, relevant for serial manipulators, to the hybrid manipulator.

Let SXSYSZS be a reference frame attached to the output link. We can define the frame
configuration relative to frame OXY Z by matrix TS ∈ SE(3):

TS =

[
û v̂ n̂ pS

0 0 0 1

]
, (2)

where û and v̂ are unit vectors, which form a right-hand orthonormal system with vector n̂; as we
will see later, directions of these two vectors do not affect the inverse kinematics and can be selected
arbitrarily.

Considering the PPRPR serial kinematic chain mentioned above, we can use the PoE formula
to express matrix TS (see Appendix A and equation (A.2)):

TS =

(
5∏

i=1

e[ξi]θi

)
MS , (3)

where MS ∈ SE(3) is a matrix, which defines position and orientation of the output link in some
initial configuration of the manipulator; i is an index number of a chain joint, counting from the
base, i = 1, . . . , 5; ξi ∈ R6 is a unit twist, corresponding to the axis of the ith joint in the manipu-
lator initial configuration; [ξi] is a matrix representation of twist ξi according to equations (A.1)
and (A.3); θi is a displacement in the ith joint.

For the considered PPRPR chain, twists ξi and displacements θi will have the following expres-
sions according to equation (A.1) and Fig. 2b:

ξ1 =

[
03×1

ŝ1

]
, ξ2 =

[
03×1

ŝ2

]
, ξ3 =

[
ŝ3

r3 × ŝ3

]
, ξ4 =

[
03×1

ŝ4

]
, ξ5 =

[
ŝ5

r5 × ŝ5

]
, (4)

θ1 = y, θ2 = z, θ3 = φ, θ4 = q5, θ5 = q6, (5)

where ŝ1, . . . , ŝ5 are unit vectors parallel to the axes of the corresponding joints; r3 and r5 are vectors,
which define coordinates of arbitrary points on the axes of the corresponding joints; y and z are
platform translations along vectors ŝ1 and ŝ2 (the choice of such notations will become clear later);
φ is a platform rotation along the axis defined by vector ŝ3.

Parameters MS , ŝ1, . . . , ŝ5, r3, and r5 depend on the manipulator design and location of
frames OXY Z and SXSYSZS , so we can consider them as known. Thus, for given matrix TS ,
equation (3) represents a system of equations with variables θi, i = 1, . . . , 5, defined in equation (5).
To simplify the solution without loss of generality, we can place frame OXY Z such that axis OX is
orthogonal to the plane, which is parallel to the axes of both P pairs of the PPR “virtual” kinematic
chain (Fig. 2b). In this case, we can direct these axes parallel to axes OY and OZ, so we get:

ŝ1 =
[
0 1 0

]T
, ŝ2 =

[
0 0 1

]T
, ŝ3 =

[
1 0 0

]T
. (6)

Let us substitute equations (2) and (4)–(6) into equation (3) and consider the equation that
corresponds to the first row and the third column of equation (3). This equation depends only on
variable q6 and has the following expression:

a1 cos q6 + b1 sin q6 + c1 = 0, (7)
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where a1, b1, and c1 are coefficients, which are known when solving the inverse kinematics and given
in Appendix B.

We can find a solution of equation (7) as follows [22, p. 29]:

q6 = 2arctan
b1 ±

√
a21 + b21 − c21
a1 − c1

. (8)

The equation above has a real solution if the expression under the radical is non-negative. Ac-
cording to Appendix B, this expression depends only on variable nx, which is a projection of vector n̂
onto axis OX. Therefore, before computing variable q6, we should first check that this expression
is non-negative for all values of nx or at least the values, which are considered when solving the
inverse kinematics. Section 4 will present an example of such an analysis.

The sign in the numerator of equation (8) corresponds to different solutions q6. The arctan
function has two different solutions in a general case, but these two solutions will correspond to the
same value of q6, because the right side of equation (8) is multiplied by two. As a result, we get
two different solutions q6, which depend on the sign ahead of the radical in equation (8).

Next, we will look at equations corresponding to the second and the third rows and the third
column of equation (3). We can rewrite these equations in the form similar to equation (7):

a2 cosφ+ b2 sinφ+ c2 = 0,

a3 cosφ+ b3 sinφ+ c3 = 0,
(9)

where a2, . . . , c3 are coefficients, dependent on variable q6 we found above and given in Appendix B.
We can treat equation (9) as a system of linear equations with respect to two variables cosφ and

sinφ, where a2 = b3 and b2 = −a3 according to Appendix B. With such coefficients, the system has
a unique solution in a general case (when a2b3 − a3b2 ̸= 0) [22, p. 30]. Next, we can use the atan2
function [9, p. 188] to find angle φ. Each of the two solutions of equation (8) will result in a distinct
angle φ.

Now, consider the equation corresponding to the first row and the fourth column of equation (3).
This equation is linear with respect to variable q5:

a4q5 + b4 = 0, (10)

where a4 and b4 are coefficients, dependent on variable q6 we found above and given in Appendix B.
If a4 ̸= 0, equation (10) provides a unique solution for each value of q6. According to Appendix B,

a4 = sx4 , where sx4 is a projection of vector ŝ4 onto axis OX, which depends on the manipulator
geometry. If this geometry causes a zero projection, vector ŝ4 will be parallel to plane OY Z, as
well as vectors ŝ1 and ŝ2. These three vectors correspond to the axes of the prismatic pairs in the
equivalent kinematic chain (Fig. 2b), so we get a manipulator structure, where the axes of three
prismatic pairs are parallel to the common plane. In such a structure, there is an infinite number
of combinations between translations q5, y, and z, which also corresponds to an infinite number
of solutions to equation (10). This case, however, has only a theoretical interest, because we can
always design a physical manipulator with sx4 ̸= 0.

Finally, we can consider the equations that correspond to the second and the third rows and the
fourth column of equation (3). These equations are linear with respect to variables y and z, and
they look similar to equation (10):

a5y + b5 = 0,

a6z + b6 = 0,
(11)
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where a5, . . . , b6 are coefficients, dependent on variables q6, φ, and q5 we found above and given in
Appendix B.

This Appendix shows that a5 = a6 = 1, so equation (11) also has a unique solution for each value
of variable q6.

Thus, we have found all unknowns θi, i = 1, . . . , 5, and variables q5 and q6 for the given configu-
ration of the output link, defined by matrix TS . To find remaining unknowns q1, . . . , q4, we can use
the PoE formula again and write equation (A.2) for i = 1, 2, and 3. Let PXPYPZP be a platform
reference frame, whose configuration relative to base frame OXY Z is determined by matrix TP ,
equal to known matrix MP in the initial configuration of the platform. According to equation (A.2),
we can write:

TP =

(
3∏

i=1

e[ξi]θi

)
MP , (12)

where ξi and θi correspond to equations (4) and (5).
Parameters θ1, θ2, and θ3 correspond to parameters y, z, and φ found earlier, so we can use

equation (12) to compute matrix TP . Next, we use the equation below to calculate coordinates pAj ,
j = 1, . . . , 4, of points Aj , which correspond to the platform revolute joints (Fig. 2a):[

pAj

1

]
= TP

[
rAj

1

]
, j = 1, . . . , 4, (13)

where rAj are coordinates of points Aj in platform frame PXPYPZP ; these coordinates depend on
the manipulator design, and they are considered to be known.

After finding coordinates pAj , we compute actuated coordinates q3 and q4 as distances between
points Aj and Bj , j = 3, 4, where points Bj correspond to the base revolute joints (Fig. 2a):

qj =
√
(pAj − pBj)2, j = 3, 4, (14)

where pBj are coordinates of points Bj in base frame OXY Z; these coordinates depend on the
manipulator design, and they are considered to be known (we assume without loss of generality
that points Aj and Bj are in a plane, orthogonal to the axes of the revolute joints in the jth chain,
for each j = 1, . . . , 4).

To find remaining actuated coordinates q1 and q2, we first compute coordinates pCj of points Cj ,
j = 1, 2, which correspond to the intermediate revolute joints in the RPR chains (Fig. 2a). Since we
assumed that axis OX is parallel to the axes of the R joints, we can write the following expressions:(

pyAj − p
y
Cj

)2
+
(
pzAj − pzCj

)2
= l2AjCj ,(

pyBj − p
y
Cj

)2
+
(
pzBj − pzCj

)2
= l2BjCj ,

j = 1, 2, (15)

where pyAj , . . . , p
z
Cj are the corresponding components of vectors pAj , pBj , and pCj ; lAjCj and lBjCj

are the lengths of links AjCj and BjCj , respectively.
For each j = 1, 2, equation (15) represents a system of two quadratic equations with respect to

two variables pyCj and pzCj . Subtracting one equation from another, we can express pzCj in terms
of pyCj :

pzCj = a7p
y
Cj + b7, j = 1, 2, (16)

where a7 and b7 are known coefficients given in Appendix B.
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Substituting equation (16) into any equation of equation (15), we get a quadratic equation with
respect to variable pyCj :

a8(p
y
Cj)

2 + b8p
y
Cj + c8 = 0, j = 1, 2, (17)

where a8, b8, and c8 are known coefficients given in Appendix B.
The expression above allows us to obtain two solutions for variable pyCj in a general case,

and next we find pzCj using equation (16). Note that quadratic equation (17) has a real solu-
tion if and only if it is possible to assemble the kinematic chain of the manipulator, i.e., when
∥pAj − pBj∥2 6 lAjCj + lBjCj . Finally, assuming without loss of generality that actuated coordi-
nate qj , j = 1, 2, is measured from the positive direction of axis Oy, we compute this coordinate as
follows:

qj = atan2
(
pzCj − pzBj , p

y
Cj − p

y
Bj

)
, j = 1, 2. (18)

Equations (8), (10), (14), and (18) allow computing actuated coordinates q for given coordi-
nates pS and n̂ of the output link. Thus, these equations represent the desired vector-function from
equation (1), which defines the solution to the inverse kinematic problem for the considered ma-
nipulator. The performed analysis shows that this problem can have several distinct solutions (up
to eight different combinations of actuated coordinates in a general case), and a solution choice
depends on the manipulator design and performed operation. For example, various solutions of
equation (17) correspond to different assemblies of the RRR kinematic chains (Fig. 1). If the inter-
mediate revolute joint stays outside the platform limits, the manipulator workspace increases, which
can be important for the operations with long-length objects; the dimensions of the manipulator,
however, increase too. Furthermore, the choice of the chain assembly affects the singularity loci [23],
where the manipulator can lose its stiffness and become uncontrollable. Finally, some assemblies
can be infeasible a priori because of the joint limits.

4. NUMERICAL EXAMPLE

Let us consider an example of the inverse kinematic analysis for the manipulator with the fol-
lowing parameters (linear parameters are in mm):

ŝ4 =
[
1 0 0

]T
, ŝ5 =

[
0 1 0

]T
, r3 = r5 =

[
0 0 250

]T
,

rA1 = pB1 =
[
300 150 0

]T
, rA2 = pB2 =

[
300 −150 0

]T
,

rA3 = pB3 =
[
−300 150 0

]T
, rA4 = pB4 =

[
−300 −150 0

]T
,

MS =


1 0 0 0

0 1 0 0

0 0 1 150

0 0 0 1

 , MP =


1 0 0 0

0 1 0 0

0 0 1 250

0 0 0 1

 ,

lAjCj = lBjCj = 100, j = 1, 2.

With the geometrical parameters above, the platform and the base are the same size: rectangles
A1A2A4A3 and B1B2B4B3 are equal and have a length of 600 mm and a width of 300 mm. In the
initial configuration, defined by matrices MS and MP , platform plane A1A2A4A3 is parallel to base
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324 ANTONOV, FOMIN

Fig. 3. Manipulator in its initial configuration and the given motion trajectory.

plane OXY and at a height of 250 mm above it. At the same time, point S of the output link is at
a height of 150 mm above the base plane (we consider the output link as a 100 mm rod). Figure 3
provides a schematic representation of the manipulator in this configuration.

According to Appendix B and the geometrical parameters above, we get
√
a21 + b21 − c21 =√

1− (nx)2 in equation (8). Since |nx| 6 1, the expression under the radical is always non-negative,
and equation (8) always has a solution. In addition, we have a2b3 − a3b2 = (cos q6)

2 in equation (9).
This expression equals zero when q6 = ±π/2: vector n̂ becomes parallel to axis OX in this case.
With such orientation of the output link, it is apparent that the platform can be inclined to the
base plane by any angle φ, and the inverse kinematics has an infinite number of solutions. In this
regard, one should avoid configurations with q6 = ±π/2 during the trajectory planning.

As an example of the motion trajectory, we will consider a piece-wise curve (Fig. 3), which
can relate to processing or monitoring the shape of some long-length object. The trajectory is
symmetrical relative to planes OXZ and OY Z. It includes two straight segments (1–2 and 3–4)
of 400 mm, which are at a height of 156.6 mm above plane OXY and spaced 100 mm apart, and
two arc segments (2–3 and 4–1), whose centers are at a height of 170 mm above plane OXY . Along
the entire trajectory, the output link remains parallel to plane OY Z. It keeps the orientation on
segments 1–2 and 3–4 and has an angle of ±20◦ with axis OZ; this angle changes between its limit
values on segments 2–3 and 4–1 (the arrows in Fig. 3 indicate the tool orientation and correspond
to vector −n̂). The motion starts at point 0 in the middle of segment 4–1. The time intervals for
segments 0–1, 1–2, 2–3, 3–4, and 4–0 are 1, 4, 2, 4, and 1 s, respectively.

Figure 4 shows plots q(t), where t is time, which correspond to the solution of the inverse
kinematic problem for the geometrical parameters and trajectory set above. The results have a
piece-wise form too:

1) For t 6 1 s (motion along segment 0–1), the platform goes down and displaces in the negative
direction of axis OY , which is indicated by the increase of coordinate q1 and q2 and decrease
of coordinates q3 and q4. The tilt angle of the output link decreases from 0 to −20◦, which
corresponds to the decrease of coordinate q6. Coordinate q5 varies slightly to compensate for
the output link inclination and keep point S along axis OX.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



INVERSE KINEMATICS OF A 5-DOF HYBRID MANIPULATOR 325

70

65

60

55

45
3 6 9

t, s

q
1
, 
°

120

50

270

265

260

255
3 6 9

t, s

q
3
, 

m
m

q
5
, 

m
m

120

200

100

0

-100

3 6 9
t, s

120

-200

135

130

125

120

110
3 6 9

t, s

q
2
, 
°

120

115

270

265

260

255
3 6 9

t, s

q
4
, 

m
m

q
6
, 
°

120

20

10

0

-10

3 6 9
t, s

120
-20

Fig. 4. Solution to the inverse kinematics.

2) For 1 < t 6 5 s (motion along segment 1–2), the platform is stationary, while the output link
keeps its orientation and translates using the actuator of the platform carriage. The values
of q1, . . . , q4 and q6 remain constant, and coordinate q5 changes accordingly.

3) For 5 < t 6 7 s (motion along segment 2–3), the platform moves in the positive direction of
axis OY , which is indicated by the decrease of coordinates q1 and q2. In addition, the platform
first goes up and then goes down, and we can observe similar behavior in the coordinates q3
and q4. The tilt angle of the output link rises from −20◦ to +20◦, which corresponds to the
changes in coordinate q6. Coordinate q5 varies slightly to compensate for the output link
inclination and keep point S along axis OX.

4) For 7 < t 6 11 s (motion along segment 4–5), the actuated coordinates vary similarly to seg-
ment 1–2: coordinate q5 decreases, and other coordinates remain unchanged.

5) For 11 < t 6 12 s (motion along segment 5–0), the platform goes up and displaces in the
negative direction of axis OY , which is indicated by the increase of coordinates q1, . . . , q4.
The tilt angle of the output link decreases from +20◦ to 0, which corresponds to the change
of coordinate q6. Coordinate q5 varies to compensate for the output link inclination and keep
point S along axis OX. At the end of the motion, the manipulator returns to the starting
point, which is also verified by Fig. 4: q(0) = q(12).

The computed values and behavior of the actuated coordinates match the manipulator geo-
metry and the motion trajectory, which confirms the correctness of the proposed inverse kinematic
algorithm.

5. DISCUSSION OF RESULTS

The proposed algorithm for solving the inverse kinematics is based on the PoE formulas from
equations (3) and (12), which allowed us to find the relations between the given coordinates of
the output link and the desired actuated coordinates. This approach requires only a set of pa-
rameters (ξi, i = 1, . . . , 5, MS , and MP ), which correspond to some arbitrarily selected initial
configuration of the manipulator and depend only on the manipulator geometry and location of
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the reference frames. We can also consider any geometrical inaccuracies in the axes positions. For
example, if the axes of the joints corresponding to actuated coordinates q5 and q6 have any offsets, it
suffices to adjust the expressions of twists ξ4 and ξ5—the algorithm will work correctly. In addition,
Appendix B shows the coefficients are independent of vectors û and v̂ and their expressions in the
initial configuration (which corresponds to matrix MS). Thus, as mentioned earlier, we can select
any directions of these vectors.

If we compare the proposed method with other researches, we find there are few studies that
applied the PoE formula for solving the inverse kinematic problem of hybrid manipulators. For
example, the authors of [13] used this formula only for a serial part of their manipulator; they also
made several assumptions about the manipulator geometry, which simplified the solution. In [14],
the structural and geometrical features of the manipulator led to simple expressions too, and the
solution of the inverse kinematics was found by inverse transformations (inverse matrices e−[ξi]θi).
We should also note paper [12], whose authors applied a similar method and represented the hybrid
manipulator as an equivalent serial one, as we did in the current article. The solution of the inverse
kinematics was found by solving Paden–Kahan subproblems [24, p. 99], but the authors mentioned
that the considered approach was suitable only for specific structures of manipulators. Most of
the other studies, including the ones from the introduction, either derived kinematic relations by
introducing auxiliary reference frames (using the Denavit–Hartenberg method) or relied on struc-
tural features of the considered manipulator and assumptions about its geometry. The algorithm
we proposed here does not require any auxiliary reference frames or geometrical assumptions, which
makes its application promising for other hybrid manipulators.

6. CONCLUSION

The article has developed an algorithm for solving the inverse kinematic problem of a 5-DOF
hybrid manipulator, which consists of the 3-DOF parallel part and the 2-DOF serial part and has a
redundant actuation. The proposed algorithm, based on the PoE formula, allows getting the closed-
form solution with no assumptions about the manipulator geometry. First, the algorithm computes
the coordinates, which define the orientation of the output link. Next, a remaining coordinate of
the serial part and the coordinates, which define the position of the output link, are determined.
Finally, the algorithm calculates unknown coordinates in the kinematic chains of the parallel part.
The considered example has verified the algorithm performance.

The obtained kinematic relations can be used for the forward kinematics, which determines a
configuration of the output link for the given actuated coordinates. This problem is of practical
importance, because it allows estimating the output link position from the data of the sensors,
placed in the manipulator actuators. The considered equations also form a basis for subsequent
velocity, singularity, and workspace analyses—these topics represent the future development of the
current work. In addition, the proposed techniques can be adapted for other hybrid manipulators.

SUPPLEMENTARY MATERIALS

MATLAB files that correspond to the proposed algorithms are available free online at
http://dx.doi.org/10.17632/tp8nx5jhyv.1.
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APPENDIX A

This Appendix outlines the application of the PoE formula [9] for the kinematic analysis of
robotic manipulators.

Let the output link of a manipulator be attached to its base by an open kinematic chain, which
consists of n 1-DOF joints (we can represent any multi-DOF joint as a combination of 1-DOF ones).
We can associate (unit) twist ξi ∈ R6 with the ith joint, i = 1, . . . , n:

ξi =

[
ωi

υi

]
=



[
ŝi

ri × ŝi + hiŝi

]
, if hi ̸=∞,[

03×1

ŝi

]
, if hi =∞,

(A.1)

where ωi ∈ R3 is a vector part of the twist; υi ∈ R3 is a moment part of the twist; ŝi is a unit
vector parallel to the twist axis; ri is a vector that defines coordinates of an arbitrary point on the
twist axis; hi is a pitch of the twist.

Let SXSYSZS be a reference frame attached to the output link, and let matrix TS ∈ SE(3)
define its configuration relative to base reference frame OXY Z. Finally, let matrix MS describe
some initial configuration of the manipulator. In this configuration, we can associate twists ξi,
i = 1, . . . , n, with the chain joints according to equation (A.1). Then, the following relation exists
between matrices TS and MS [9, p. 120]:

TS =

(
n∏

i=1

e[ξi]θi

)
MS , (A.2)

where θi is a displacement in the ith joint; [ξi] is a matrix representation of twist ξi:

[ξi] =

[
Λ(ωi) υi

01×3 0

]
∈ se(3),

Λ(ωi) = Λ


ω

x
i

ω
y
i

ωz
i


 =

 0 −ωz
i ω

y
i

ωz
i 0 −ωx

i

−ωy
i ωx

i 0

 ∈ so(3).
(A.3)

Equation (A.2) represents the product of exponentials e[ξi]θi :

e[ξi]θi =

[
eΛ(ωi)θi

(
I3×3θi + (1− cos θi)Λ(ωi) + (θi − sin θi)Λ(ωi)

2
)
υi

01×3 1

]
,

where eΛ(ωi)θi corresponds to the rotation matrix about the axis defined by vector ωi by angle θi:

eΛ(ωi)θi = I3×3 + sin θiΛ(ωi) + (1− cos θi)Λ(ωi)
2.

Initial configuration MS and corresponding twists ξi, i = 1, . . . , n, depend on the manipulator
design and location of reference frames SXSYSZS and OXY Z, so these parameters are considered
known for the kinematic analysis. Thus, equation (A.2) represents the relationship between joint
displacements θi and the output link configuration defined by matrix TS . We can use this equation
not only for the forward kinematics (where it is applied generally [9]), but also for the inverse
kinematics, which is demonstrated in the present article for the hybrid manipulator.
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APPENDIX B

This Appendix contains coefficients of the equations, which are used for solving the inverse
kinematic problem:

a1 = nx0((s
y
5)

2 + (sz5)
2)− ny0s

x
5s

y
5 − n

z
0s

x
5s

z
5,

b1 = −ny0s
z
5 + nz0s

y
5,

c1 = nx0(s
x
5)

2 + ny0s
x
5s

y
5 + nz0s

x
5s

z
5 − nx,

a2 = nx0(s
x
5s

y
5(1− cos q6) + sz5 sin q6) + ny0((s

y
5)

2(1− cos q6) + cos q6)

− nz0(sx5 sin q6 − s
y
5s

z
5(1− cos q6)),

b2 = nx0(s
x
5s

z
5(cos q6 − 1) + sy5 sin q6)− n

y
0(s

x
5 sin q6 + sy5s

z
5(1− cos q6))

+ nz0((s
z
5)

2(cos q6 − 1)− cos q6),

c2 = −ny,

a3 = nx0(s
x
5s

z
5(1− cos q6)− sy5 sin q6) + ny0(s

x
5 sin q6 + sy5s

z
5(1− cos q6))

+ nz0((s
z
5)

2(1− cos q6) + cos q6),

b3 = nx0(s
x
5s

y
5(1− cos q6) + sz5 sin q6) + ny0((s

y
5)

2(1− cos q6) + cos q6)

− nz0(sx5 sin q6 − s
y
5s

z
5(1− cos q6)),

c3 = −nz,

a4 = sx4 ,

b4 = pxS0(((s
y
5)

2 + (sz5)
2)(cos q6 − 1) + 1) + pyS0(s

x
5s

y
5(1− cos q6)− sz5 sin q6)

+ pzS0(s
x
5s

z
5(1− cos q6) + sy5 sin q6) + rx5 ((s

y
5)

2 + (sz5)
2)(1− cos q6)

+ ry5(s
x
5s

y
5(cos q6 − 1) + sz5 sin q6) + rz5(s

x
5s

z
5(cos q6 − 1)− sy5 sin q6)− p

x
S ,

a5 = 1,

b5 = pxS0(s
x
5s

y
5(1− cos q6) cosφ+ sx5s

z
5(cos q6 − 1) sinφ+ sy5 sin q6 sinφ+ sz5 sin q6 cosφ)

+ pyS0(−s
x
5 sin q6 sinφ+ (sy5)

2(1− cos q6) cosφ+ sy5s
z
5(cos q6 − 1) sinφ+ cos q6 cosφ)

+ pzS0(−sx5 sin q6 cosφ+ sy5s
z
5(1− cos q6) cosφ+ (sz5)

2(cos q6 − 1) sinφ+ cos q6 sinφ)

+ q5(s
y
4 cosφ− s

z
4 sinφ) + ry3(1− cosφ) + rz3 sinφ

+ rx5 (s
x
5(cos q6 − 1)(sy5 cosφ− s

z
5 sinφ)− sy5 sin q6 sinφ− s

z
5 sin q6 cosφ

+ ry5(s
x
5 sin q6 sinφ+ ((sy5)

2 cosφ− sy5s
z
5 sinφ− cosφ)(cos q6 − 1))

+ rz5(s
x
5 sin q6 cosφ+ (sy5s

z
5 cosφ− (sz5)

2 sinφ+ sinφ)(cos q6 − 1))− pyS ,

a6 = 1,

b6 = pxS0(s
x
5s

y
5(1− cos q6) sinφ+ sx5s

z
5(1− cos q6) cosφ− sy5 sin q6 cosφ+ sz5 sin q6 sinφ)

+ pyS0(s
x
5 sin q6 cosφ+ (sy5)

2(1− cos q6) sinφ+ sy5s
z
5(1− cos q6) cosφ+ cos q6 sinφ)

+ pzS0(−sx5 sin q6 sinφ+ sy5s
z
5(1− cos q6) sinφ+ (sz5)

2(1− cos q6) cosφ+ cos q6 cosφ)

+ q5(s
y
4 sinφ+ sz4 cosφ)− ry3 sinφ+ rz3(1− cosφ)

+ rx5 (s
x
5(cos q6 − 1)(sy5 sinφ+ sz5 cosφ) + sy5 sin q6 cosφ− s

z
5 sin q6 sinφ

+ ry5(−s
x
5 sin q6 cosφ+ ((sy5)

2 sinφ+ sy5s
z
5 cosφ− sinφ)(cos q6 − 1))

+ rz5(s
x
5 sin q6 sinφ+ (sy5s

z
5 sinφ+ (sz5)

2 cosφ− cosφ)(cos q6 − 1))− pzS ,
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a7 = −
pyAj − p

y
Bj

pzAj − pzBj

,

b7 =
(pyAj)

2 + (pzAj)
2 − (pyBj)

2 − (pzBj)
2 − l2AjCj + l2BjCj

2(pzAj − pzBj)
,

a8 = 1 + a27,

b8 = −2pyAj − 2a7(p
z
Aj − b7),

c8 = (pzAj − b7)2 − l2AjCj ,

where pxS , pyS , pzS and nx, ny, nz are the corresponding components of vectors pS and n̂; pxS0, p
y
S0,

pzS0 and nx0 , n
y
0, n

z
0 are the same components in the initial configuration of the manipulator (defined

by matrix MS in equation (3)); sx4 , . . . , sz5 are the corresponding components of vectors ŝ4 and ŝ5.
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