
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2023, Vol. 84, No. 3, pp. 221–236.
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2023.
Russian Text c⃝ The Author(s), 2023, published in Avtomatika i Telemekhanika, 2023, No. 3, pp. 3–21.

NONLINEAR SYSTEMS

Neural Network Algorithm for Intercepting Targets

Moving Along Known Trajectories by a Dubins’ Car

A. A. Galyaev∗,a, A. I. Medvedev∗,b, and I. A. Nasonov∗,c

∗Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
e-mail: agalaev@ipu.ru, bmedvedev.ai18@physics.msu.ru, cnasonov.ia18@physics.msu.ru

Received July 28, 2022

Revised November 17, 2022

Accepted November 30, 2022

Abstract—The task of intercepting a target moving along a rectilinear or circular trajectory by
a Dubins’ car is formulated as a problem of time-optimal control with an arbitrary direction
of the car’s velocity at the time of interception. To solve this problem and to synthesize
interception trajectories, neural network methods of unsupervised learning based on the Deep
Deterministic Policy Gradient algorithm are used. The analysis of the obtained control laws
and interception trajectories is carried out in comparison with the analytical solutions of the
interception problem. Mathematical modeling of the target motion parameters, which the
neural network had not previously seen during training, is carried out. Model experiments are
conducted to test the stability of the neural solution. The effectiveness of using neural network
methods for the synthesis of interception trajectories for given classes of target movements is
shown.

Keywords: interception task, Dubins’ car, DDPG algorithm, neural network synthesis of tra-
jectories

DOI: 10.25728/arcRAS.2023.21.74.001

1. INTRODUCTION

The task of intercepting mobile targets moving along known trajectories has been of interest
to researchers since mid-50s of the last century [1]. One of the basic models for describing the
dynamics of an intercepting object is the Dubins’ car model.

The first works on finding a line with a limited curvature and the minimum length connecting
two given points belong to A.A. Markov. His first task in [2] was devoted to finding a curve
connecting two points on a plane with minimal length and bounded curvature with a fixed exit
direction from the first point. Such the task has found application in solving the problems of laying
railways. In 1957, L. Dubins published a similar work [3] on finding a line of the shortest length
with a limited radius of curvature connecting two points on a plane with a given direction of the
exit from the first point and a given direction of entry into the second. The results proved to be
useful in the study of objects with the limited turning radius and a constant speed of movement.

In [4] the non-game problem of the fastest interception of a moving target by a Dubins car
is considered. It was assumed that the target was moving along the arbitrary and previously
known continuous trajectory. To find the solution, the algebraic criterion of the optimality of the
interception along the geodesic line and the optimal value of the interception time criterion were
found.

In early studies of [5], sufficient conditions established that the optimal trajectory is curves
“arc–line”. These conditions impose restrictions on the ratio of the minimum radius of curvature
of the trajectory of the car and the distance between the target and the car at the initial moment

221

222 GALYAEV et al.

of time. In [6], control has been synthesized to intercept a target along the geodesic line drawn
from the beginning of the movement of the car to the intercept point, and it is assumed that the
target is moving in a straight line with a constant speed.

The practical applications of the tasks of interception by the Dubins’ car are quite extensive: the
construction of optimal trajectories of unmanned aerial vehicles that monitor several ground targets
[7], the development of algorithms that solve the travelling salesman problem [8], the construction
of bypass trajectories when moving with obstacles [9]. Also, the Dubins’ car model is used in the
pursuit-evasion differential game. Such a game involves the presence of two agents: the pursuer
must catch the target, and the escapee must evade the pursuer. An analytical solution to the
problem of finding the optimal interception time and synthesis of the optimal trajectory for such
a game was obtained in [4]. The problem of synthesis of intercept trajectories for objects moving
along a circular trajectory was considered in [10].

The solution of the problems of interception by the Dubins’ car can also be obtained with the help
of computers. Recently, neural network reinforcement learning methods have been actively used
for such tasks, which represent car learning technology without models and are used in cases when
there is little or no data for training a neural network at all. Unlike learning with a teacher [11],
who needs a set of marked-up data, reinforcement learning is based on the interaction of the agent
with the environment [12]. This method is the most effective for finding a solution to the problem
of pursuit-evasion.

The Actor-Critic method is used in many relevant studies. For example, in [13], Actor-Critic
was used with Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) as a
state encoder for racing games. In [14], a fuzzy deterministic policy gradient algorithm was used
to obtain a specific physical meaning when teaching politics in the pursuit-evasion game. In [15],
the Deep Deterministic Policy Gradient (DDPG) method for interacting with a continuous action
space was introduced for the first time. It is this algorithm that will be used in this work for
neural network synthesis of the trajectory of interception by the Dubins’ car of a target moving at
a constant speed along rectilinear and circular trajectories. Thanks to DDPG, it was possible for
the first time to obtain a suboptimal trajectory based on a neural network solution.

The relevance of the work is due to both the demand in practice for interception algorithms
for one and many moving targets, and the possibility of obtaining some new theoretical results
related to the synthesis of interception trajectories. The so-called traveling salesman problem with
mobile goals—Moving Target Traveling Salesman Problem (MTTSP) is of particular interest [16].
In this case, the points that need to be bypassed are moving at a given speed. An example of such
a scenario is the interception of several evading (or attacking) targets, which are very important
for dual-use applications. Obviously, finding the best route to intercept several mobile targets is a
particularly difficult task due to the constant change in the position of targets, which significantly
increases the computational costs of finding optimal solutions. It is known that a heuristic approach
has been proposed in the literature to solve MTTSP.

The authors propose a synthesis of the interception trajectory based on a neural network solution,
since analytical results and optimal trajectories for groups of targets are practically absent or
unknown. The authors plan to scale this method for similar tasks.

The structure of the work includes 6 sections. Section 2 offers a mathematical formulation of
the problem adapted for further application. Section 3 is devoted to the description of the DDPG
algorithm, also ready for use in this formulation. Section 4 describes the structure of the neural
network, and Section 5 contains the simulation results. In conclusion, the direction of further
research is presented.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

NEURAL NETWORK ALGORITHM FOR INTERCEPTING TARGETS 223

2. FORMULATION OF THE NEURAL NETWORK INTERCEPTION PROBLEM

The problem of the fastest δ-interception by the Dubins’ car (pursuer) of a moving object (target)
moving along two given trajectories at a constant speed is considered on the plane. As in [4], the
dynamics for the pursuer was selected as

ẋP = cosφ
˙yP = sinφ
φ̇ = u, |u(t)| 6 1.

(1)

Here xP (t) and yP (t) are the coordinates of the Dubins’ car on the Cartesian plane, φ(t) is
the angle between the direction of the pursuer’s speed and the abscissa axis, and u(t) is a time-
dependent control that shown in Fig. 1. The coordinates and angle of the car are denoted by the
vector function P (t) = (xP (t), yP (t), φ(t)).

The initial conditions of the system (1) are fixed:

xP (0) = 0, yP (0) = 0, φ(0) =
π

2
. (2)

Continuous vector function E(t) = (xE(t), yE(t)) defines the trajectory of the target on the
Cartesian plane.

The terminal condition of δ-interception for a neural network solution has the following form:

(xP (T)− xE(T))2 + (yP (T)− yE(T))2 6 δ2, (3)

where T ∈ R+
0 —the time of movement from the starting point to the interception point, and δ—the

specified interception radius—the maximum allowable distance between the pursuer and the target
at which the interception it can be considered perfect. This parameter is introduced to define the
concept of interception specifically for a neural network solution.

Let’s set the task of intercepting the target in minimal time as an optimal control problem in
the class of piecewise constant functions:

J [u]
def
=

T∫
0

dt→ min
u
. (4)

Let’s start describing the dynamics of the goal. According to the condition of the task, the
target moves at a constant speed in a straight line or in a circle. Then the parametrized coordinate

0

1

2

3

y

0 1 2 3 x

P(0)

P(t)

P(T) = E(T)

E(t) E(0)

Fig. 1. Mutual location of objects.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

224 GALYAEV et al.

equations will have the following form:{
xE(t) = R cos(ωt+ ϕ) + x0

yE(t) = R sin(ωt+ ϕ) + y0;
(5)

{
xE(t) = vxt+ x0

yE(t) = vyt+ y0,
(6)

where x0 and y0 are the initial conditions of the target coordinates and are chosen arbitrarily.

Taking into account the relative position of the pursuer and the target, we introduce a formula
for finding the angle between the abscissa axis and the straight line connecting the coordinate
points of the target and the pursuer. Let (xP , yP) and (xE , yE)—the coordinates of the pursuer
and the target, respectively, at some point in time t. Then the desired value of the angle is found
by the formula

ψ = arctan

(
yE − yP
xE − xP

)
.

We will also introduce a formula for calculating the distance L between agents:

L =
√
(xP − xE)2 + (yP − yE)2.

Next, to simplify the study of the problem, we will make the transition to the new coordinates.
To do this, you need to be able to compare the current state of agents S = (xP , yP , φ, xE , yE) and
the state predicted by the neural network S′ = (x′P , y

′
P , φ

′, x′E , y
′
E).

We get the values for the functions of the angles ψ and ψ′ from the states S and S′, respectively,
and also calculate the distance L′ when the agents are in the state S′. We introduce the angle
between the direction of the speed of the pursuer and the line connecting the coordinate points of
the agents:

Θ = φ′ − ψ′.

Let’s introduce the rotation speed as a quotient of the difference ψ′ − ψ and the time interval ∆t
during which the transition from the state S to the state S′ occurred:

ω =
ψ′ − ψ
∆t

.

The totality of (L′, ω,Θ) and there are the desired coordinates in which we will build a neural
network solution. At the initial moment of time, when the result of the neural network has not yet
been received, the coordinates are (L′(0), ω(0),Θ(0)) are calculated as follows:

L′(0) = L(S)

ω(0) = 0

Θ(0) = φ(0)− ψ(0),
(7)

where ψ(0) = arctan
(
yE(0)−yP (0)
xE(0)−xP (0)

)
.

3. ALGORITHM DEEP DETERMINISTIC POLICY GRADIENT

DDPG—is an Actor-Critic algorithm based on a deterministic policy gradient. The DPG (De-
terministic Policy Gradient) algorithm consists of a parameterized function Actor µ (s | θµ), which
sets control at the current time by deterministic matching of states with a specific action. The
function Critic Q(s, a) is updated using the Bellman equation in the same way as with Q training.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

NEURAL NETWORK ALGORITHM FOR INTERCEPTING TARGETS 225

Noise

 Actor Actor Target

Critic Target

Environment

Update Weights

Critic

 Input State

Fig. 2. The general structure of the Deep Deterministic Policy Gradient algorithm.

The Actor is updated by applying a chain rule to the expected reward from the initial distribution
of J in relation to the parameters of the Actor:

∇θµJ ≈ Est∼ρβ

[
∇aQ

(
s, a | θQ

)∣∣∣
s=st,a=µ(st|θµ)

]
= Est∼ρβ

[
∇θµQ

(
s, a | θQ

)∣∣∣
s=st,a=µ(st)

∇θµµ (s | θµ)
∣∣∣∣
s=st

]
.

(8)

DDPG combines the advantages of its predecessors, which make it more stable and effective in
training. Since different trajectories can be very different from each other, DDPG uses the idea of
DQN [17], called a playback buffer. The playback buffer—is a finite-size buffer into which media
data is stored at any given time. It is necessary to achieve a uniform distribution of the transition
sample and discrete control of neural network training. Actor and Critic are updated by evenly
sampling the mini-batch from the playback buffer. Another addition to DDPG was the concept
of updating program targets instead of directly copying weights to the target network. Network

being updated Q
(
s, a | θQ

)
is also used to calculate the target value, so updating Q is subject to

divergence. This is possible if you make a copy of the Actor and Critic networks, Q′
(
s, a | θQ′

)
and

µ′
(
s, a | θµ′

)
. The weights of these networks are as follows: θ′ ← τθ + (1− τ)θ′ with τ ≪ 1. The

research problem is solved by adding the noise received from the noise process N to the control of
the actor. In this study, the Ornstein–Uhlenbeck process is selected [18].

The general structure of DDPG is shown in Fig. 2. Since the task requires that the controls are
enclosed in a numerical interval, it is necessary to introduce restrictions. To do this, the program
used the clip() function, which limits the range of action values in the range [−1; 1].

Algorithm 1.

Input data: discount coefficient γ, number of episodes M , number of training steps T in each
episode, batch size N , training coefficients of neural networks Actor and Critic ra and rc, respec-
tively.

1. Arbitrary initialization of the networks Actor µ(s|θµ) and Critic Q(s, a|θQ)
2. Initialization of target networks Q′ and µ′ with weight parameters θQ = θQ

′
and θµ = θµ

′

3. Initializing the R buffer

4. for episode = 1 to M do

5. Initialization of a random action at = µ(st|θµ) + ηt according to the current control and research
noise

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

226 GALYAEV et al.

6. Getting the initial state of the s1 environment

7. for t = 1 to T do

8. Performing the action at, acquiring the reward rt and obtaining a new state of the envi-
ronment st+1

9. Saving the transition (st, at, rt, st+1) in the buffer R

10. Random sampling of N transitions (si, ai, ri, si+1) from R

11. Getting yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

)

12. Updating the weights of the Critic network by minimizing the loss function

L̂ =
1

N

∑
i

(yi −Q(si, ai|θQ))2

13. Updating an Actor Policy with an Effective Policy Gradient:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

14. Updating target networks

θQ
′
= τθQ + (1− τ)θQ, θµ

′
= τθµ + (1− τ)θµ

15. endfor

16. endfor

Output data: Control u = µ(s|θµ)

Table 1 shows the differences between the Actor, Critic networks and their target networks.
It contains input and output values, as well as formulas for calculating these values.

A detailed description of the DDPG method is given in the Algorithm 1.

Table 1. Differences between Actor, Critic networks and their target networks

Network Formula Input data Output data

Critic target Q′
(
st+1, µ

′
(
st+1|θµ

′
)
|θQ′

)
the next state of the en-
vironment; the output of
the target network Actor

value Q′, which is used to cal-
culate yi

Critic Q
(
st, a|θQ

)
current state of the envi-
ronment; current action

the Q value that is needed to
calculate the loss and update
the Actor network

Actor target µ′
(
st+1|θµ

′
)

the next state of the en-
vironment

the action µ′ used as the in-
put value of the target net-
work Critic

Actor µ (st|θu) current state of the envi-
ronment

the µ action that is used to
update the Actor network

4. NEURAL NETWORK

4.1. Network Architecture

To implement the Deep Deterministic Policy Gradient algorithm, two neural networks were
written for each method: Critic and Actor. Their architectures are depicted in Figs. 3 and 4.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

NEURAL NETWORK ALGORITHM FOR INTERCEPTING TARGETS 227

Fig. 3. Actor neural network architecture.

input_2 InputLayer

dense_5 Dense

batch_normalization_4 BatchNormalization

dense_6 Dense

input_3 InputLayer

dense_7 Dense

batch_normalization_5 BatchNormalization batch_normalization_6 BatchNormalization

concatenate Concatenate

dense_8 Dense

dropout_4 Dropout

batch_normalization_7 BatchNormalization

dense_9 Dense

dropout_5 Dropout

batch_normalization_8 BatchNormalization

dense_10 Dense

Fig. 4. The architecture of the neural network Critic.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

228 GALYAEV et al.

–5.0

–2.5

0

2.5

5.0

7.5

10.0

12.5

–10 –5 0

Value

5 10

S
E
L
U

Fig. 5. Graph of the activation function SELU .

The Actor network has four fully connected hidden layers with 256 neurons, with SELU ac-
tivation function. Since the possible actions are in the range [−1, 1], it is convenient to take the
activation function for the output layer as tanh. The Critic network has five fully connected hidden
layers with 16, 32, 32 and two layers with 512 neurons, with an activation function SELU .

The Critic and Actor networks are made up of fully connectedDense layers, for the output values
of which the normalization operation and the Dropout [19] method are used, which is effective in
combating the problem of retraining neural networks. To calculate the output of the Actor network
from the last layer, the hyperbolic tangent activation function is selected.

The Critic network has a complex structure because it takes two input values: the state of the
environment and the actions of the pursuer. Next, the layers are connected using the Concatenate
method and the values pass through the fully connected layers of the network to the output, which
is a layer of unit dimension.

4.2. Hyperparameters

The SELU [20] function was chosen as the activation function in the hidden layers of the Critic
and Actor neural networks, which is given by the following equation:

SELU(x) = λ

{
x, x > 0

αex − α, x 6 0,

where λ ≈ 1.0507, and α ≈ 1.6732.

The graph of the SELU function is shown in Fig. 5.

The SELU function has the property of self-normalizing input data when using the LeCun
initialization method, which initializes network parameters as a normal distribution. Therefore,
the output values of this function have a zero mean and a single standard deviation.

In the form of a reward function for the pursuer, the following expression was chosen, depending
only on the distance L between the agents:

r(L) = − lg (10L)− L2. (9)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

NEURAL NETWORK ALGORITHM FOR INTERCEPTING TARGETS 229

–10.0

–7.5

–5.0

–2.5

0

2.5

5.0

7.5

10.0

–7.5 –5.0 –2.5 0 2.5

L

r
(L
)

5.0 7.5 10.0

Fig. 6. A graph of the dependence of remuneration on the distance between agents.

The graph of this function is shown in Fig. 6. On it you can see that the value of r grows rapidly
with a decrease in L, and when the distance takes a zero value, the agent receives the maximum
reward.

The values of hyperparameters of neural networks are given in Table 2. The parameters γ, τ ,
episode size and time interval were selected as a result of the analysis in accordance with [14].
However, the values of the mini-batch size, buffer volume R, step size and training coefficients of
Actor-Critic networks were selected empirically—the network synthesized the trajectories of inter-
cepting the movement of the target, and then their analysis was carried out for compliance with the
physical task. For example, if the average reward schedule did not increase during 100–200 training
episodes, and the values of the error functions of the Actor-Critic neural networks did not decrease
over the same period, then the values of the training coefficients of the networks decreased, and
the size of the mini-batch increased.

Table 2. Values of neural network parameters

Parameter Value Description

γ 0.98 The discount factor used in the Bellman equation

τ 0.01 Coefficient of soft updating of target networks

Size mini-batch 64 Number of samples to update the weights

R Buffer Size 10 000 The amount of data from which examples are selected
for updating

Episode Size 1000 Number of episodes used for training

Step Size 400 The number of training steps in each episode

Time interval 0.1 Time of each step of training

The learning coefficient
of the Actor network

5e-5 The learning factor used to update the Actor network

The learning coefficient
of the Critic network

1e-4 The learning factor used to update the Critic network

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

230 GALYAEV et al.

5. SIMULATION RESULTS

5.1. Neural Network Learning Process

The simulation was performed using Python and the TensorFlow framework. The initial pa-
rameters of the movement of the target and the pursuer during neural network training are given
in Table 3.

Table 3. Initial parameters of target and pursuer movement during network training

Parameter Value

The initial coordinate of the target movement xE(0) An arbitrary value in the interval (−3; 3)
The initial coordinate of the target movement yE(0) An arbitrary value in the interval (−3; 3)
Initial coordinates of the pursuer’s movement (xP (0); yP (0)) (0; 0)
Initial orientation of the pursuer φ(0) π/2
Constant speed of the pursuer v 1
Intercept radius δ 0.2

The initial coordinates of the target movement are randomly selected using the
numpy.random.uniform() function in the range (−3; 3) so that the network trains on different
examples and works effectively after the training process. The target speeds have always had a
constant value throughout the learning process vx = 0.5 and vy = 0.5.

Neural network training was carried out on a process with the characteristics specified in Table 4.
Due to the complexity of the neural network model, the learning process lasted about four hours.

Table 4. Characteristics of the equipment where the network was trained

Parameter Value

Processor Intel(R) Core(TM) i7-8565U
Lithography 14 nm
Number of cores 4
Number of threads 8
Processor base clock frequency 1.80 GHz
Cache memory 8 MB
Computer RAM 16 GB

In Fig. 7 shows a graph of the average remuneration for the entire training period. During
the training of the model, there is a sharp increase in the value of the agent’s reward in the first
100–150 episodes. Filling of the playback buffer R corresponds to this process. Next, the training

–120000

–100000

–80000

–60000

–40000

–20000

0

0 200 400 600 800 1000

Episode

A
v

er
ag

e
re

w
ar

d

Fig. 7. The dependence of the average reward on the episode number.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

NEURAL NETWORK ALGORITHM FOR INTERCEPTING TARGETS 231

0

1

2

3

4

0 200 400 600 800 1000
Episode

L
o

ss
 A

ct
o

r,
 1

0
6

Fig. 8. The dependence of the loss function value on the episode of the Actor network.

0

1

2

3

4

5

0 200 400 600 800 1000
Episode

L
o

ss
 C

ti
ti

c,
 1

0
6

Fig. 9. The dependence of the loss function value on the episode of the Critic network.

examples are randomly taken from R, the network training process takes place and the resulting
tuple of states replaces the old data sample in R. At this stage, there is a slow increase in the
average remuneration, see Fig. 7.

Graphs of dependencies of the loss function of the Actor and Critic neural networks were also
obtained. They are shown in Fig. 8 and 9 respectively.

The graphs show a gradual decrease in the value of the loss function with an increase in training
episodes, which indicates the correct choice of training coefficients.

5.2. Learning Result

In Fig. 10 shows the trajectories obtained using a neural network and an analytical solution.
The initial parameters of the target and the pursuer in this case had the values specified in Table 5.

Table 5. Initial parameters of the movement of the target and the pursuer

Parameter Value Value

Initial coordinates of the target movement (0.8;−0.4) (−2.5;−0.25)
Constant target rate vx 0.5 0.5
Constant target rate vy 0.5 0.5
Initial coordinates of the pursuer’s movement (0; 0) (0; 0)
Initial orientation of the pursuer φ(0) π/2 π/2
Constant rate of the pursuer v 1 1
Intercept radius δ 0.2 0.2

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

232 GALYAEV et al.

–0.5

0

0.5

1.0

0 0.5 1.0 1.5 2.0

Dubins' car
Analytical solution
Intercept radius
Target
Intercept point

0

0.5

1.0

1.5

2.0

2.5

3.0

–2.5 –2.0 –1.5 –1.0 –0.5 0 0.5

Dubins' car
Analytical solution
Intercept radius
Target
Intercept point

Fig. 10. Comparison of interception trajectories of a rectilinearly moving target with different initial parame-
ters.

u(t)

–1.0

–0.5

0

0.5

0 0.5 1.0 1.5 2.0 t

–0.5

0

0.5

1.0

0 0.5 1.0 1.5 2.0

Dubins' car
Analytical solution
Interception radius
Target
Intercept point Neural network control

Analytical control

Fig. 11. Comparison of control functions from time.

Along the trajectories shown in Fig. 10, it can be seen that the network was able to build a
more efficient trajectory. In this case, the optimal interception time obtained using the analytical
solution is Topt ≈ 5.42 s. And the time for which the network was able to intercept the target is
Tnn ≈ 2.1 s. This result is explained by the presence of the intercept radius δ = 0.2.

In Fig. 11 on the right you can see a comparison of neural network control graphs with analytical.
As can be seen, the controls differ significantly in the final section of the trajectory due to the
fact that the neural network adjusts the terminal interception conditions. Optimal synthesis in a
problem with an unfixed intercept angle consists of “Arc-line” or “Arc-arc” sections [4], and in a
problem with a fixed intercept angle—in general, from the “Arc-line-arc” section [21]. It is the

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

NEURAL NETWORK ALGORITHM FOR INTERCEPTING TARGETS 233

u(t)

–0.2

0

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8 10 12 14 t

–10

–8

–6

–4

–2

0

–10 –8 –6 –2–4 0

Dubins' car
Analytical solution
Interception radius
Target
Intercept point

Neural network control

Analytical control

Fig. 12. Comparison of control functions from time.

latter option that synthesizes the neural network. At the same time, as can be seen from Fig. 10,
there is a section of the trajectory where the neural network chooses not the optimal, but close to
the optimal value of the turning radius. The second reason for the difference is that the neural
network optimizes the local reward function, which is different from the performance functional
that was used when setting the task.

In Fig. 12 shows the trajectories of intercepting the target and the dependence of the control
function on time. On the right graph, it can be observed that the neural network control function
has values close to optimal in the area where the analytical solution gives zero control. In addition,
the deviations of the neural network control do not exceed the value of the intercept radius δ. The
interception times in this case are almost identical: Topt ≈ Tnn ≈ 21 s.

5.3. Sensitivity Analysis

Let’s analyze how much the neural network solution depends on the input parameters, since in
theory the neural network should generalize the resulting solution well to states and parameters
that it has not yet “seen” during training.

To intercept a target moving in a circle, we will train the neural network only on targets with
a single radius and a single angular velocity and check whether it can successfully catch a target
with other parameters. As can be seen in Fig. 13, the network successfully copes with the task, in
the left figure the angular velocity of the target is 0.7 of the angular velocity used in training, in
the right figure the interception of an ordinary target is depicted. Experiments were conducted for
angular velocity values from 0.7 to 1.3, in which the neural network successfully intercepted the
target.

In the case of interception of a rectilinearly moving target, the neural network was trained at
the target velocity values vx = vy = 0.5. In Fig. 14 shows the results of network testing with speeds
differing by 20%—in the left figure, the target has a speed of vx = vy = 0.4, and on the right
vx = vy = 0.6.

It follows from the results obtained that the network generalizes the solution well. This can be
useful for applied tasks, since in them the parameters are often known with some error.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

234 GALYAEV et al.

–1

–1 0 1 2 3 x –1 0 1 2 3 x

y

–2

–3

0

1

Dubins' car
Analytical solution
Target
Intercept point

Dubins' car
Analytical solution
Target
Intercept point

Fig. 13. Comparison of circular intercept trajectories at different initial parameters.

0.25

1.00

0.50

1.25

0.75

1.50

1.75

0 0.25–0.25 0.75 1.501.250.50 1.00

0

1

2

4

3

3210 4

Dubins' car
Analytical solution
Interception radius
Target
Intercept point

Dubins' car
Analytical solution
Interception radius
Target
Intercept point

Fig. 14. Comparison of target intercept trajectories at different initial parameters.

6. CONCLUSION

The paper proposed two DDPG-based neural network algorithms for the synthesis of trajectories
of interception by the Dubins’ car of targets moving along rectilinear and circular trajectories. The
features of the proposed algorithms are their ability to work with the space of continuous actions, the
guarantee of learning and working with different relative initial positions of goals and the Dubins’
car. It is shown that the network successfully generalizes the solution and in some situations offers
the fastest solution to the interception problem.

The undoubted advantages of the proposed algorithms can be used, and the algorithms them-
selves are modified to obtain a barrier surface in the differential game of two cars.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

NEURAL NETWORK ALGORITHM FOR INTERCEPTING TARGETS 235

FUNDING

The work was supported by a grant from the ICS RAS Youth Scientific School “Methods of opti-
mization and motion planning of controlled objects”. The work of A.A. Galyaev and I.A. Nasonov
was partially supported by the Russian Scientific Foundation (project no. 23-19-00134).

REFERENCES

1. Isaacs, R., Differential Games, New York: John Wiley and Sons, 1965.

2. Markov, A.A., A Few Examples of Solving Special Problems on the Largest and Smallest Values, The
Communications of the Kharkov Mathematical Society , 1889, Ser. 2, vol. 1, pp. 250–276.

3. Dubins, L.E., On Curves of Minimal Length with a Constraint on Average Curvature and with Prescribed
Initial and Terminal Positions and Tangents, Amer. J. Math., 1957, no. 79, pp. 497–516.

4. Galyaev, A.A. and Buzikov, M.E., Time-Optimal Interception of a Moving Target by a Dubins Car,
Autom. Remote Control , 2021, vol. 82, pp. 745–758.

5. Glizer, V.Y. and Shinar, J., On the Structure of a Class of Time-Optimal Trajectories, Optim. Control
Appl. Method , 1993, vol. 14, no. 4, pp. 271–279.

6. Berdyshev, Yu.I., A Problem of the Sequential Approach of a Nonlinear Object to Two Moving Points,
Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk , 2005, vol. 11, no. 1, pp. 43–52.

7. Xing, Z., Algorithm for Path Planning of Curvature-constrained UAVs Performing Surveillance of Mul-
tiple Ground Targets, Chin. J. Aeronaut., 2014, vol. 27, no. 3, pp. 622–633.

8. Ny, J.L., Feron, E., and Frazzoli, E., On the Dubins Traveling Salesman Problem, IEEE Transactions
on Automatic Control , 2014, vol. 57, pp. 265–270.

9. Yang, D., Li, D., and Sun, H., 2D Dubins Path in Environments with Obstacle, Math. Problem. Engi-
neer., 2013, vol. 2013, pp. 1–6.

10. Manyam, S.G. et al., Optimal Dubins Paths to Intercept a Moving Target on a Circle, Proceedings of
the American Control Conference, 2019, vol. 2019-July, pp. 828–834.

11. Caruana, R. and Niculescu-Mizil, A., An Empirical Comparison of Supervised Learning Algorithms,
ICML Proceedings of the 23rd International Conference on Machine Learning , June 2006, pp. 161–168.

12. Arulkumaran, K., Deisenroth, M.P., Brundage, M., and Bharath, A.A., Deep Reinforcement Learning:
A Brief Survey, IEEE Signal Processing Magazine, 2017, vol. 34, no. 6, pp. 26–38.

13. Perot, E., Jaritz, M., Toromanoff, M., and de Charette, R., End-to-End Driving in a Realistic Racing
Game with Deep Reinforcement Learning, IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, 2017, pp. 474–475.

14. Al-Talabi, A.A. and Schwartz, H.M., Kalman Fuzzy Actor-Critic Learning Automaton Algorithm for
the Pursuit-Evasion Differential Game, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
2016, pp. 1015–1022.

15. Hartmann, G., Shiller, Z., and Azaria, A., Deep Reinforcement Learning for Time Optimal Velocity
Control using Prior Knowledge, IEEE 31st International Conference on Tools with Artificial Intelligence,
2019, pp. 186–193.

16. Helvig, C.S., Gabriel Robins, and Alex Zelikovsky, The Moving-Target Traveling Salesman Problem, J.
Algorithm, 2003, vol. 49, no. 1, pp. 153–174.

17. Mnih, V., Kavukcuoglu, K., Silver, D., et al., Human-Level Control Through Deep Reinforcement Learn-
ing, Nature, 2015, vol. 518, pp. 529–533.

18. Uhlenbeck, G.E. and Ornstein, L.S., On the Theory of the Brownian Motion, Physic. Rev., 1930, vol. 36,
pp. 823–841.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

236 GALYAEV et al.

19. Hinton, G.E., Srivastava, N., Krizhevsky, A., et al., Improving Neural Networks by Preventing Co-
Adaptation of Feature Detectors. arXiv. 2012.

20. Klambauer, G., Unterthiner, T., Mayr, A., et al., Self-Normalizing Neural Networks, Advances in Neural
Information Processing Systems, 2017, pp. 972–981.

21. Buzikov, M.E. and Galyaev, A.A., Minimum-Time Lateral Interception of a Moving Target by a Dubins
Car, Automatica, 2022, vol. 135, 109968.

This paper was recommended for publication by O.P. Kuznetsov, a member of the Editorial
Board

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 3 2023

