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1. INTRODUCTION

Since the beginning of the space age, near-Earth space has accumulated a significant amount of
space debris, i.e., objects of artificial origin and their fragments that are faulty, non-functional, and
unable to serve any useful purposes. Moreover, they are dangerous factors affecting the operation
of spacecraft. Every year the number of space debris objects grows constantly. These objects can
be divided into large groups as follows: payloads, rocket stages, boosters, and tanks. The greatest
accumulation of space debris is observed in low Earth orbits and the geostationary orbit (GEO)
zone [1]. The collisions of large-size space debris objects with each other and the explosions of fuel
residues in the tanks may appreciably increase the number of small-size space debris objects. The
processes described may generate a chain reaction, the so-called Kessler effect [2].

Many publications were devoted to the compilation of catalogs of non-functional spacecraft and
the state monitoring of near-Earth space; for example, see [3–7].

In [3], the current anthropogenic situation in near-Earth space was analyzed based on the avail-
able catalog of cosmic objects. In addition, the main measures to reduce space debris were listed,
and an automated warning system of dangerous situations in near-Earth space was described.

The paper [4] considered the organizational, methodological, and technological problems of
building an information monitoring system to reduce the debris of near-Earth space, including the
description of the system databases.

The authors [5] presented mathematical support and software tools for examining the objects
of artificial origin. The tools allow predicting the probability of collision for space debris objects
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with functional satellites and simulating the space debris formation process due to explosions and
collisions.

In [6], an algorithm was developed to accelerate orbit construction for a non-cataloged space
debris object.

Three generations of optoelectronic complexes to monitor near-Earth space were described in [7].

It is topical to elaborate measures on cleaning and avoiding or reducing space debris [8]. The
ways of solving the space debris problem can be divided into two large groups: prevention and
cleaning. Various projects to clean up near-Earth space are being developed: capturing a space
debris fragment with nets [9–11] and harpoons [12–15] and using lasers [16–20]. The idea of a flyby
of a large-size space debris object with its subsequent transfer to the disposal orbit was considered
in [21, 22]. However, there exist no economically acceptable projects so far.

In the adopted international documents, one measure to prevent space debris formation is with-
drawing space objects from the working orbits after the end of their active operation [23, 24]. The
authors [25–30] studied the transfer problem of a finished spacecraft to the disposal orbit with a
given lifetime. The ideas of moving spent spacecraft and their parts to the dense atmosphere were
examined in [27–33].

The paper [25] considered the transfer problem of a finished spacecraft to the disposal orbit
with a given lifetime. For a particular spacecraft, it is possible to choose the type of disposal orbit
(circular or elliptical) and the time instant to start transition maneuver to this orbit.

The possibility of fulfilling the Inter-Agency Space Debris Coordination Committee space debris
mitigation guidelines was analyzed in [26]. As noted, one of the easiest and most effective ways
to prevent debris in mid-altitude orbits is minimizing the eccentricity of satellites after the end of
their active operation. According to the statistical data, almost half of the satellites in 1999–2011
were transferred to the disposal orbit meeting the requirements of the Inter-Agency Space Debris
Coordination Committee.

In [27], the transfer of the Gonets-M spacecraft to the disposal orbit and the dense atmosphere
after the end of its active operation was considered. In addition, the characteristic velocity to exe-
cute the transition maneuver and the lifetime of the spacecraft in the disposal orbit were estimated
therein.

Various ways to prevent the debris of near-Earth space were among the issues addressed in [28].
They include the reduction of exhaust products from solid-propellant engines, the passivization
of spacecraft and launch vehicles, the decrease of fragmentation due to collisions, the transfer of
spacecraft and launch vehicles to disposal orbits, the forced atmospheric entry of spacecraft and
launch vehicles, and the reduction of the lifetime of space objects. It was proposed to use special jet
engines or main engines for the atmospheric entry of spacecraft. According to the authors, surface
geometry changes (e.g., inflatable balloons) can be used to enlarge the surface area and thereby
enhance atmospheric braking in low orbits.

The paper [29] considered the transfer problem to the atmosphere and disposal orbits on an
example of several satellites. The dependencies of the relative fuel mass on various parameters
were constructed.

As noted in [30], the forced atmospheric entry of spacecraft using flight deceleration techniques
is a promising approach. However, such maneuvers need an appropriate modification of traditional
designs of spacecraft and launch vehicles.

In [31], besides various space debris removal methods, the authors suggested reducing the debris
of near-Earth space by the transition of failed satellites to the upper layers of the Earth atmosphere
using solar sails.
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Super-small spacecraft, part of distributed spacecraft, can be transferred to the dense atmo-
sphere; see [32].

A method to reduce the debris of near-Earth space [33] consists in maneuvering with the unused
fuel residues to change the perigee altitude of the orbit for the fast controlled transition of detached
spacecraft parts to the dense atmosphere. A corresponding optimization problem was posed in the
cited publication. Based on the analysis of existing space launch vehicles, this method is practicable.

The paper [34] considered the problem of choosing orbits to transfer large-size space objects
after the end of their active operation. The dependence of the ballistic lifetime of space objects on
the altitudes of the exchange orbits was investigated. According to the presented results, as the
minimum altitude of the orbit decreases, the lifetime of a space object in this orbit tends to zero.
By assumption, an object terminates ballistic life when reaching an altitude less than 80 km above
the Earth’s surface.

In what follows, we optimize spacecraft transfer with releasing the spent stages to the atmo-
sphere. This problem statement is original and has not been studied by other researchers within
optimization approaches.

This paper considers the idea of reducing the debris of near-Earth space by releasing the spent
parts of a spacecraft on orbits touching the conditional boundary of the Earth’s atmosphere at
the final ascent stage. Found in [35] for the apsidal pulse statement, the solution with extremely
low overhead costs also turned out to be a solution of the problem without the prior apsidality
assumption; for details, see [36, 37]. This result gives hope for the success of the problem hierarchy
methodology, i.e., the sequential formalization and solution of a series of problems with the gradual
clarification and complication of their statements, where the obtained solutions of simpler problems
are used to solve the next (more difficult) ones as an initial approximation (directly or based on
their parametric continuation). A good initial approximation and a good computational scheme of
the shooting method yield one of the possible extremals in the problem. Note that the attempts
to construct an arbitrary extremal fail without preliminary trajectory analysis.

In this work, we optimize the exchange trajectory of a spacecraft from a reference circular orbit
of an artificial Earth satellite of given radius and inclination to a target elliptical orbit. This transfer
is considered in the central Newtonian gravitational field, i.e., the Earth is treated as the point
attraction center and all other gravitational forces are neglected. The problem under study has the
pulse statement. As before, the sum of final ascent maneuver impulses of a spacecraft from a target
orbit to the geostationary one is assumed limited by a given value. The characteristic velocity of
orbit final ascent maneuvers is modeled within the simplified apsidal pulse scheme.

We consider the transfer trajectory of a spacecraft with orbit final ascent maneuvers of the
maximum characteristic velocity of 1.5 km/s. As demonstrated by the previous studies, the char-
acteristic velocities of orbit final ascent maneuvers below 1.47. . . km/s lead to another trajectory
structure with significant overhead costs.

In contrast to the spacecraft model with two stages and a satellite [36, 37], the spacecraft is
supposed to consist of a booster, an auxiliary fuel tank (AFT), and a satellite. The first series
of spacecraft transition maneuvers is executed using the AFT reserves. At the end of this series
of maneuvers the spacecraft must reach the disposal orbit, i.e., the one touching the conditional
boundary of the atmosphere (with a perigee altitude of 100 km). Then, there is a passive flight
of duration 120 s to release the AFT. At the end of the passive flight section, the AFT remains
in the disposal orbit, whereas the spacecraft is transferred by an impulse action to a “safe” orbit
with a perigee altitude of 200 km. This impulse action, as well as the subsequent ones, is applied
using the fuel reserves from the booster’s main tank. Finally, after the second series of transition
maneuvers, the spacecraft is delivered to the target orbit (one of the elliptical orbits such that the
characteristic velocity of satellite final ascent maneuvers to the GEO is limited by a given value).
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In this orbit, the satellite is undocked from the booster. Like the previous studies, the booster is
assumed to be released from the apogee of the target orbit using the main tank fuel.

According to the parametric analysis in the earlier publications [35–37], a local minimum is
achieved on the extremal constructed using the Lagrange principle.

We formalize the corresponding optimization problem and reduce it to a multipoint boundary
value problem based on the Lagrange principle [38]. The boundary value problem of the Lagrange
principle in the pulse statement is solved numerically by the shooting method. Bulky derivatives
in the transversality conditions are computed using a special numerical–analytical differentiation
technique.1

2. PROBLEM STATEMENT

The transfer is considered in the central Newtonian gravitational field in a vacuum in the rect-
angular Cartesian coordinate system related to the Earth’s center. The axis z of this system is
perpendicular to the equatorial plane and has is south-to-north direction; the axis x lies in the
equatorial plane and is directed along the node line of the initial circular orbit from the descending
node to the ascending one; the axis y completes the coordinate system to the right-hand triple. The
passive motion of the spacecraft’s center of mass is described by the system of differential equations

ẋ(t) = vx(t), ẏ(t) = vy(t), ż(t) = vz(t),

v̇x(t) = −
µx(t)

r3(t)
, v̇y(t) = −

µy(t)

r3(t)
, v̇z(t) = −

µz(t)

r3(t)
,

(2.1)

with the following notations: x(t), y(t), and z(t) are the coordinates of the spacecraft’s center of
mass;

r =
√
x2(t) + y2(t) + z2(t)

is the distance between the spacecraft and the Earth’s center; vx(t), vy(t), and vz(t) are the velocity
vector components of the spacecraft’s center of mass; finally, µ is the gravitational parameter of
the Earth.

According to the previous studies, the desired spacecraft transfer trajectory from the reference
orbit to the target orbit consists of four passive segments and five impulse actions; see the figure.

Let an impulse action be applied at a time instant τ. It occurs instantaneously and does not
change the spacecraft coordinates:

x(τ+)− x(τ−) = 0, y(τ+)− y(τ−) = 0, z(τ+)− z(τ−) = 0,

τ+ − τ− = 0.
(2.2)

From this point onwards, we employ the following notations: τ− is the end of a current passive
segment; x(τ−), y(τ−), and z(τ−) are the state variables at this time instant (some left-continuous
functions); τ+ is the beginning of the next passive segment; x(τ+), y(τ+), and z(τ+) are the state
variables at this time instant (some right-continuous functions). In terms of the problem statement
and application of the Lagrange principle [38], these are nonidentical segments and nonidentical
state variables. According to the main theorem of [38], they differ and are indicated differently.
The unified notation system of this paper serves to simplify the presentation: the subscripts are
omitted.

1 The numerical–analytical differentiation project is available at: http://mech.math.msu.su/∼iliagri/ext value.htm.
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Spacecraft transfer to target orbit (left) and final ascent maneuvering from target orbit to geostationary
orbit (right): REF—reference orbit, 1—first exchange orbit (before highlighted domain), 2—safe orbit
(after highlighted domain, the apogees of first and safe orbits are visually indistinguishable), TAR—
target orbit, Rel1—AFT release orbit, Rel2—booster release orbit, FA1—first final ascent maneuver
orbit, FA2—second final ascent maneuver orbit, and GEO—geostationary orbit.

At the initial time instant, the spacecraft before the first impulse action is in the circular reference
orbit of a given inclination i0 and radius R0. Due to the chosen coordinate system, the ascending
node has the longitude Ω0 = 0:

x2(0−) + y2(0−) + z2(0−) = R2
0,

x(0−)C0x + y(0−)C0y + z(0−)C0z = 0,

vx(0−) +
v0
R0

(y(0−) cos i0 + z(0−) sin i0) = 0,

vy(0−)−
v0
R0

x(0−) cos i0 = 0,

vz(0−)−
v0
R0

x(0−) sin i0 = 0,

(2.3)

where C0 =
√
µR0, C0x = 0, C0y = −C0 sin i0, and C0z = C0 cos i0 are the magnitude and com-

ponents of the kinetic momentum vector of the spacecraft relative to the Earth’s center;
R0 = REar + h0 is the radius of the reference orbit; REar is the Earth’s radius; h0 is the alti-

tude of the reference orbit above the Earth’s surface; finally, v0 =
√

µ
R0

is the magnitude of the

velocity vector in the reference orbit.

The initial time instant t = 0− corresponds to the conditions before the impulse action in the
circular orbit (and not to any passive segment). The values x(0−), y(0−), z(0−), vx(0−), vy(0−),
and vz(0−), representing the coordinates and components of the velocity vector in the circular
orbit before the impulse action due to (2.2), are eliminated from consideration within the problem
statement:

x2(0+) + y2(0+) + z2(0+) = R2
0, x(0+)C0x + y(0+)C0y + z(0+)C0z = 0. (2.4)

(For details, see [38].) Note that the formalized problem statement includes just the two condi-
tions (2.4) out of the five ones (2.3). The last three conditions of (2.3) are part of the initial
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impulse:

∆v0x = vx(0+) +
v0
R0

(y(0+) cos i0 + z(0+) sin i0) ,

∆v0y = vy(0+)−
v0
R0

x(0+) cos i0,

∆v0z = vz(0+)−
v0
R0

x(0+) sin i0,

∆v0 =
√
∆v20x +∆v20y +∆v20z.

(2.5)

The impulse action at the initial time instant t = 0 transfers the spacecraft to the first exchange
orbit. At an a priori unknown time instant τ1 (according to the previous studies, in a neighborhood
of the apogee of the first exchange orbit), an impulse action is applied to transfer the spacecraft to
the AFT release orbit, i.e., an elliptical orbit touching the conditional boundary of the atmosphere
(with a perigee altitude of 100 km):

x(τ1+)− x(τ1−) = 0, y(τ1+)− y(τ1−) = 0, z(τ1+)− z(τ1−) = 0,

τ1+ − τ1− = 0,

Rp(x(τ1+), y(τ1+), z(τ1+), vx(τ1+), vy(τ1+), vz(τ1+)) = REar + 100 km,
(2.6)

∆v1 =
√
(vx(τ1+)− vx(τ1−))2 + (vy(τ1+)− vy(τ1−))2 + (vz(τ1+)− vz(τ1−))2.

Depending on the coordinates and velocities of the spacecraft at the time instant of inserting into
the AFT release orbit, the radius of the perigee Rp(x, y, z, vx, vy, vz) is given by

Rp(·) = a(·)(1− e(·)),

where a(·) and e(·) denote the semi-major axis and eccentricity, calculated as functions of the
spacecraft coordinates and velocities by known formulas [39].

In the next passive segment of 120 s, the AFT is undocked from the spacecraft. At the time
instant τ2, an impulse action transfers the spacecraft to the safe orbit (with a perigee altitude of
200 km):

x(τ2+)− x(τ2−) = 0, y(τ2+)− y(τ2−) = 0, z(τ2+)− z(τ2−) = 0,

τ2+ − τ2− = 0,

Rp(x(τ2+), y(τ2+), z(τ2+), vx(τ2+), vy(τ2+), vz(τ2+)) = REar + 200 km,

τ2− − τ1+ = 120 s,

(2.7)

∆v2 =
√
(vx(τ2+)− vx(τ2−))2 + (vy(τ2+)− vy(τ2−))2 + (vz(τ2+)− vz(τ2−))2.

At an a priori unknown time instant τ3 (according to the previous studies, in a neighborhood of
the perigee of the safe orbit), an impulse action is applied to transfer the spacecraft to the target
orbit:

x(τ3+)− x(τ3−) = 0, y(τ3+)− y(τ3−) = 0, z(τ3+)− z(τ3−) = 0,

τ3+ − τ3− = 0, (2.8)

∆v3 =
√
(vx(τ3+)− vx(τ3−))2 + (vy(τ3+)− vy(τ3−))2 + (vz(τ3+)− vz(τ3−))2.
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In the long passive segment of the target orbit, the satellite separates from the booster. Then
the satellite’s final ascent maneuver to the geostationary orbit is executed using the satellite’s fuel
reserves.

As demonstrated by the previous studies, the apogee of the target orbit is the booster’s best
transition point to the orbit touching the conditional boundary of the atmosphere. In this case,
the release impulse is directed against the booster’s velocity and the angle of inclination does not
change:

Rta = r(τ4−) =
√
x2(τ4−) + y2(τ4−) + z2(τ4−),

Vta = v(τ4−) =
√
v2x(τ4−) + v2y(τ4−) + v2z(τ4−),

VAtm =

√
2µrAtm

r(τ4−)(r(τ4−) + rAtm)
,

∆v4 = Vta − VAtm,

where τ4 is the time instant of passing the apogee of the target orbit, rAtm = REar + 100 km, VAtm is
the velocity in the apogee of the orbit touching the conditional boundary of the atmosphere reached
by the booster after the impulse action, Rta is the radius of the apogee of the target orbit, and
Vta is the velocity in the apogee of the target orbit.

Note that the characteristic velocity of satellite’s final ascent maneuvers from the target orbit
to the GEO is considered within the simplified scheme and is executed using three impulse actions:

∆vFA(·) = ∆vFA1(·) + ∆vFA2(·) + ∆vFA3.

The three impulse actions of the final ascent maneuver are calculated by the apsidal formulas [39].

The first impulse action ∆vFA1(·) is applied in the perigee of the target orbit; without chang-
ing the inclination, it increases the apogee to the maximum possible distance Rmax between the
spacecraft and the Earth:

∆vFA1(·) =
√
V 2
tp + V 2

1p − 2VtpV1p,

Vtp =

√
2µRta

Rtp(Rta +Rtp)
, V1p =

√
2µRmax

Rtp(Rmax +Rtp)
,

(2.9)

where Rtp is the radius of the perigee of the target orbit and Vtp is the velocity in the perigee of
the target orbit.

The expressions (2.9) involve the formalized relation ∆vFA1 = |V1p − Vtp| instead of the quite
natural and clear one

∆vFA1 = V1p − Vtp. (2.10)

Of course, we have V1p > Vtp in the optimal solution, and the absolute value (root of the square)
becomes unnecessary in the formula for ∆vFA1. However, it is desirable to consider the potential
inequality V1p < Vtp in intermediate calculations. Without the absolute value in such potential
cases, the simplified formula (2.10) yields the unphysical result ∆vFA1 < 0. Nevertheless, it is not
critical because the problem will not arise for the optimal solution.2 The main reason for using
the (more complex) absolute value-based formula is the deteriorated convergence of the iterative
process compared to a simpler formula or “incompletely defined” conditions.

2 More exactly, “extremal” since the first-order optimality conditions (the Lagrange principle) are verified without
considering the second-order conditions and sufficient conditions.
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The second impulse action ∆vFA2(·) is applied in the apogee. It increases the perigee to the
GEO radius RGEO and changes the inclination to 0:

∆vFA2(·) =
√
V 2
1a + V 2

2a − 2V1aV2a cos it,

V1a =

√
2µRtp

Rmax(Rmax +Rtp)
, V2a =

√
2µRGEO

Rmax(Rmax +RGEO)
,

(2.11)

where it denotes the inclination angle of the target orbit to the equatorial plane. At the time
instant of passing the apogee, this value can be calculated by

cos it =

√
v2x(τ4−) + v2y(τ4−)√

v2x(τ4−) + v2y(τ4−) + v2z(τ4−)
. (2.12)

The third impulse action ∆vFA3 in the perigee decreases the apogee to the GEO radius without
changing the inclination. Thus, it transfers the satellite to an a priori unknown point of the
geostationary orbit:

∆vFA3 = V2p − vGEO,

V2p =

√
2µRmax

RGEO(Rmax +RGEO)
, vGEO =

√
µ

RGEO
.

(2.13)

Note that the value ∆vFA3 is actually constant. (It depends on the given value RGEO and the given
problem parameter Rmax.)

The values Rtp, Rta, and it in these formulas are Kepler’s integrals and can be calculated
whenever the spacecraft moves in the target orbit. Their calculation at the time instant τ4 of
passing the apogee of the target orbit is technically more convenient. Thus, using (2.9)–(2.13), we
represent ∆vFA(·) as the relation

∆vFA(x(τ4−), y(τ4−), z(τ4−), vx(τ4−), vy(τ4−), vz(τ4−)).

As a result, the boundary conditions can be formalized as follows:

∆vFA(x(τ4−), y(τ4−), z(τ4−), vx(τ4−), vy(τ4−), vz(τ4−)) = ∆v∗,

x(τ4−)vx(τ4−) + y(τ4−)vy(τ4−) + z(τ4−)vz(τ4−) = 0,

λ3(x(τ4−), y(τ4−), z(τ4−), vx(τ4−), vy(τ4−), vz(τ4−))

= vx(τ4−)(z(τ4−)vx(τ4−)− x(τ4−)vz(τ4−))

− vy(τ4−)(y(τ4−)vz(τ4−)− z(τ4−)vy(τ4−))−
µz(τ4−)

r(τ4−)
= 0,

(2.14)

where λ3(·) is the z-component of the Laplace vector. The last relation at the apogee can be
written as z(τ4−) = 0. However, we use the basic relation on the z-component of the Laplace vector
in calculations for a convenient transition to the general case (the problem with limited thrust).
The first relation in (2.14) restricts the characteristic velocity of the satellite final ascent maneuver
from the target to geostationary orbit. According to the previous studies, this constraint is active;
therefore, it is presented in the paper as an equality. We can also assume that only one main subcase
is considered in the non-strict inequality case. (Under the complementary slackness conditions, the
corresponding Lagrange multiplier exceeds 0.) The second orthogonality relation of the radius
vector and velocity vector holds on the elliptical orbit at two points (perigee and apogee). They
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can be distinguished, e.g., as follows: before passing the apogee, the radial component of the
velocity vector is positive; after passing the apogee, it becomes negative. Such strict inequalities
will have no effect on the problem solution based on the Lagrange principle (will be passive) and
are therefore omitted below. The third relation shows that the apogee is in the equatorial plane.
On the one hand, this condition is not restrictive and eliminates the symmetry of the problem’s
rotation with respect to the spacecraft kinetic moment vector (C0x, C0y, C0z) of the reference orbit.
On the other hand, the condition that the apsidal line lies in the equatorial plane allows avoiding
unnecessary final ascent maneuver costs. On the third hand, it seriously simplifies the final ascent
maneuver formulas to the apsidal version.

The objective functional in this problem is the satellite’s payload in the target orbit.

At the initial time instant, the spacecraft has the dimensionless mass m(0) = 1. At each time
instant of applying the impulse action, the mass varies in accordance with Tsiolkovsky’s formula:

m(τ+) = m(τ−) exp

(
−∆v(τ)

c

)
,

where c = PspegEar is the jet velocity, Pspe is the specific thrust, and gEar is the gravitational
acceleration at the Earth surface.

Let u1 and u2 be the shares of the characteristic velocity of the spacecraft transition maneuver
to the target orbit executed using the fuel reserves from the AFT and the booster’s main tank,
respectively. The dry mass of a tank is proportional to the mass of fuel held by it with a coefficient α;
for details, see [40, p. 93]. Therefore, after the first series of transition maneuvers and AFT release,
the spacecraft mass becomes

m1 = (1 + α) exp

(
−u1
c

)
− α.

Considering the booster’s transition impulse to an orbit touching the conditional boundary of the
atmosphere, the payload at the apogee of the target orbit [36] is given by

mp (·) =
[
(1 + α) exp

(
−u1
c

)
− α

] exp(−u2c
)
−

α

(
1− exp

(
−u2
c

))
(1 + α) exp

(
−∆v4

c

)
− α

 .
For the spacecraft transfer under study, we have

u1 = ∆v(0) + ∆v(τ1), u2 = ∆v(τ2) + ∆v(τ3).

Consequently, the payload is a complex function of the spacecraft coordinates and velocities after
the impulse action at the initial time instant, the spacecraft velocities before and after the impulse
actions at the time instants τ1, τ2, and τ3, and the spacecraft coordinates and velocities at the time
instant τ4.

Thus, we have formalized the problem statement. It is reduced to a corresponding boundary
value problem [38] based on the Lagrange principle.

3. THE LAGRANGE PRINCIPLE

The Lagrange function has the form

Λ =
4∑

i=0


τ(i+1)−∫
τi+

Ldt

+ l, (τ0+ = 0+),
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with the Lagrangian

L = px (ẋ− vx) + py (ẏ − vy) + pz (ż − vz)

+ pvx

(
v̇x +

µx

r3

)
+ pvy

(
v̇y +

µy

r3

)
+ pvz

(
v̇z +

µz

r3

)
,

the Hamiltonian

H = pxvx + pyvy + pzvz + pvx

(
−µx
r3

)
+ pvy

(
−µy
r3

)
+ pvz

(
−µz
r3

)
,

and the terminant

l =
3∑

i=1

λxi(x(τi+)− x(τi−)) +
3∑

i=1

λyi(y(τi+)− y(τi−))

+
3∑

i=1

λzi(z(τi+)− z(τi−)) +
3∑

i=1

λτi(τi+ − τi−) + λτ12(τ2− − τ1+ − 120)

+ λR0(x(0+)
2 + y(0+)

2 + z(0+)
2 −R2

0) + λC0(x(0+)C0x + y(0+)C0y + z(0+)C0z)

+ λRp1(Rp(x(τ1+), y(τ1+), z(τ1+), vx(τ1+), vy(τ1+), vz(τ1+))−REar − 100)

+ λRp2(Rp(x(τ2+), y(τ2+), z(τ2+), vx(τ2+), vy(τ2+), vz(τ2+))−REar − 200)

+ λrv4(x(τ4−)vx(τ4−) + y(τ4−)vy(τ4−) + z(τ4−)vz(τ4−))

+ λzLλ3(x(τ4−), y(τ4−), z(τ4−), vx(τ4−), vy(τ4−), vz(τ4−))

+ λFA(∆vFA(x(τ4−), y(τ4−), z(τ4−), vx(τ4−), vy(τ4−), vz(τ4−))−∆v∗)− λ0mp.

Here, λxi, λyi, λzi, λτi, λτ12, λR0, λC0, λRpk, λrv4, λzL, λFA, and λ0 (i = 1, 2, 3, k = 1, 2) are the
numerical Lagrange multipliers; px(·), py(·), pz(·), pvx(·), pvy(·), and pvz(·) are the conjugate vari-
ables (the functional Lagrange multipliers) on each of the four segments. The additional subscripts
of the functions (according to the segment numbers), formally dictated by the theorem of [38], are
omitted below to simplify the presentation.

The stationarity conditions in the state variables (the conjugate system of equations, the Euler–
Lagrange equations) have the form

ṗx =
µ

r3

[
pvx −

3x

r2
(xpvx + ypvy + zpvz)

]
,

ṗy =
µ

r3

[
pvy −

3y

r2
(xpvx + ypvy + zpvz)

]
,

ṗz =
µ

r3

[
pvz −

3z

r2
(xpvx + ypvy + zpvz)

]
,

ṗvx = −px, ṗvy = −py, ṗvz = −pz.

(3.1)

Being cumbersome, the transversality conditions are formally written as

pξ(τi+) =
∂l

∂ξ(τi+)
, pξ(τi−) = −

∂l

∂ξ(τi−)
,

pξ(0+) =
∂l

∂ξ(0+)
, pξ(τ4−) = −

∂l

∂ξ(τ4−)
,

ξ = x, y, z, vx, vy, vz, i = 1, 2, 3.

(3.2)
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The derivatives of the functions Rp(·), ∆vFA(·), and mp (·) in these conditions are calculated using
a special numerical–analytical differentiation technique.

The stationarity conditions have the form

H(τ1−) = −λτ1, H(τ1+) = −λτ1 + λτ12, H(τ2−) = −λτ2 + λτ12,

H(τ2+) = −λτ2, H(τ3−) = −λτ3, H(τ3+) = −λτ3, H(τ4−) = 0.
(3.3)

There is no stationarity condition at the initial time instant. The stationarity conditions at the
time instant τ3 imply the continuity of the Hamiltonian: H(τ3+) = H(τ3−). From the stationarity
conditions at the time instants τ1 and τ2 it follows that H(τ2+) = H(τ1−).

Indeed, the right-hand side of the system of differential equations does not explicitly depend on
time. Hence, the function H(t) is constant on the solution of this system, i.e., H(τ2−) = H(τ1+).
Due to the stationarity conditions, we have H(τ1+) = H(τ1−) + λτ12 and H(τ2−) = H(τ2+) + λτ12.
Subtracting one equality from the other yields H(τ1+)−H(τ2−) = H(τ1−)−H(τ2+). Therefore,
H(τ1−)−H(τ2+) = 0, i.e., H(τ2+) = H(τ1−), as required.

The normalization condition is λ0 = 1.

Since the trajectory has a complex structure, the impossibility of the abnormal case λ0 = 0
should be studied separately. This subject goes beyond the scope of the paper.

The unknowns in the boundary value problem are as follows: 48 arbitrary integration constants
in the system of differential equations (2.1), (3.1) (12 unknowns for each of the four segments), the
time instants τ1±, τ2±, τ3±, and τ4−, and 20 numerical Lagrange multipliers. The total number
is 75 unknowns. They have to be determined using 19 conditions on the spacecraft coordinates
and the time instants (2.2), (2.4), (2.6), (2.7), and (2.14), 48 transversality conditions (3.2), and
7 stationarity conditions (3.3). The total number is 75 conditions, i.e., the number of unknowns in
the boundary value problem coincides with the number of conditions imposed on them.

4. NUMERICAL SOLUTION

With the shooting method, the boundary value problem of the Lagrange principle is reduced to
a system of nonlinear equations. This system is then solved numerically by the modified Newton–
Isayev–Sonin–Fedorenko method [41, 42, Ch. 1].

The choice of the computational scheme of the shooting method significantly affects the conver-
gence rate of Newton’s method. It is reasonable to adjust the shooting parameters that determine
the impulse action in a special basis, the so-called modified orbital basis. (Note that the new
coordinate system has the same origin as the initial one.)

The basis vectors e⃗r(τ), e⃗vtr(τ), and e⃗c(τ) of the local coordinate system at the time instants of
applying the impulse actions are defined as follows. The vector e⃗r(τ) is directed along the radius
vector of the spacecraft at the time instant of the impulse action; the direction of e⃗vtr(τ) coincides
with that of the transversal velocity component; the vector e⃗c(τ) completes the system to the
right-hand triple. Then

e⃗r(τ) =
r⃗(τ)

|r⃗(τ)|
, e⃗vtr(τ) =

v⃗tr(τ)

|v⃗tr(τ)|
,

e⃗c(τ) =
C⃗(τ)

|C⃗(τ)|
, e⃗v(τ) =

v⃗(τ)

|v⃗(τ)|
,

C⃗(τ) = [e⃗r(τ), e⃗v(τ)], v⃗tr(τ) = [e⃗c(τ), e⃗r(τ)].

(4.1)

The spacecraft velocities and, hence, the components of the impulse vector ∆vr(τ), ∆vtr(τ), and
∆vc(τ) at each time instant τ of applying the impulse action are specified in the system coordinates
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associated with the spacecraft:

∆vr(τ) = ∆v(τ) cosψ(τ) cos θ(τ), ∆vtr(τ) = ∆v(τ) sinψ(τ) cos θ(τ),

∆vc(τ) = ∆v(τ) sin θ(τ),
(4.2)

where θ(τ) denotes the pitch angle (the angle between the impulse vector and the orbital plane)
at the time instant τ , ψ(τ) is the yaw angle (counted in the orbital plane from the radius vector
in direction of the velocity vector) at the time instant τ , and ∆v(τ) is the impulse magnitude (its
value in the basic coordinate system coincides with that in the local one).

The components of the impulse vector in the initial coordinate system, ∆vx(τ), ∆vy(τ), and
∆vz(τ), are obtained by the basis transition formulas in matrix representation:∆vx(τ)∆vy(τ)

∆vz(τ)

 =

erx(τ) evxtr(τ) ecx(τ)

ery(τ) evytr(τ) ecy(τ)

erz(τ) evztr(τ) ecz(τ)


∆vr(τ)

∆vtr(τ)

∆vc(τ)

 . (4.3)

These formulas have the following notations: erx(τ), ery(τ), and erz(τ) are the coordinates of the
vector e⃗r(τ); evxtr(τ), evytr(τ), and evztr(τ) are the coordinates of the vector e⃗vtr(τ); finally, ecx(τ),
ecy(τ), and ecz(τ) are the coordinates of the vector e⃗c(τ) in the basic coordinate system at the time
instant τ .

The values vx(τ−), vy(τ−), and vz(τ−), representing the components of the spacecraft velocity
vector in the initial coordinate system before the impulse action at the time instant τ, are deter-
mined by solving the Cauchy problem. (At the initial time instant, when the spacecraft flies in the
reference circular orbit, they are calculated by the well-known formulas from the handbook [39].)
The values vx(τ+), vy(τ+), and vz(τ+), representing the components of the spacecraft velocity vector
in the basic coordinate system after the impulse action at the time instant τ, are given by

vx(τ+) = ∆vx(τ) + vx(τ−),

vy(τ+) = ∆vy(τ) + vy(τ−),

vz(τ+) = ∆vz(τ) + vz(τ−).

(4.4)

The shooting parameter vector at the initial time instant includes φ0 (the angular position of
the spacecraft in the reference circular orbit), ∆v0 (the impulse value), ψ0 and θ0 (the two angles
specifying the direction of the first impulse), and px(0+), py(0+), pz(0+), pvx(0+), pvy(0+), and
pvz(0+) (the six values of the conjugate variables). The angular position φ0 allows determining the
spacecraft coordinates and velocity in the reference orbit before the impulse action according to the
formulas from [39]. At the time instants τk (k = 1, 2, 3) of the impulse actions, which transfer the
spacecraft to the AFT release orbit, the safe orbit, and the target orbit, respectively, the shooting
parameter vectors include the impulse values ∆vk, the two angles ψk and θk specifying the impulse
direction, and the six values px(τk+), py(τk+), pz(τk+), pvx(τk+), pvy(τk+), and pvz(τk+) of the
conjugate variables after the impulse actions. The spacecraft velocities after the impulse action are
calculated by formulas (4.1)–(4.4). The shooting parameter vector also contains the durations ∆τ1,
∆τ3, and ∆τ4 of the passive segments (∆τ2=120 s is the problem parameter) and the numerical
Lagrange multipliers λR0, λC0, λRp1, λRp2, λrv4, λFA, and λzL. Due to the continuity conditions,
the spacecraft coordinates on a current integration segment are taken equal to those on the previous
segment and are not included in the shooting parameter vector. In addition, the corresponding
continuity conditions are not included in the residual vector.

The residual vector contains the following elements: the conditions on the radius of the perigee
when the spacecraft is inserted into the AFT release and safe orbits (at the time instants τ1 and τ2,
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respectively); the constraint on the final ascent maneuver impulse at the end of the transfer; the
conditions under which the spacecraft is in the apogee of the target orbit at the time instant τ4
(the last impulse action to transfer the booster to the orbit touching the conditional boundary of
the atmosphere); the zero value of the z-component of the Laplace vector at the time instant τ4;
12 transversality conditions at the initial and terminal time instants; 9 implications of the transver-
sality conditions on the spacecraft coordinates, i.e., the jumps in the conjugate variables due to the
limited radius of the perigee at the time instants τ1 and τ2, and the continuity conditions of the
conjugate variables at the time instant τ3; 18 transversality conditions on the spacecraft velocities
before and after the impulse action at the time instants τ1, τ2, and τ3; the implication of the sta-
tionarity conditions at the time instants τ1 and τ2; the continuity of the Hamiltonian at the time
instant τ3; the zero value of the Hamiltonian at the time instant τ4.

5. RESULTS

Let us present the extremal under the following problem parameters:

µ = 398 601.19 km3/s2, REar = 6378.25 km, h0 = 200 km,

Rmax = 280 000 km, RGEO = 42 164 km, Pspe = 350 s, gEar = 9.80665 m/s2,

i0 = 0.9 rad, α = 0.08, ∆v∗ = 1.5 km/s, ∆τ2 = 120 s.

The main units of measurement used in the calculations are 1000 km and 1 h. In the case of
transition to other units, the conjugate variables must be recalculated using the appropriate for-
mulas. For numerical integration, we employed the 8(7)th order Dorman–Prince method. All values
(the shooting parameters, the numerical Lagrange multipliers, and the state and conjugate vari-
ables) at the initial and terminal points of the passive segments are given with an accuracy necessary
for repeated calculations. Their refinement may require one or two iterations of Newton’s method.
The matching of the state and conjugate variables at the initial and terminal points of the passive
segments can be verified by numerical integration. The transversality and stationarity conditions
can be verified using the numerical–analytical differentiation technique.

At the initial time instant, in the reference orbit at the point corresponding to the angular
position φ0 = 0.000307492 rad of the spacecraft, the impulse action ∆v0 = 1.790280 km/s is applied
in the direction specified by the two angles ψ0 = 1.570796511 rad and θ0 = −0.031065593 rad. The
coordinates and velocities of the spacecraft and the conjugate variables after the first impulse action
are as follows:

x(0+) = 6578.250 km, y(0+) = 1.257 km, z(0+) = 1.584 km,

vx(0+) = −0.002944 km/s, vy(0+) = 5.994615 km/s, vz(0+) = 7.464706 km/s,

px(0+) = 0.089295766, py(0+) = 1.813741405× 10−5, pz(0+) = 2.062570174× 10−5,

pvx(0+) = −1.047893452× 10−5, pvy(0+) = 0.022000079, pvz(0+) = 0.026020930.

The duration of the first passive segment is ∆τ1 = 7778.265 s. The coordinates and velocities of
the spacecraft and the conjugate variables before the impulse action transferring the spacecraft to
the AFT release orbit are as follows:

x(τ1−) = −20 417.506 km, y(τ1−) = 44.699 km, z(τ1−) = 55.603 km,

vx(τ1−) = −0.023113 km/s, vy(τ1−) = −1.931335 km/s, vz(τ1−) = −2.404967 km/s,

px(τ1−) = 0.009217659, py(τ1−) = −7.999319341× 10−5, pz(τ1−) = −0.000116968,
pvx(τ1−) = 5.397932380× 10−5, pvy(τ1−) = 0.019187690, pvz(τ1−) = 0.028158871.
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At the time instant τ1 in the neighborhood of the apogee of the first exchange orbit, the
impulse action ∆v1 = 0.017905 km/s is applied in the direction specified by the two angles
ψ1 = −1.568891340 rad and θ1 = 0.078465462 rad. The coordinates and velocities of the space-
craft and the conjugate variables after the impulse action transferring the spacecraft to the AFT
release orbit are as follows:

x(τ1+) = −20 417.506 km, y(τ1+) = 44.699 km, z(τ1+) = 55.603 km,

vx(τ1+) = −0.023085 km/s, vy(τ1+) = −1.921253 km/s, vz(τ1+) = −2.390170 km/s,

px(τ1+) = −0.022777483, py(τ1+) = 9.226665723× 10−5, pz(τ1+) = 9.732570693× 10−5,

pvx(τ1+) = −0.000150718, pvy(τ1+) = −0.022960891, pvz(τ1+) = −0.024276861.

The duration of the second passive segment is ∆τ2 = 120 s (the problem parameter). The co-
ordinates and velocities of the spacecraft and the conjugate variables before the impulse action
transferring the spacecraft to the safe orbit are as follows:

x(τ2−) = −20 413.392 km, y(τ2−) = −185.840 km, z(τ2−) = −231.204 km,

vx(τ2−) = 0.091656 km/s, vy(τ2−) = −1.920856 km/s, vz(τ2−) = −2.389677 km/s,

px(τ2−) = −0.022775591, py(τ2−) = −0.000372271, pz(τ2−) = −0.000393840,
pvx(τ2−) = 0.000608516, pvy(τ2−) = −0.022956224, pvz(τ2−) = −0.024271920.

At the time instant τ2 the impulse action ∆v2 = 0.017910 km/s is applied in the direction specified
by the two angles ψ2 = 1.574537652 rad and θ2 = 0.080471408 rad. The coordinates and velocities
of the spacecraft and the conjugate variables after the impulse action transferring the spacecraft
to the safe orbit are as follows:

x(τ2+) = −20 413.392 km, y(τ2+) = −185.840 km, z(τ2+) = −231.204 km,

vx(τ2+) = 0.091982 km/s, vy(τ2+) = −1.933160 km/s, vz(τ2+) = −2.402686 km/s,

px(τ2+) = −0.001946427, py(τ2+) = 7.114712350× 10−5, pz(τ2+) = 0.000157508,

pvx(τ2+) = 5.197160474× 10−5, pvy(τ2+) = 0.004386100, pvz(τ2+) = 0.009711318.

The duration of the third passive segment is ∆τ3 = 7707.227 s. The coordinates and velocities of
the spacecraft and the conjugate variables before the impulse action transferring the spacecraft to
the target orbit are as follows:

x(τ3−) = 6578.250 km, y(τ3−) = −0.053 km, z(τ3−) = 0.007 km,

vx(τ3−) = 4.743611× 10−5 km/s, vy(τ3−) = 6.001513 km/s, vz(τ3−) = 7.459164 km/s,

px(τ3−) = 0.102240000, py(τ3−) = −8.659081488× 10−7, pz(τ3−) = 9.583528338× 10−8,

pvx(τ3−) = 1.591310975× 10−7, pvy(τ3−) = 0.021609646, pvz(τ3−) = 0.025485443.

At the time instant τ3 in the neighborhood of the perigee of the safe orbit, the impulse action
∆v3 = 1.278611 km/s is applied in the direction specified by the two angles ψ3 = 1.570795995 rad
and θ3 = −0.025757010 rad. The coordinates and velocities of the spacecraft and the conjugate
variables after the impulse action transferring the spacecraft to the target orbit are as follows:

x(τ3+) = 6578.250 km, y(τ3+) = −0.053 km, z(τ3+) = 0.007 km,

vx(τ3+) = 5.352540× 10−5 km/s, vy(τ3+) = 6.828426 km/s, vz(τ3+) = 8.434388 km/s,

px(τ3+) = 0.102240000, py(τ3+) = −8.659081482× 10−7, pz(τ3+) = 9.583528330× 10−8,

pvx(τ3+) = 1.591310971× 10−7, pvy(τ3+) = 0.021609646, pvz(τ3+) = 0.025485443.
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The duration of the fourth passive segment is ∆τ4 = 197 878.402 s. The satellite is undocked from
the booster in the target orbit. The last braking impulse is applied at the point corresponding to
the apogee of the target orbit. The coordinates and velocities of the spacecraft and the conjugate
variables before the impulse action transferring the booster to the orbit touching the conditional
boundary of the atmosphere are as follows:

x(τ4−) = −226 432.098 km, y(τ4−) = 2.026 km, z(τ4−) = −6.115× 10−10 km,

vx(τ4−) = −1.775160× 10−6 km/s, vy(τ4−) = −0.198378 km/s, vz(τ4−) = −0.245034 km/s,

px(τ4−) = −9.581390462× 10−5, py(τ4−) = 8.230843826× 10−10, pz(τ4−) =−1.214480715× 10−9,

pvx(τ4−) = −2.090933500× 10−7, pvy(τ4−) = −0.022151189, pvz(τ4−) = 0.014169354.

The numerical Lagrange multipliers are as follows:

λR0 = 0.017815018, λC0 = −7.520663278× 10−9, λRp1 = 0.043517462,

λRp2 = −0.027848883, λrv4 = 1.997985665× 10−15, λFA = 0.033387259,

λzL = −5.445119694× 10−11, λx1 = 0.009217659, λy1 = −7.999319341× 10−5,

λz1 = −0.000116968, λx2 = −0.022775591, λy2 = −0.000372271,

λz2 = −0.000393840, λx3 = 0.102240000, λy3 = −8.659081488× 10−7,

λz3 = 9.583528338× 10−8, λτ1 = 0, λτ2 = 0, λτ3 = 0, λτ12 = 0.

6. CONCLUSIONS

The methodology adopted in this paper—the simultaneous selection of a computational scheme
of the shooting method and a good initial approximation of the corresponding shooting parameters
based on the problem solved previously in a simpler statement—has turned out to be effective:
the extremals have been successfully constructed. The problem presented in this paper and its
solution, being another step in the problem hierarchy methodology, have served for optimizing the
spacecraft transfer with a large limited thrust (not in the pulse statement). In future work, this
methodology will be used to construct an extremal in the similar problem with perturbations due
to the noncentral nature of the gravitational field of the Earth, the resistance of the atmosphere,
and the attraction of other celestial bodies.

Thus, we have found an extremal without verifying its optimality based on higher-order condi-
tions or the global optimality theorem. Additional research is required here.
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