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Abstract—This paper considers an optimal control problem for an object described by a sys-
tem of nonlinear fractional difference equations. Such problems are a discrete analog of optimal
control problems described by fractional ordinary differential equations. The first and sec-
ond variations of a performance criterion are calculated using a modification of the increment
method under the assumption that the control set is open. We establish a first-order necessary
optimality condition (an analog of the Euler equation) and a general second-order necessary
optimality condition. Adopting the representations of the solution of the linearized fractional
difference equations from the general second-order optimality condition, we derive necessary op-
timality conditions in terms of the original problem parameters. Finally, with a special choice
of an admissible variation of control, we formulate a pointwise necessary optimality condition
for classical extremals.
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1. INTRODUCTION

Fractional calculus plays an important role in many fields of science and technology. As is known,
fractional integro-differential calculus originates from the meaningful discussions of the derivative
of order 1

2 in the correspondence between G. de l’Hôpital and G. Leibniz; for example, see [1]. But
the idea of using fractional difference has appeared rather recently. In this context, we mention,
e.g., the papers [2, 5] and the books [3, 4].

Fractional calculus also finds application in optimal control problems described by fractional
difference equations [6–8].

In view of theoretical and practical applications, it is of current interest to elaborate a qualitative
theory of optimal control problems described by various fractional difference equations. Note that
the theory of necessary optimality conditions for optimal control problems described by fractional
difference equations is still underdeveloped.

In light of the foregoing, this paper is devoted to one optimal control problem described by
a system of fractional difference equations [2, 3]. Assuming the openness of the control set, we
establish an analog of the Euler equation [9, 10] and second-order necessary optimality conditions.
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212 ALIYEVA

2. PRELIMINARIES AND AUXILIARY RESULTS

In this section, we recall some concepts and definitions that will be used in the considerations
below.

The following standard definitions [3–6] underlie fractional calculus.

Let N denote the set of natural numbers together with zero. For a ∈ Z, we introduce the
notations N+

a = {a, a+ 1, a+ 2, . . . , }, σ (t) = t+ 1, and ρ (t) = t− 1.

Definition 1. A fractional sum of order α is given by

∆−αu (n) =
n−1∑
j=0

(
j + α− 1

j

)
u (n− j) =

n−1∑
j=0

(
n− j + α− 1

n− j

)
u (j) ,

whereas a fractional operator of order α is given by

∆αu (n) =
n−1∑
j=0

(
j + α− 1

j

)
∆u (n− j)

=
n∑

j=1

(
n− j − α− 1

n− j

)
u (j)−

(
n− α− 1
n− 1

)
u (0) .

In these expressions, the binominal coefficient

(
a
n

)
has the form

(
a
n

)
=


Γ (a+ 1)

Γ (a− n+ 1)Γ (n+ 1)
, n > 0

1, n = 0

0, n < 0.

For x, y ∈ R, let x(y) = Γ (x+1)
Γ (x+1−y) , where Γ stands for the gamma function. As is well known, it

satisfies the identity

Γ (x+ 1) = xΓ (x).

Note that the fractional sum and operator of order α can be alternatively defined as follows.

Consider an arbitrary real number a and a number b = k + a, where k ∈ N , k ≥ 2; for these
numbers, let T = {a, a+ 1, . . . , b}, T k = {a, a+ 1, . . . , b− 1}, denoting by T the set of functions
with the domain T .

Definition 2. For f ∈ T, the left and right fractional sums of order α > 0 are given by

a∆
−α
t f(t) =

1

Γ (α)

t−α∑
s=a

(t− σ(s))(α−1)f(s),

t∆
−α
b f(t) =

1

Γ (α)

b∑
s=t+α

(s− σ(t))(α−1)f(s),

respectively.

Definition 3. Let 0 < α ≤ 1 and µ = 1− α. For a function f ∈ T, the left and right fractional
operators of order α are given by

a∆
α
t f(t) = ∆

(
a∆

−µ
t f(t)

)
,

t∆
α
b f(t) = −∆

(
t∆

−µ
b f(t)

)
,

respectively.
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FIRST- AND SECOND-ORDER NECESSARY OPTIMALITY CONDITIONS 213

Here are some common properties of fractional sums and differences:

1. ∆α∆βf(t) = ∆α+βf(t);

2. ∆−α∆αf(t) = f(t)− f(0);

3. ∆α∆−αf(t) = f(t);

4. ∆αf(0) = 0 and ∆αf (1)− f(0) = ∆f (1) .

The following result is true; for example, see [6].

Theorem 1 (on fractional summation by parts). Let f and g be nonnegative real-valued functions
with the domains T k and T, respectively. If 0 < α ≤ 1 and µ = 1− α, then

b−1∑
t=a

f(t)a∆
α
t g(t) = f(b− 1)g(b)− f(a)g(a) +

b−2∑
t=a

t∆
α
b f(t)g

σ(t)

+
µ

Γ (µ+ 1)
g(a)

 b−1∑
t=a

(t+ µ− α)(µ−1)f(t)−
b−1∑

t=σ(a)

(t+ µ− σ(α))(µ−1)f(t)

.
Consider a system of linear inhomogeneous fractional difference equations

∆αy(t+ 1) = A(t)y(t) + g(t) (1)

with initial conditions

y(t) = y0. (2)

Here, the notations are as follows: y = (y1, . . . , yn)
′ is an n-dimensional column vector; g =

(g1, . . . , gn)
′ is a given n-dimensional vector; y0 = (y10 , . . . , yn0)

′ is a given constant column vector;

t0 and t1 are given numbers; finally, A(t) =


a11(t) a12(t) . . . a1n(t)

a21(t) a22(t) . . . a2n(t)

. . . . . . . . . . . .

an1(t) an2(t) . . . ann(t)

 is a given discrete

matrix function of dimensions n× n.

Problem (1)–(2) is a discrete analog of the Cauchy problem for a system of linear inhomogeneous
fractional differential equations.

Theorem 2 [2]. The solution y(t) of the system of linear inhomogeneous fractional difference
equations (1)–(2) can be represented as

y(t) = y0

t−1∏
j=t0

[1 +Rα (t− 1, j)A(j)]

+
t−1∑
j=t0

Rα (t− 1, j) f(j)
t−1∏

k=j+1

[1 +Rα (t− 1, k)A(k)] .

In this formula,

Rα (t, j) =

(
t− j + α− 1

t− j

)
.
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214 ALIYEVA

3. OPTIMAL CONTROL: PROBLEM STATEMENT

Consider the following problem: minimize a terminal performance criterion

S(u) = φ (x (t1)) (3)

subject to constraints

u(t) ∈ U ⊂ Rr, t ∈ T = {t0, t0 + 1, . . . , t1 − 1} , (4)

∆αx (t+ 1) = f (t, x(t), u(t)) , t ∈ T, (5)

x (t0) = x0. (6)

Here, the notations are as follows: x(t) is the n-dimensional state vector; u(t) is the r-dimensional
discrete control vector; U is a given non-empty, bounded, and open set; the numbers t0 and t1
and the constant vector x0 are known; f (t, x, u) is a given n-dimensional vector function that
is jointly continuous together with its partial derivatives with respect to (x, u) up to the second
order inclusive; φ (x) is a given twice continuously differentiable scalar function; finally, ∆αx(t),
0 < α ≤ 1, is a fractional operator of order α [11, 12].

A control function is called an admissible control if it satisfies the constraint (4).

Assume that for each given admissible control, the discrete analog of the Cauchy problem (prob-
lem (5)–(6)) has a unique solution.

An admissible control u(t) minimizing the performance criterion (3) under the constraints (4)–(6)
is called the optimal control, and the pair (u(t), x(t)) is called the optimal process.

4. THE INCREMENT FORMULA FOR THE PERFORMANCE CRITERION

Let (u(t), x(t)) and (u(t) = u(t) + ∆u(t), x(t) = x(t) + ∆x(t)) be fixed and arbitrary admissible
processes, respectively.

We introduce the following notations:

H(t, x, u, ψ) = ψ′(t)f(t, x, u),

Hx [t] ≡ Hx(t, x(t), u(t), ψ(t)),

Hxx [t] ≡ Hxx(t, x(t), u(t), ψ(t)),

Hu [t] ≡ Hu(t, x(t), u(t), ψ(t)),

fx [t] ≡ fx(t, x(t), u(t)),

fu [t] ≡ fu(t, x(t), u(t)).

Here, ψ(t) is an unknown (as yet) n-dimensional column vector and H (t, x, u, ψ) the Hamilton–
Pontryagin function for the optimal control problem (3)–(6).

Applying a scheme similar to [11, 12], we obtain

∆S(u) = φ (x (t1) + ∆x (t1))− φ (x (t1))

+ψ′ (t1 − 1)∆x (t1) +
t1−2∑
t=t0

t∆
α
ρ(t1)ψ (t− 1)∆x(t)

−
t1−1∑
t=t0

[
H (t, x(t), u(t), ψ(t))−H (t, x(t), u(t), ψ(t))

]
. (7)
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FIRST- AND SECOND-ORDER NECESSARY OPTIMALITY CONDITIONS 215

The representation (7) will serve for proving a first-order necessary optimality condition.

Under the assumptions above, using the Taylor expansion, the increment formula (7) for the
performance criterion S (u) with the admissible controls u(t) and u(t) can be written as

∆S(u) = φx (x (t1))∆x (t1) +
1

2
∆x′ (t1)φxx (x (t1))∆x (t1)

+ ψ′(t1 − 1)∆x(t1) +
t1−1∑
t=t0

ψ′(t− 1)∆x(t)

−
t1−2∑
t=t0

t∆
α
ρ(t1)ψ

′(t− 1)∆x(t)−
t1−1∑
t=t0

[
H ′

x [t]∆x(t) +H ′
u [t]∆u(t)

]

− 1

2

t1−1∑
t=t0

[
∆x′(t)Hxx [t]∆x(t) + ∆x′(t)Hxu [t]∆u(t)

+ 2∆u′(t)Hux [t]∆x(t) + ∆u′(t)Huu [t]∆u(t)
]

+ o1
(
∥∆x (t1)∥2

)
−

t1−1∑
t=t0

o2[∥∆x(t)∥+ ∥∆u(t)∥]2. (8)

Here, ∥α∥ is the norm of the vector α = (α1, . . . , αn) given by ∥α∥ =
∑n

i=1 |αi| and o (α) means
the terms of a higher order of smallness than α, i.e., o (α) → 0 as α→ 0.

Assume now that ψ(t) is the solution of the following system of linear fractional difference
equations: {

t∆
α
ρ(t1)ψ

′(t− 1) = Hx [t] , t = t1 − 1, t1 − 2, . . . , t0

ψ(t1 − 1) = −φx(x(t1)).
(9)

System (9) is said to be conjugate for problem (3)–(6). Due to (9), the increment formula (8)
turns into

∆S(u) =
1

2
∆x′(t1)φxx(x(t1))∆x(t1)−

t1−1∑
t=t0

H ′
u [t]∆u(t)

− 1

2

t1−1∑
t=t0

[
∆x′(t)Hxx [t]∆x(t) + ∆x′(t)Hxu [t]∆u(t)

+ 2∆u′(t)Hux [t]∆x(t) + ∆u′(t)Huu [t]∆u(t)
]

+ o1
(
∥∆x (t1)∥2

)
−

t1−1∑
t=t0

o2[∥∆x(t)∥+ ∥∆u(t)∥]2. (10)

Since the set U is open, we may define a special increment of the admissible control u(t) as

∆uε(t) = εδu(t). (11)

Here, ε is a sufficiently small number by absolute value and δu(t) is an arbitrary r-dimensional
vector function with the domain Rr.
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216 ALIYEVA

We denote by ∆xε(t) a special increment of the admissible trajectory x(t) that corresponds to
the special increment (11) of the control u(t).

According to [12],

∥∆x(t)∥ ≤ L1

t−1∏
j=t0

(1 +Aα(t, j) ∥∆u(j)∥), t ∈ T ∪ t1, L1 = const > 0.

Due to this upper bound,

∥∆xε(t)∥ ≤ L2ε, t ∈ T ∪ t1, L2 = const > 0. (12)

In view of formulas (11) and (12), we can employ, e.g., the scheme from [9, 13] to establish the
following result: the special increment ∆xε(t) of the trajectory x(t) has the expansion

∆xε(t) = εδx(t) + o (ε; t) , (13)

where δx(t) is the n-dimensional vector function satisfying the variational equation

∆αδx (t+ 1) = fx [t] δx(t) + fu [t] δu(t) (14)

with the initial condition

δx (t0) = 0. (15)

Considering the expressions (11)–(15), from the increment formula (10) we obtain

∆Sε(u) = S(u+ εδu)− S(u)

= −
t1−1∑
t=t0

H ′
u [t] εδu(t) +

1

2
(εδx(t1) + o(ε; t1))

′φxx(x(t1))(εδx(t1) + o(ε; t1))

−1

2

t1−1∑
t=t0

[
(εδx(t) + o(ε; t))′Hxx [t] (εδx(t) + o(ε; t))

+ 2εδu(t)′Hux [t] (εδx(t) + o(ε; t)) + ε2δu(t)′(t)Huu [t] δu(t)
]
+ o(ε2)

= −ε
t1−1∑
t=t0

H ′
u [t] δu(t) +

ε2

2
δx′(t1)φxx(x(t1))δx(t1)

− ε2

2

t1−1∑
t=t0

[
δx′(t)Hxx [t] δx(t) + 2εδu′(t)Hux [t] δx(t) + δu′(t)Huu [t] δu(t)

]
+ o(ε2). (16)

5. NECESSARY OPTIMALITY CONDITIONS

The special second-order expansion (16) of the performance criterion allows establishing first-
and second-order necessary optimality conditions.

The following result is well-known from classical variational calculus; for example, see [9, 10]. If
the expansion

S(u+ εδu)− S(u) = εA1 +
ε2

2
A2 + o

(
ε2
)

(17)
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FIRST- AND SECOND-ORDER NECESSARY OPTIMALITY CONDITIONS 217

holds with some numbers A1 and A2 that are independent of ε, then these numbers are called the
first and second variations, respectively, of the functional S (u) at the point u and denoted by

A1 = δ1S(u, δu),

A2 = δ2S(u, δu).

According to this definition, due to the expansion (17), the first and second variations of the
functional S (u) are given by

δ1S(u, δu) = −
t1−1∑
t=t0

H ′
u [t] δu(t), (18)

δ2S(u, δu) = δx′(t1)φxx (x (t1)) δx (t1)

−
t1−1∑
t=t0

[
δx′(t)Hxx [t] δx(t) + 2εδu′(t)Hux [t] δx(t) + δu′(t)Huu [t] δu(t)

]
. (19)

In classical variational calculus, if a functional S(u) achieves minimum at a point u = u(t), then
for any δu(t):

—Its first variation at u vanishes, i.e.,

δ1S(u, δu) = 0. (20)

—Its second variation at u is nonnegative, i.e.,

δ2S(u, δu) ≥ 0. (21)

Therefore, due to (20) and (21), we have

t1−1∑
t=t0

H ′
u [t] δu(t) = 0, (22)

δx′(t1)φxx (x (t1)) δx(t1)

−
t1−1∑
t=t0

[
δx′(t)Hxx [t] δx(t) + 2δu(t)′Hux [t] δx

′(t) + δu′(t)Huu [t] δu(t)
]
≥ 0 (23)

along the optimal process (u(t), x(t)) for any δu(t) ∈ Rr, t ∈ T .

Evidently, identity (22) and inequality (23) are implicit necessary optimality conditions of the
first and second order, respectively.

Nevertheless, they will serve for deriving constructively verifiable necessary optimality conditions
of the first and second order as follows. Since δu(t) is arbitrary, let

δu(t) =

{
v, t = θ ∈ T

0, t ̸= θ ∈ T,
(24)

where θ ∈ T and v ∈ Rr is an arbitrary vector.
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218 ALIYEVA

In view of (24) and (22), we obtain

H ′
u [θ] v = 0

for all v ∈ Rr and t = θ ∈ T.

Due to the arbitrariness of the vector v, the latter relation yields the identity

Hu [θ] = 0. (25)

Thus, we have arrived at the following result.

Theorem 3. For an admissible control u(t) to be optimal in problem (3)–(6), it is necessary to
have the relation (25) for any θ ∈ T .

The relation (25) is an analog of the Euler equation for the optimal control problem under con-
sideration. Clearly, the Euler equation is a constructively verifiable necessary optimality condition.
In turn, inequality (23) is an implicit necessary optimality condition of the second order.

An admissible control u(t) satisfying the Euler equation will be called the classical extremal.

As is well known, δx(t) (variation of the trajectory) is the solution of problem (14)–(15). Hence,
by Theorem 2, δx(t) can be written as

δx(t) =
t−1∑
j=t0

Rα (t− 1, j) fu [j] δu (j)
t−1∏

k=j+1

[1 +Rα (t− 1, k) fx [k]] . (26)

Using the representation (26), we transform some terms in inequality (23).

It is obvious that

δx′ (t1)φxx (x (t1)) δx (t1) =
t1−1∑
τ=t0

t1−1∑
s=t0

Rα (t− 1, τ) fu [τ ] δu (τ)

×
t1−1∏

k=τ+1

[
1 +Rα (t− 1, k) fx [k]

]
φxx (x (t1))

×Rα (t− 1, s) fu [s] δu (s)
t1−1∏
k=s+1

[
1 +Rα (t− 1, k) fx [k]

]
, (27)

t1−1∑
t=t0

δx′(t)Hxx [t] δx(t)

=
t1−1∑
t=t0

t1−1∑
τ=t0

t1−1∑
s=t0

Rα(t− 1, τ)fu[τ ]δu(τ)
t1−1∏

k=max(τ+1,s+1)

[
1 +Rα(t− 1, τ)fx[τ ]

]

×Hxx [t]
[
1 +Rα (t− 1, s) fx [s]

]
Rα (t− 1, s) fu [s] δu (s)

 , (28)

t1−1∑
t=t0

δu(t)′Hux [t] δx
′(t)

=
t1−1∑
t=t0

δu′(t)Hux[t]

 t−1∑
τ=t0

Rα(t− 1, τ)
t−1∏

k=τ+1

[1 +Rα(t− 1, k)fx[k]]fu[τ ]δu(τ)

 . (29)
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Utilizing identities (27)–(29) in equality (23), we obtain

t1−1∑
τ=t0

t1−1∑
s=t0

Rα (t− 1, τ) fu [τ ] δu (τ)
t1−1∏

k=τ+1

[
1 +Rα (t− 1, k) fx [k]

]
φxx (x (t1))

×Rα (t− 1, s) fu [s] δu (s)
t1−1∏
k=s+1

[
1 +Rα (t− 1, k) fx [k]

]

−
t1−1∑
t=t0

 t1−1∑
τ=t0

t1−1∑
s=t0

Rα (t− 1, τ) fu [τ ] δu (τ)

×
t1−1∏

k=max(τ+1,s+1)

[
1 +Rα (t− 1, τ) fx [τ ]

]
Hxx [t]

×
[
1 +Rα (t− 1, s) fx [s]

]
Rα (t− 1, s) fu [s] δu (s)


+2

t1−1∑
t=t0

δu′(t)Hux[t]

 t−1∑
τ=t0

Rα(t−1, τ)
t−1∏

k=τ+1

[
1+Rα(t−1, k)fx[k]

]
fu[τ ]δu(τ)


+

t1−1∑
t=t0

δu′(t)Huu [t] δu(t) ≥ 0. (30)

Let M (τ, s) be a matrix function of dimensions (n× n) given by

M (τ, s) = −Rα (t− 1, τ)
t1−1∏

k=τ+1

[
1 +Rα (t− 1, k) fx [k]

]
φxx (x (t1))

×Rα (t− 1, τ)
t1−1∏
k=s+1

[
1 +Rα (t− 1, k) fx [k]

]

−Rα(t− 1, τ)
t1−1∏

k=max(τ+1,s+1)

[
1+Rα(t− 1, τ)fx[τ ]

]
Hxx[t]

[
1+Rα(t− 1, s)fx[s]

]
. (31)

In view of formula (31), inequality (30) reduces to

2
t1−1∑
t=t0

δu′(t)Hux[t]
t−1∑
τ=t0

Rα(t− 1, τ)
t−1∏

k=τ+1

[
1 +Rα(t− 1, k)fx[k]

]
fu[τ ]δu(τ)

+
t1−1∑
τ=t0

t1−1∑
s=t0

δu(τ)f ′u[τ ]M(τ, s)fu[s]δu(s) +
t1−1∑
t=t0

δu(t)′Huu[t]δu(t) ≤ 0. (32)

Theorem 4 (second-order necessary optimality condition). For the classical extremal to be op-
timal in problem (3)–(6), it is necessary to have inequality (32) for all δu(t) ∈ U , t ∈ T , where
M(τ, s) is given by (31).

This necessary optimality condition is quite general. Using the arbitrariness of the varia-
tions δu(t) of control functions u(t), we can obtain several even simpler optimality conditions
from it.

For example, the result below is a direct consequence of Theorem 4.
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220 ALIYEVA

Corollary. For the classical extremal to be optimal in problem (3)–(6), it is necessary to have
the inequality

v′
[
f ′u [θ]M (θ, θ) fu [θ] +Huu [θ]

]
v ≤ 0

for all v ∈ Rr and θ ∈ T .
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