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1. INTRODUCTION

The stability theory of switched systems [1] and the theory of absolute stability [2] are the basic
tools for studying the stability of systems with uncertainty [3]. An important result in this area
is the circle criterion, a sufficient condition for the existence of a quadratic Lyapunov function
(QLF) for Lurie systems with several nonlinearities [2, 4, 5]1. The sufficiency of the circle criterion
stems from the use of a special technique, the so-called S-lemma [6] which, in this case, leads only
to sufficient conditions. A theorem originally obtained by Pyatnitskiy appeared (with indication
to the authorship) in [7] and later in [8] as a tool for eliminating this deficiency of the S-lemma.
The existence of QLFs in the case of several nonlinearities is guaranteed by the feasibility of a
system of linear matrix inequalities (LMIs) [8]. Pyatnitskiy’s theorem shows how to obtain a single
matrix inequality equivalent to a system of two inequalities. Based on this theorem, the transition
from two inequalities to a single equivalent one is called convolution in [8]. Using the convolution
operation, necessary and sufficient conditions for the existence of a QLF are obtained in the case of
two [7] and several [8] nonlinearities. The theorem by Pyatnitskiy should not be considered as an
alternative to the S-lemma, but the fields of applications of these techniques are closely correlated.
Thus, Section 2 shows how a circle criterion in the case of several nonlinearities can be dealt with
via use of the convolution operation and not the S-lemma.

In Section 3, for linear systems with switching between three subsystems, a new frequency
criterion is proposed for the existence of a QLF, simpler than the similar criterion from [9].

Section 4 shows how Pyatnitskiy’s theorem can be used to significantly reduce the number of
inequalities in connected [8, 9] systems of LMIs which ensure the existence of QLFs for linear
systems with switchings between an arbitrary number of subsystems.

1 In [4], the term “circle criterion” was not used, and in [5], the circle criterion was formulated for both the stability
problem and the instability problem.
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The issues of improving the circle criterion for Lurie systems with two nonlinearities are consid-
ered in Section 5, where a numerical example of such an improvement is presented for a sixth-order
system.

The goal of the paper is both to demonstrate the capabilities of the Pyatnitskiy’s theorem in
obtaining a new proof of the classical result, and to obtain on this way new, more efficient conditions
for the existence of QLFs for a wide class of Lurie systems and systems with switching.

2. CONVOLUTION THEOREM AND THE CIRCLE CRITERION
FOR SYSTEMS WITH SEVERAL NONLINEARITIES

In this paper, Pyatnitskiy’s theorem, which is the basis of the convolution operation, will be
referred to as the theorem on convolution; we use it in the following form [8, 9].

Theorem 1. For the system of the two matrix inequalities

I1 < 0, I2 < 0, (I2 − I1 = Q = pq⊤ + qp⊤, p, q ∈ Rn), (2.1)

to be valid, it is necessary and sufficient that there exists a number ε̃ > 0 such that the following
single inequality holds:

I1 +Q+(ε̃) = I2 +Q−(ε̃) < 0, Q±(ε) =
ε2

2
u±(u±)⊤, u±(ε) = p± 1

ε2
q. (2.2)

Clearly, the feasibility of (2.1) follows from the feasibility of (2.2) for some arbitrary ε > 0.

In [8], the convolution operation based on Theorem 1 was called rank 2 convolution, or
r2-convolution. In the original paper [7], Pyatnitskiy’s theorem was given in a more general form,
for an arbitrary matrix Q.

Next, Lurie systems with several nonlinearities are those of the form

ẋ = Ax+
m∑
j=1

bjφj(t, σj), σj = ⟨cj , x⟩, A ∈ Rn×n, bj , cj ∈ Rn, (2.3)

where ⟨·, ·⟩ denotes the inner product in Rn, and the nonlinearities φj(t, σj) satisfy the existence
conditions of the absolutely continuous solution x(t), j = 1,m. System (2.3) is said to be absolutely
stable in the class Nφ of nonlinearities φ = ∥φj∥mj=1 satisfying the sector conditions

0 6 φjσj 6 σ2
j , j = 1,m, (2.4)

if it is asymptotically stable in the whole for all such nonlinearities.

In the form suitable for the exposition to follow, we briefly recall the considerations based on
the S-lemma that yield the circle criterion for system (2.3) with arbitrary finite m; see [4, 5]. The
S-lemma is a special tool for dealing with quadratic forms. Specifically, given an inequality on a
quadratic form which is to be satisfied over a domain specified by other quadratic constraints, the
S-lemma provides conditions that lead to yet another inequality on the quadratic form which is to
be satisfied over the whole space; i.e., to a matrix inequality (MI). There exist various formulations
of the S-lemma. In this paper, we consider it in the form which establishes the relation between
the following two conditions:

x⊤G0x < 0 for x⊤G1x > 0, . . . , x⊤Gmx > 0, x ̸= 0, (2.5)

there exist τj > 0 (j = 1,m) : x⊤G0x+
m∑
j=1

τj x
⊤Gjx< 0, x∈Rn, x ̸= 0, (2.6)
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272 KAMENETSKIY

where Gj ∈ Rn×n, G⊤
j = Gj , j = 0,m. Obviously, inequality (2.6) implies inequality (2.5); i.e., it

is sufficient for (2.5) to hold. For m = 1, the so-called losslessness of the S-lemma can be proved
(e.g., see [10, p. 135]), which means that, in this special case, condition (2.6) is also a necessary
one.

Various formulations of the S-lemma, the history of appearance of this trick and the term itself,
a detailed explanation of the terms “lossness” and “losslessness”, etc., can be found in [2, 3, 6, 10].

The sector conditions (2.4) are equivalent to the quadratic constraints

Fj(x, φj) = φj(⟨cj , x⟩ − φj) > 0, j = 1,m. (2.7)

For the derivative v̇(x) of the Lyapunov function v(x) = x⊤Lx, L ∈ Rn×n, L⊤ = L, due to
system (2.3) we have the inequality

x⊤(A⊤L+ LA)x+ 2
m∑
j=1

φj⟨Lbj , x⟩ < 0, (x, φ) ̸= 0, (2.8)

which must hold for all (x, φ) satisfying (2.7). Consider the quadratic form

x⊤(A⊤L+ LA)x+ 2
m∑
j=1

φj⟨Lbj , x⟩+
m∑
j=1

τjφj (⟨cj , x⟩ − φj) < 0, (2.9)

where τj > 0, j = 1,m, are free parameters.

In the matrix form, inequality (2.8) is written as

(Ax+Bφ)⊤Lx+ x⊤L(Ax+Bφ) < 0, (x, φ) ̸= 0,

where B =
(
b1 b2 . . . bm

)
, and the constraint function F (x, φ, T ) can be represented in the form

F (x, φ, T ) =
m∑
j=1

τjφj (⟨cj , x⟩ − φj) =

(
x
φ

)⊤(
0 CT /2

T C⊤/2 −Γ

)(
x
φ

)
,

where

C =
(
c1 c2 . . . cm

)
, Γ = T = diag

{
τ1, . . . , τm

}
.

With this notation, the negative definiteness of the form (2.9) is equivalent to the MI(
A⊤L+AL LB + CT /2

B⊤L+ T C⊤/2 −Γ

)
< 0. (2.10)

Feasibility conditions for this inequality follow from the frequency theorem (the KYP lemma [6, 10]).
A version of this theorem, most suitable for our purposes, is given in Corollary 1; see [10], p. 54.
Namely, for a Hurwitz stable A and Γ > 0, the feasibility of inequality (2.10) is equivalent to the
satisfaction of the frequency inequality

Γ + ReW (iω) > 0, W (iω) = TC⊤(A− iωEn)
−1B, ω ∈ [−∞,∞], (2.11)

where ReW = (W +W ∗)/2, the matrix W ∗ = W
⊤
is the Hermite conjugate of W , and En is the

unit (n× n) matrix. Hence, the circle criterion for system (2.3) with several nonlinearities consists
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in checking the frequency condition (2.11), which is sufficient for the existence of a QLF for systems
of this sort.

Using Theorem 1 it is possible to derive sufficient conditions for the existence of a QLF for
system (2.3) which coincide with the circle criterion of the absolute stability of control systems
with two nonlinearities; see [9]. Here, a similar result will be obtained for systems with arbitrary
finite number of nonlinearities.

It is well known and also stressed in [11] that the absolute stability of the Lurie system (2.3) in
the class of nonlinearities Nφ is equivalent to the stability of the system with switching between
the linear systems ẋ = Asx with matrices As of the following form (see [8]):

As = A+
m∑
j=1

hsjbjc
⊤
j , hs = ∥hsj∥mj=1, s = 1, N, (N = 2m), (2.12)

where the hsjs take the two values 0 or 1 independently of each other. We assume that h1 =
(0, . . . , 0); i.e., A1 = A. The existence of a QLF v(x) = x⊤Lx for the Lurie system (2.3) is equivalent
to the feasibility of the following set of LMIs (see [8]):

Is = A⊤
s L+ LAs < 0, s = 1, N. (2.13)

From (2.12) we have

Is = A⊤L+ LA+
m∑
j=1

hsj
(
Lbjc

⊤
j + cjb

⊤
j L
)
= A⊤L+ LA+

m∑
j=1

hsjQj ,

where

Qj = pjq
⊤
j + qjp

⊤
j , pj , Lbj , qj , cj , j = 1,m. (2.14)

Following Theorem 1, we represent the matrices Qj as the differences Qj = Q+
j −Q−

j . Then the MIs

Qj 6 Q+
j (εj) =

ε2j
2
u+j (εj)u

+
j (εj)

⊤, u+j (εj) , pj +
1

ε2j
qj , j = 1,m, (2.15)

hold for all εj > 0. Consider the following MI:

Icir , A⊤L+ LA+
m∑
j=1

Q+
j (εj) < 0. (2.16)

Since hsj = 0 or hsj = 1, we have

Is 6 Icir, s = 1, N. (2.17)

The latter inequality implies that the feasibility of (2.16) guarantees the feasibility of (2.13).

Substituting expressions (2.14) for pj and qj in Q+
j (εj), re-defining in (2.15) the additional

variables

τj , 2/ε2j , (2.18)

and using the Schur complement, we arrive at the equivalence of (2.16) and (2.10). In other words,
the circle criterion is obtained without use of the S-lemma.

In fact, the necessary part of Theorem 1 is only needed in the case m = 1 in order to show the
equivalence of the set of LMIs (2.13) and the inequality Icir < 0.

Below, the matrix inequality (2.10) as well as the equivalent MI (2.16) is referred to as the
matrix inequality of the circle criterion (MICC).
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3. STABILITY OF SYSTEMS WITH SWITCHING BETWEEN THREE LINEAR
TIME-INVARIANT SUBSYSTEMS

As noted above, the absolute stability of the Lurie system (2.3) is a particular case of the stability
problem for the linear switched system

ẋ = A(t)x, A(t) ∈ A = {A1, . . . , AN}, (3.1)

under arbitrary switchings, where As ∈ Rn×n, and A(t) : R+ −→ A is a piecewise constant mapping.
For m = 1, system (2.3) is associated with system (3.1) with switching between two subsystems.
The existence of a QLF for such systems is determined by the feasibility of the two MIs of the
form (2.13). The resulting MI (RMI) equivalent to the two MIs above is an LMI, and the frequency
condition for its feasibility (circle criterion) is necessary and sufficient for the existence of a QLF.
The next natural step would be the formulation of a similar result for system (3.1) with N = 3. In
that case, the existence of a QLF is determined by the feasibility of the set of three MIs having
form (2.13). Hence, in this section we are targeted at formulating the RMI for the set of three
MIs (2.13) in the form of an LMI, and a frequency condition of the feasibility of this RMI.

We note that a realization of such a scenario for system (2.3) with m = 2 or for system (3.1)
with N = 4 is obscure.

For N = 3, the matrices {A1, A2, A3} that define the connected (see [9]) system (3.1) can be
represented as follows:

A1 = A, A2 = A+ b1c
⊤
1 , A3 = A+ b2c

⊤
2 . (3.2)

Using notation (2.14) with m = 2, the corresponding set of inequalities (2.13) for N = 3 takes the
form

I1 + p1q
⊤
1 + q1p

⊤
1 < 0, I1 < 0, I1 + p2q

⊤
2 + q2p

⊤
2 < 0. (3.3)

Applying Theorem 1 to the first and second inequalities in (3.3) and then to the second and third
ones, we see that this whole set of inequalities is feasible if and only if there exist ε1 > 0 and ε2 > 0
such that the pair of MIs

Ĩ1 = I1 +
ε21
2
u+1 (ε1)u

+
1 (ε1)

⊤ < 0, Ĩ2 = I1 +
ε22
2
u+2 (ε2)u

+
2 (ε2)

⊤ < 0 (3.4)

is feasible.

In [9], an RMI equivalent to (3.4) was obtained along with a frequency condition for the feasibil-
ity of this RMI. However, the RMI in [9] is not an LMI in the extra parameters involved, so that the
frequency condition presented in [9] is very bulky. Below we propose a new tool for deriving an RMI
for (3.4) in the form of an LMI, which considerably simplifies the frequency condition for the exis-
tence of a QLF for system (3.1) with N = 3. The key idea is as follows: Instead of the inequalities
for (n× n)-matrices in (3.4), we consider equivalent inequalities for ((n+ 1)× (n+ 1))-matrices by
using the Schur complement. As a result, we arrive at the set of MIs

Ĩ1 < 0 ∼= ̂̃
I1 =

 I1 u+1

(u+1 )
⊤ −2/ε21

< 0, Ĩ2 < 0 ∼= ̂̃
I2 =

 I1 u+2

(u+2 )
⊤ −2/ε22

< 0, (3.5)

which is equivalent to (3.4).
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The matrix of the difference has the form

̂̃
I2 −

̂̃
I1 =

0n×n u+2 − u+1

(•)⊤ 2/ε21 − 2/ε22

 ,

where 0n×m denotes the n×m zero matrix. Also, the symbol “ • ” is used to denote the corre-
sponding symmetric block in a symmetric matrix. Denoting p̂ , u+2 − u+1 and γ , 1/ε21 − 1/ε22, we
obtain

̂̃
I2 −

̂̃
I1 = p̃ q̃ ⊤+ q̃ p̃⊤, p̃ =

(
p̂
γ

)
, q̃ =

(
0n×1

1

)
.

In other words, Theorem 1 can be applied to (3.5), and we conclude that the feasibility of (3.5) is
equivalent to the existence of ε3 > 0 such that the following single MI is feasible:

≃
I =

̂̃
I1 +

ε23
2

(
p̃+

1

ε23
q̃

)(
p̃+

1

ε23
q̃

)⊤
< 0. (3.6)

By the Schur complement, the MI (3.6) is equivalent to the MI

≃
I < 0 ∼=

u
I =


̂̃
I1 p̃+ (1/ε23)q̃

(•)⊤ −2/ε23

 =


I1 u+1 (ε1) p̂

(•)⊤ −2/ε21 γ + 1/ε23

(•)⊤ γ + 1/ε23 −2/ε23

 < 0 (3.7)

in the augmented space.

With notation (2.18) for τj (s = 1, 3), the entries of the matrix
u
I are seen to satisfy the relations

u+1 (τ1) = p1 +
τ1
2
q1, u+2 (τ2) = p2 +

τ2
2
q2, γ =

1

2

(
τ1 − τ2

)
.

We present the result obtained above in the following form.

Theorem 2. Let the inequalities in (3.3) be LMIs in the unknown variable ν; i.e., Is = Is(ν),
s = 1, 3, and Qj(ν) = pj(ν)q

⊤
j + qjp

⊤
j (ν), where pj = pj(ν) depends linearly on ν, and qj, j = 1, 2,

do not depend on ν.

Then (3.3) is equivalent to the single MI

u
I =


I1(ν) p1(ν) +

τ1
2
q1 p2(ν)− p1(ν) +

τ2
2
q2 −

τ1
2
q1

(•)⊤ −τ1 (τ1 − τ2 + τ3)/2

(•)⊤ • −τ3

 < 0,

which is an LMI in (ν, τ1, τ2, τ3).

Let us express
u
I in the original notation by using (2.14) for pj and qj :

u
I =


A⊤L+ LA Lb1 + (τ1/2)c1 L(b2 − b1)− (τ1/2)c1 + (τ2/2)c2

(•)⊤ −τ1 (τ1 − τ2 + τ3)/2

(•)⊤ • −τ3

 < 0. (3.8)
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Hence, the MI (3.8) is an LMI with respect to the unknown L and τj , j = 1, 3, and it can be solved
numerically by using the standard software.

Moreover, the MI (3.8) can be represented in the form (2.10) for

B =
(
b1 b2− b1

)
, C =

(
c1 c2

)
, T =

(
τ1 −τ1
0 τ2

)
, Γ =

τ1 1

2
(τ2− τ1− τ3)

• τ3

 . (3.9)

In this case, the feasibility of the MI (2.10) is established by the frequency theorem [10, p. 54]
(the classical KYP lemma), which gives the following criterion for the existence of a QLF for the
switched system (3.1) with N = 3.

Theorem 3. Consider system (3.1) with N = 3 and let the matrices As be defined by (3.2) and
A be Hurwitz stable. Assume there exists a set of numbers τj > 0, j = 1, 3, such that Γ > 0, and
for any ω ∈ [−∞,∞] the frequency inequality (2.11) holds, where the matrix Γ and the entries of
the matrix W (iω) are defined in (3.9).

Then system (3.1) possesses a QLF (the set of LMIs (2.13) is feasible, system (3.1) is stable).

If system (3.1) possesses a QLF (the set of LMIs (2.13) is feasible), then there exists such a set
of numbers τj > 0, j = 1, 3.

Clearly, the conditions of Theorem 3 are much simpler and better than those of Theorem 2 in [9].

4. AN ALTERNATIVE POINT OF VIEW ON THE CIRCLE CRITERION.
REDUCTION OF THE DIMENSION OF LMI SYSTEMS

The circle criterion is obtained as a feasibility condition for the MICC (2.10), which is an LMI
in the unknown L and τj , j = 1,m; it can be checked numerically via use of numerous software
tools. Therefore, instead of checking the feasibility of the set of inequalities (2.13) having overall
dimension 2mn, a single MICC (2.10) of dimension n+m with m additional parameters can be
considered. Clearly, one has to account for possible contraction (losses) of the domain of existence
of the QLF, caused by the lossness of the S-lemma.

With the criterion in Theorem 2, the transition from the set (2.13) (having cumulative dimen-
sion 3n in the case N = 3) to the single MI (3.8) (of dimension n+ 2 and having three extra
parameters) can be performed with no losses in the domain of existence of a QLF.

The absolute stability of the Lurie system (2.3) for the casem = 2 is equivalent [9] to the stability
of the switched system (3.1) (under arbitrary switching) with the matrices As defined by

A1 = A, A2 = A+ b1c
⊤
1 , A3 = A+ b2c

⊤
2 , A4 = A+ b1c

⊤
1 + b2c

⊤
2 , bs, cs ∈ Rn. (4.1)

Theorem 2 can be applied to the corresponding set of LMIs (2.13) with N = 4. First, it should be
applied to the three inequalities in (2.13), and the obtained inequality is then to be coupled with
the fourth MI into one set of inequalities. The resulting set of the two MIs is equivalent to the
initial set; it has overall dimension 2n+ 2 and depends on the three additional parameters. The
initial set of LMIs (2.13) for N = 4 has dimension 4n.

The theorem below presents yet another method of reducing the dimension of connected systems
of LMIs; it combines Theorem 1 and the Schur complement.

Theorem 4. Assume that the inequalities in (2.1) are LMIs in the unknown variable ν; i.e.,
I1 = I1(ν) and I2 = I2(ν), and the matrix Q admits the representation Q(ν) = I2(ν)− I1(ν) =
p(ν)q⊤ + qp⊤(ν), where p = p(ν) depends linearly on ν, and q does not depend on ν.
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Then the set of MIs (2.1) is equivalent to the single MI

I1(ν) p(ν) + (τ/2)q

(•)⊤ −τ

 < 0,

which is an LMI in the variables (ν, τ).

Application of Theorem 4 to the set of LMIs (2.13) for N = 4 yields a set of two MIs which is
equivalent to the original one, has overall dimension 2n+ 2, and depends on the two additional
parameters. As compared to the application of Theorem 2, the benefit is minimal, just one extra
parameter less.

We next compare the efficiency of Theorems 2 and 4 in the reduction of the dimension of sets
of LMIs in the two following cases of (2.13): N = 6 and N = 8.

In the case N = 8, let (2.13) determine the existence conditions of a QLF for the Lurie sys-
tem (2.3) with m = 3; i.e., N = 2m. Theorem 4 can be applied to the four pairs of MIs to obtain a
set of the four inequalities of overall dimension 4n+ 4 and having four extra parameters. On the
other hand, we can apply Theorem 2 to the two triplets of MIs, and Theorem 4 to the remaining
two MIs, and arrive at the set of three inequalities of the overall dimension 3n+ 5 and having seven
extra parameters. The original LMI set (2.13) for N = 8 is of dimension 8n.

In the case N = 6, we consider a switched system with certain connectivity margin which allows
us to apply Theorem 2 to the two triplets of this system, and Theorem 4 to the three pairs. For
instance, it can be a system with switching of the prism type in which the matrices As are defined
by the relations

A1 = A, A2 =A+ b3c
⊤
3 ,

A3 = A+ b1c
⊤
1 , A4 =A+ b1c

⊤
1 + b3c

⊤
3 ,

A5 = A+ b2c
⊤
2 , A6 =A+ b2c

⊤
2 + b3c

⊤
3 , bs, cs ∈ Rn.

Then a twofold application of Theorem 2 leads to a system of two inequalities of cumulative
dimension 2n+ 4 and with six additional parameters, whereas a threefold application of Theorem 4
leads to a system of three inequalities of cumulative dimension 3n+ 3 and with three additional
parameters. The original set of LMIs (2.13) for N = 6 has dimension 6n.

At the end of this section, we show how to apply Theorem 4 in order to reduce the dimensionality
of the set (2.13) when checking the existence of a QLF for the Lurie system (2.3) with arbitrary
finite m. On the one hand, each application of Theorem 4 reduces the number of MIs in the system
by one; on the other hand, it increases by one the number of unknowns. From the set of LMIs (2.13)
in n(n+ 1)/2 variables, which has overall dimension 2mn, we can move to an equivalent system of
dimension 2m−1(n+ 1) with respect to n(n+ 1)/2 + 2m−1 variables.

Theorem 5. For N = 2m, the system of MIs (2.13) is equivalent to the system of MIs

A
⊤
s L+ LAs Lbm + (τs/2)cm

(•)⊤ −τs

 < 0, s = 1, 2m−1, (4.2)

with 2m−1 additional parameters τs > 0.

A proof of Theorem 5 is given in the Appendix.
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5. IMPROVEMENT OF THE CIRCLE CRITERION
FOR THE CASE OF TWO NONLINEARITIES

In Section 4 we mentioned the equivalence (see [9]) of the absolute stability of the Lurie sys-
tem (2.3) for m = 2 and the switched system (3.1) with matrices As defined by relations (4.1). In
this case, the set of LMIs (2.13) takes the form

Is = A⊤
s L+ LAs < 0, s = 1, 4, (5.1)

where the matrices As are defined in (4.1).

In [12], the existence of a QLF for discrete-time Lurie systems was discussed for the case m = 2,
and criteria A and B were considered as improvements of the Tsypkin criterion. In [12] it was
shown that, for some examples, criterion A produces a more accurate result than the Thypkin cri-
terion, whereas other examples demonstrate the opposite relation. Criterion B either reproduces or
improves the estimate of the stability domain obtained by the Tsypkin criterion. A continuous-time
counterpart of the Tsypkin criterion is the circle criterion; therefore it is interesting to understand
what are the outcomes of the approaches underlying criteria A and B in continuous case.

In order to pass on to the specific exposition, we briefly recall the diagram proposed in [12] for
the derivation of an RMI [8] equivalent to the original system (5.1):

I2 ←→ I1 ←→ I3 ←→ I4
↓ε1 ↓ε3 ↓ε2
Ĩ1 ←→ Ĩ3 ←→ Ĩ2

↓ε4 ↓ε5
≈
I1 ←→

≈
I2

↓ε6
≈
I .

The horizontal arrows in the diagram indicate pairs of inequalities which fall under the conditions
of Theorem 1. The vertical arrows point to MIs resulting from the application of this theorem,
and εss denote the emerging new parameters.

In the diagram, to make the expressions for the MIs through u±s the same for the continuous and
discrete cases, we keep the expressions from (2.14) for pj and qj through Lbj and cj , but change
the expressions from (2.15) for u±s through pj and qj ; i.e., now the vectors u±s correspond to values
other than those defined in (2.15) and used in Sections 2 and 3.

We present the expressions for the MIs in the diagram above in terms of ps and qs from (2.14)
for m = 2; the notation ε±s = 1± 1/ε2s will be used.

First-level inequalities:

Ĩ1 = I1 +
ε21
2
u+1 (u

+
1 )

⊤ = I2 +
ε21
2
u−1 (u

−
1 )

⊤ < 0, u±1 = p1 ±
1

ε21
q1, (5.2)

Ĩ2 = I3 +
ε22
2
u+2 (u

+
2 )

⊤ = I4 +
ε22
2
u−2 (u

−
2 )

⊤ < 0, u±2 = p1 ±
1

ε22
q1, (5.3)

Ĩ3 = I1 +
ε23
2
u+3 (u

+
3 )

⊤ = I3 +
ε23
2
u−3 (u

−
3 )

⊤ < 0, u±3 = p2 ±
1

ε23
q2, (5.4)

where Ĩ1 < 0 ∼= I1 < 0, I2 < 0, Ĩ2 < 0 ∼= I3 < 0, I4 < 0, Ĩ3 < 0 ∼= I1 < 0, I3 < 0.
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Second-level inequalities:

≈
I1= Ĩ1 +

ε24
2
u+4 (u

+
4 )

⊤= Ĩ3 +
ε24
2
u−4 (u

−
4 )

⊤<0, u±4 =
ε1ε

∓
4

2
u+1 +

ε3ε
±
4

2
u+3 , (5.5)

≈
I2= Ĩ2 +

ε25
2
u+5 (u

+
5 )

⊤= Ĩ3 +
ε25
2
u−5 (u

−
5 )

⊤<0, u±5 =
ε2ε

∓
5

2
u+2 +

ε3ε
±
5

2
u−3 , (5.6)

where
≈
I1< 0 ∼= Ĩ1 < 0, Ĩ3 < 0,

≈
I2< 0 ∼= Ĩ2 < 0, Ĩ3 < 0.

The resulting MI:

≈
I =

≈
I1 +

ε26
2
u+6 (u

+
6 )

⊤ =
≈
I2 +

ε26
2
u−6 (u

−
6 )

⊤ < 0, u±6 =
ε4ε

∓
6

2
u−4 +

ε5ε
±
6

2
u−5 , (5.7)

where
≈
I < 0 ∼=

≈
I1< 0,

≈
I2 < 0.

The derivation of criterion A in [12] was based on the approach (approach A) which, being
reformulated for the continuous case, consists of the following steps. First, two out of the six extra
parameters in the RMI (5.7) are set to unity; specifically, ε4 = ε5 = 1. This assumption turns the

inequality
≈
I (ε1, ε2, ε3, 1, 1, ε6) ,

≈
I (1) < 0 into a sufficient condition for the validity of the whole set

of MIs (5.1). Second, the conditions of the validity of this MI
≈
I(1) < 0 and the conditions of the

circle criterion are compared.

Let us demonstrate the application of approach A in the continuous-time case. The expressions
of the second-level MIs through u±s are the same for discrete and continuous time; hence, we briefly
repeat the derivations in [12]. By setting ε4 = ε5 = 1 in (5.5) and (5.6) (in that case, ε+4 = ε+5 = 2,
ε−4 = ε−5 = 0), we obtain

u+4 = ε3u
+
3 , u−4 = ε1u

+
1 , u+5 = ε3u

−
3 , u−5 = ε2u

+
2 ,

and the corresponding second-level MIs take the form

≈
I 1(1)= Ĩ3 +

ε21
2
u+1 (u

+
1 )

⊤ = I1 +
ε21
2
u+1 (u

+
1 )

⊤ +
ε23
2
u+3 (u

+
3 )

⊤ < 0,

≈
I 2(1)= Ĩ3 +

ε22
2
u+2 (u

+
2 )

⊤ = I1 +
ε22
2
u+2 (u

+
2 )

⊤ +
ε23
2
u+3 (u

+
3 )

⊤ < 0.

(5.8)

Accounting for the expressions in (5.2)–(5.4) for u±s through pj and qj , we see that, for m = 2,
the MICCK (2.16) has the form

Icir = I1 +
ε21
2
u+1 (u

+
1 )

⊤(ε1) +
ε23
2
u+3 (u

+
3 )

⊤(ε3) < 0, (5.9)

where, to save space, the short-hand notation u+s (u
+
s )

⊤(ε) for u+s (ε)u
+
s (ε)

⊤ is adopted. It is obvious
that the feasibility of any of the two MIs in (5.8) implies the feasibility of the MICC (5.9).

On the other hand, assume (from now on) that the MICC (5.9) is feasible for ε1 = ε1cir
and ε3 = ε2cir. Then the first inequality in (5.8) is feasible for ε1 = ε1cir and ε3 = ε2cir, and the

second one is feasible for ε2 = ε1cir and ε3 = ε2cir. Therefore, the MI
≈
I(ε1cir, ε1cir, ε2cir, 1, 1, ε6) < 0

is feasible for some ε6 which is defined when applying Theorem 1 to the set (5.8) of two inequalities.
This result is formulated in the theorem below.

Theorem 6. The feasibility of the MICC (2.16) for m = 2 is equivalent to the feasibility of the
RMI (5.7) for ε4 = ε5 = 1.
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In other words, use of approach A in the continuous-time case leads to the same existence
conditions of a QLF, as the conditions of the circle criterion.

The derivation of criterion B in [12] was based on the approach (approach B) which, being
reformulated for the continuous case, consists of the following steps. First, we we let ε4 = ε5 = ε
in the RMI (5.7); i.e., consider just five out of the six extra parameters. Second, we compare

analytically the feasibility conditions of the MI
≈
I(ε1, ε2, ε3, ε, ε, ε6) ,

≈
I(ε) < 0 and the MICC (5.9).

Such a comparison has been performed (we omit the details). As a result, under the adopted
coarsening assumptions, which make such a comparison possible, we failed to show analytically
an improvement of the circle criterion within approach B. Nevertheless, the possibility of such
an improvement remains. To test this, the domains of quadratic stability (QSD) obtained from
the feasibility of the RMI (5.7) for ε4 = ε5 = ε and from the MICC (5.9) are to be compared via
numerical examples.

Note that the MIs (5.5) and (5.6) and hence, the RMI (5.7) are not LMIs in the considered
parameters. We therefore pass on from the second-level inequalities (5.5) and (5.6) to the equivalent
LMIs. By Theorem 2, the set of the three inequalities Is < 0, s = 1, 3, from the set (5.1) is equivalent
to the single MI

∼=
I1 =


A⊤L+ LA Lb1 + (τ1/2)c1 L(b2 − b1)−

τ1
2
c1 +

τ3
2
c2

(•)⊤ −τ1 (τ1 − τ3 + τ4)/2

(•)⊤ • −τ4

 < 0, (5.10)

which is an LMI in the variables L and τj , j = 1, 3, 4, and it is equivalent to the MI (5.5). Similarly,
the set of the three inequalities Is < 0, s = 2, 4 in (5.1) is equivalent to the single MI

∼=
I2 =


A⊤

3 L+ LA3 Lb1 +
τ2
2
c1 L(b2 − b1)−

τ2
2
c1 −

τ3
2
c2

(•)⊤ −τ2 (τ2 − τ3 + τ5)/2

(•)⊤ • −τ5

 < 0, (5.11)

which is an LMI in L and τj , j = 2, 3, 5, and it is equivalent to the MI (5.6). Hence, the feasibility
of the set

∼=
I1 < 0,

∼=
I2 < 0, (5.12)

of these two MIs is equivalent to the feasibility of the RMI (5.7).

In this context, of interest is the relation between the parameters εjs, which enter the RMI (5.7),
and the parameters τjs, which enter the set (5.12). The εjs appear in (5.7) according to the diagram
and formulae (5.2)–(5.7). The τjs appear in (5.12) according to Theorem 2. In the derivation of
Theorem 2, the parameter ε3 in (3.6) appears when applying the convolution theorem to the MI
of dimension n+ 1 (there is no counterpart of ε3 in the diagram and in the RMI (5.7)). Hence,
though relation (2.18) between the parameters εj , j = 1, 3, from the diagram and (5.7) and the
parameters τj , j = 1, 3, from (5.12) does hold, there is no such a relation between the parameters τ4
and τ5 in (5.12) and the parameters ε4 and ε5 in the RMI (5.7). Therefore, the relation ε4 = ε5 = ε
does not imply τ4 = τ5 = τ and vice versa. Hence, the feasibility of (5.7) for ε4 = ε5 = ε is not
equivalent to the feasibility of (5.12) for τ4 = τ5 = τ , whereas the feasibility of (5.7) is equivalent
to the feasibility of (5.12).

A new version of approach B emerges. As a continuous-time counterpart of criterion B in [12],
we consider the feasibility conditions of (5.12) for τ4 = τ5 = τ ; we refer to it as criterion C. We
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now compare the conditions of criterion C and the conditions of the circle criterion. To this end,
we detect τ4 and τ5 implying the feasibility of the MIs in (5.12), provided that the conditions of
the MICC hold.

Theorem 7. Let the MICC (5.9) is feasible for ε1 = ε1cir and ε3 = ε2cir. Then the set of the
MIs (5.12) is feasible for

τ1 = τ2 = 2/ε21cir, τ3 = 2/ε22cir, τ4 = τ5 = 2/ε21cir + 2/ε22cir.

A proof of Theorem 7 is given in the Appendix.

From Theorem 7 it follows that the QSD obtained via criterion C is not worse than the one
obtained via the circle criterion. However use of criterion C does not guarantee an improvement of
the circle criterion. Still, such an improvement can be demonstrated via numerical examples. For
the completeness of the exposition, we present such an example showing that the QSD obtained
from criterion C is wider than that obtained from the circle criterion.

Example 1. Considered is the Lurie system of the form (2.3) with n = 6, where the matrix A is
in the companion form; i.e., it is completely defined by the last row

A ∼ [−10.0 − 34.0 − 49.0 − 40.0 − 20.0 − 6.0 ],

spectr(A) = [−1.0 − 1.0 − 1.0− i − 1.0 + i − 1.0− 2i − 1.0 + 2i ],

b⊤1 = (0 0 0 k1 0 0), b⊤2 = (0 0 0 0 k2 0),

c⊤1 = (0 0 0 0 1 1), c⊤2 = (0 0 0 0 1 1).

We evaluate the size of the QSDs obtained by means of the three algorithms. Algorithm NS
consists in computing the QSD in accordance with necessary and sufficient conditions for the
existence of a QLF by checking the feasibility of (5.1). Algorithm CC consists in evaluating the
QSD via use of the circle criterion; i.e., by checking the MICC (2.10). Algorithm C consists in
evaluating the QSD via use of criterion C; i.e., by checking the feasibility of (5.12) for τ4 = τ5 = τ .

To find the size of a QSD, we consider a ray emanating from the origin. We then fix a directional
vector α = (α1, α2), αs > 0, along this ray and maximize the value of k such that the conditions of
one or another criterion are satisfied for (k1, k2) = kα; five specific vectors were considered in the
experiments.

The top row of Table presents the rays αi, i = 1, 5, along which the QSD is evaluated, and the
left column shows the names of the corresponding algorithms used.

Table

Algorithm�Ray (1, 1) (1, 2) (1, 3) (2, 1) (3, 1)

NS 0.45684 0.32608 0.25301 0.28482 0.20674

CC 0.44831 0.31943 0.24813 0.28088 0.20453

C 0.45684 0.32608 0.25301 0.28482 0.20674

For this example, along all the considered directions αi, the QSD obtained via criterion C is
wider than the one obtained via the circle criterion; moreover, it coincides with the exact QSD, see
Table.

The overall dimension of the set (5.12) is 2n+ 4, and for τ4 = τ5 = τ , this set depends on five

extra parameters. At the same time, each of the sets
∼=
I1< 0, I4 < 0, and I1 < 0,

∼=
I2< 0, is of the

overall dimension 2n+ 2 and each of them depends on the three extra parameters. Moreover, each
of these sets is equivalent to the original one (5.1) without losses in the domain of feasibility. On

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023



282 KAMENETSKIY

top of that, application of Theorem 5 to the set (5.1) leads to a set of two LMIs, which is equivalent
to the original one, has cumulative dimension 2n+ 2 and depends on the two extra parameters.
Therefore, checking the condition of criterion C is exceptionally of theoretical interest. From the
application point of view, the best way to check the feasibility of (5.1) numerically is to solve the
system of the two LMIs obtained from Theorem 5.

Remark 1. Some of the conditions of the existence of a QLF presented above consist in checking
a parameter-dependent LMI on feasibility. Due to linearity it is possible to set one additional
parameter equal to unity, thus reducing the number of additional parameters by one. Among these
conditions are the MICC (2.10), the LMI (3.8), and the systems of LMIs (4.2) and (5.12).

6. CONCLUSIONS

First, in this work, the circle criterion for a Lurie system with several nonlinearities is obtained
without use of the S-lemma. Second, for a connected system with switching between three linear
subsystems, the criterion for the existence of a quadratic Lyapunov function is obtained both in
the form of the solvability conditions of a single LMI, and in the form of a frequency condition.
Third, two theorems are proved which allow for an essential reduction in the dimensionality of the
connected LMI system. Use of these theorems is demonstrated for the case of the Lurie system
with m = 2, m = 3, and arbitrary finite m, and for systems with switching for N = 6. Fourth, a
comparison was performed for various approaches to the improvement of the circle criterion for the
Lurie system with m = 2.
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APPENDIX

Proof of Theorem 5. Let N = 2m and let the MIs in (2.13) be numerated in such a way that the
first 2m−1 inequalities Is < 0, s = 1, 2m−1, coincide with the inequalities in (2.13) for N = 2m−1,
and the rest 2m−1 inequalities Is < 0, s = 2m−1 + 1, 2m, are numerated as follows:

Is+2m−1 = Is +
(
Lbmc⊤m + cmb⊤mL

)
< 0, s = 1, 2m−1.

Then, Pyatnitskiy’s theorem is applicable to the pairs of inequalities

Is < 0, Is+2m−1 < 0, s = 1, 2m−1. (A.1)

As a result, the system of inequalities (2.13) is equivalent to the set of MIs

Is +
ε2s
2

(
Lbm +

1

ε2s
cm

)(
Lbm +

1

ε2s
cm

)⊤
< 0, s = 1, 2m−1, (A.2)

with 2m−1 additional parameters εs > 0. Letting εs = εm > 0, s = 1, 2m−1, in (A.2), we arrive at
yet another proof, by induction, of the transition from (2.13) to the MICC (2.16). Application of
Theorem 4 to every pair of inequalities (A.1) provides the equivalence of the set of MIs (2.13) to
the set of MIs (4.2) with 2m−1 extra parameters τs , 2/ε2s. Theorem 5 is proved.

Proof of Theorem 7. We show that the fulfilment of the MICC (5.9) implies the existence of τ4
such that the MI (5.10) holds. Similarly to [12], to determine the conditions of negative definiteness
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of a parameter-dependent matrix Ib(ν), given the negative definiteness of the matrix Ia(ν), we use
the following obvious sufficient condition: If Ia(ν) < 0 and Ib(ν) 6 Ia(ν), then Ib(ν) < 0.

To simplify derivations, we return to the notation used in the proof of Theorem 2 and transform
the MI (5.10) (see Lemma A4 [13, p. 253]) as follows:

∼=
I 1 =


I1 u+1 u+3 − u+1

(•)⊤ −τ1 δ1

(•)⊤ • −τ4

 < 0 ∼= Î 1=

 I1 u+3 − u+1

(•)⊤ −τ4

+
1

τ1

u
+
1

δ1


u

+
1

δ1


⊤

=

 I1 u+3 − u+1

(•)⊤ −τ4

+
1

τ1


u+1 (u

+
1 )

⊤ δ1u
+
1

(•)⊤ δ 2
1

 =


I1 +

1

τ1
u+1 (u

+
1 )

⊤ δ1 − τ1
τ1

u+1 + u+3

(•)⊤ δ 2
1

τ1
− τ4

 < 0,

where, for brevity, the notation δ1 , (τ1 − τ3 + τ4)/2 is introduced and the arguments of the vec-
tors u±j = u±j (τj) are omitted. Adopting yet another simplifying notations α1 , (δ1 − τ1)/τ1 and

β1 , τ1/(τ1τ4 − δ 2
1 ), we arrive at

Î1< 0 ∼= ̂̂
I1= I1 +

1

τ1
u+1 (u

+
1 )

⊤ + β1
(
α1u

+
1 + u+3

) (
α1u

+
1 + u+3

)⊤
< 0 (A.3)

via use of the Schur complement.

For τ1 = 2/ε21cir and τ3 = 2/ε22cir, the difference between the quadratic forms associated with the

matrices Icir in (5.9) and
̂̂
I1 in (A.3) is the difference of squares

̂̂
I1− Icir , ∆1 = β1

(
α1u

+
1 + u+3

) (
α1u

+
1 + u+3

)⊤
− 1

τ3
u+3 (u

+
3 )

⊤.

Inequality ∆1 6 0 for the difference of squares is valid if the corresponding (squared) linear
forms are proportional; i.e., α1u

+
1 +u+3 = λ1u

+
3 , which is only possible if α1 = 0 or τ4 = τ1 + τ3. In

that case, ∆1 = 0.

We next determine the values of τ5 which guarantee the feasibility of (5.11) provided that the
MICC (5.9) is feasible. To this end, we perform the manipulations with the MI (5.11) similar to
those performed above with the MI (5.10). As a result, we obtain

∼=
I2 < 0 ∼= ̂̂

I2= I3 +
1

τ2
u+2 (u

+
2 )

⊤ + β2
(
α2u

+
2 + u−3

) (
α2u

+
2 + u−3

)⊤
< 0, (A.4)

where δ2 , (τ2 − τ3 + τ5)/2, α2 , (δ2 − τ2)/τ2, and β2 , τ2/(τ2τ5 − δ 2
2 ). With account for

u+2 (τ) = u+1 (τ) and using the relation I1 +
1
τ3
u+3 (u

+
3 )

⊤(τ3) =I3 +
1
τ3
u−3 (u

−
3 )

⊤(τ3), we arrive at the

conclusion that, for τ2 = 2/ε21cir and τ3 = 2/ε22cir, the difference between the quadratic forms asso-

ciated with the matrices Icir in (5.9) and
̂̂
I2 in (A.4) is nothing but the difference of squares

̂̂
I2− Icir , ∆2 = β2

(
α2u

+
2 + u−3

) (
α2u

+
2 + u−3

)⊤
− 1

τ3
u−3 (u

−
3 )

⊤.

The inequality ∆2 6 0 for the difference of squares is valid if the corresponding linear forms are
proportional; i.e.,

α2u
+
2 + u−3 = λ2u

−
3 ;

this takes place only if α2 = 0 or τ5 = τ2 + τ3. In that case ∆2 = 0. Theorem 7 is proved.
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