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Abstract—This paper establishes a relationship between optimal scheduling problems with the
minimum schedule length and the problems of finding optimal (strict) colorings of mixed graph
vertices, i.e., assigning a minimal set of ordered colors to the vertices V = {v1, . . . , v|V |} of a
mixed graph G = (V,A,E) so that the vertices vi and vj incident to an edge [vi, vj ] ∈ E will
have different colors and the color of the vertex vk in an arc (vk, vl) ∈ A will be not greater
(smaller) than that of the vertex vl. As shown below, any optimal coloring problem for the
vertices of a mixed graph G can be represented as the problem GcMPT |[pij], pmtn|Cmax of
constructing a makespan-optimal schedule for processing a partially ordered set of jobs with
integer durations pij of their operations with possible preemptions. In contrast to classical
scheduling problems, executing an operation in the problem GcMPT |[pij], pmtn|Cmax may
require several machines and, besides the two types of precedence relations defined on the set
of operations, unit-time operations of a given subset must be executed simultaneously. The
problem GcMPT |[pij], pmtn|Cmax is pseudopolynomially reduced to the problem of finding an
optimal coloring of the vertices of a mixed graph G (the input data of the scheduling problem).
Due to the assertions proved, the results obtained for the problem GcMPT |[pij], pmtn|Cmax

have analogs for the corresponding optimal coloring problems for the vertices of a mixed graph
G, and vice versa.
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1. INTRODUCTION

Production scheduling requires constructing optimal schedules for processing jobs on the avail-
able equipment (machines or processors). Optimization of production schedules is an important
factor in production efficiency due to reducing production costs and job completion times and
ensuring the timely supply of raw materials and necessary components to the production process.

In practice, production scheduling problems are diverse, both in terms of the conditions, con-
straints, and intended purpose of production and the goals achieved by implementing the con-
structed schedules. As a rule, special schedule optimization algorithms are developed to solve
production scheduling problems considering the conditions of a particular production process. The
applicability of scheduling algorithms to production scheduling can be expanded using models of
more complex processing systems to uniformly represent different classes of scheduling problems
and develop, based on such models, general methods for constructing optimal schedules.

As is known, constructing makespan-optimal schedules with unit-time operations is equivalent
to finding optimal colorings of graph vertices. In addition to precedence relations defined on the
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A MAKESPAN-OPTIMAL SCHEDULE FOR PROCESSING JOBS 191

set of operations, it may be necessary to consider the impossibility of joint execution of operations
on the same equipment (machines). In this case, optimal schedules can be constructed using the
colorings of mixed graph vertices. They were introduced in [1, 2].

Let G = (V,A,E) denote a finite mixed graph with a non-empty vertex set V = {v1, . . . , v|V |},
an arc set A, and an edge set E. Each arc (vi, vj) ∈ A defines an ordered pair of vertices vi
and vj , whereas each edge [vp, vq] ∈ E defines an unordered pair of vertices vp and vq. Assume that
the mixed graph under consideration G = (V,A,E) contains no multiple arcs, multiple edges, and
loops. If the set A is empty, we obtain a graph (V, ∅, E). If the set E is empty, we have a directed
graph (V,A, ∅).

In [1], the colorings of a mixed graph (its vertices) were defined as follows.

Definition 1 [1]. An integer function c : V → {1, . . . , t} is called a coloring c(G) of a mixed graph
G = (V,A,E) if c(vi) 6 c(vj) for each arc (vi, vj) ∈ A and c(vp) 6= c(vq) for each edge [vp, vq] ∈ E.
A coloring c(G) is optimal if it uses the minimum number t =: χ(G) of different colors c(vi) ∈
{1, . . . , t}. The value χ(G) is called the chromatic number of the mixed graph G.

If A = ∅, then a coloring c(G) is a common coloring of the vertices of a graph G = (V, ∅, E). In
contrast to the coloring of a graph (V, ∅, E) existing for any graph, the coloring c(G) of a mixed
graph G = (V,A,E) with non-empty arc and edge sets may not exist. The following criterion for
the existence of a coloring c(G) of a mixed graph G = (V,A,E) was proved in [1].

Theorem 1 [1]. A coloring c(G) of a mixed graph G = (V,A,E) exists iff the directed subgraph
(V,A, ∅) of the same G contains no circuit with a pair of vertices adjacent in the subgraph (V, ∅, E).

A mixed graph G = (V,A,E) will be called colorable if there exists a coloring c(G) for it.
Finding an optimal coloring c(G) of a mixed graph is an NP-hard problem even if A = ∅ [3]. The
papers [4–8] considered the relationship between the problems of finding optimal mixed graph
colorings and optimal scheduling problems with the minimum schedule length (the minimum total
time for processing jobs) and unit-time operations. The results published on mixed graph colorings
and equivalent optimal scheduling problems with unit-time operations were surveyed in [9].

This paper demonstrates that an optimal coloring of any colorable mixed graph is found by
constructing a makespan-optimal schedule for executing a partially ordered set of integer-time
operations with possible preemptions. In contrast to classical scheduling problems, executing an
operation in the problem under consideration may require several machines. Besides the two types
of precedence relations defined on the set of operations, in this problem, unit-time operations of a
given subset must be executed simultaneously. Due to the assertions proved, the results obtained
for the makespan-optimal scheduling problems have analogs for the corresponding optimal coloring
problems for the vertices of mixed graphs, and vice versa.

2. OPTIMAL SCHEDULES FOR PROCESSING JOBS WITH DIFFERENT ROUTES
AND STRICT MIXED GRAPH COLORINGS

The considerations below involve the terminology of the monographs [10, 11] on graph theory
and the monographs [12, 13] on scheduling theory.

To classify scheduling problems, we adopt the three-position notation α|β|γ introduced in [14],
where α is the type of the processing system and the number of machines (processors), β is the
characteristics of processed jobs (tasks), and γ is the objective function. Scheduling problems are
classified using the parameters given in [13].

2.1. Unit-time Operations and a Strict Coloring of Mixed Graphs

We begin with posing the problem J |pij = 1|Cmax of constructing a makespan-optimal sched-
ule for processing a set J = {J1, . . . , J|J |} of jobs with different routes and the unit durations
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pij = 1 of all given operations Qij . (Such an optimality criterion is denoted by Cmax, and such a
multistage processing system is called a job-shop.) In the problem J |pij = 1|Cmax, the job set J
must be processed optimally on the set M = {M1, . . . ,M|M|} of dedicated (different) machines. A
job Ji ∈ J is processed by executing a set Qi = {Qi,1, . . . , Qi,|Qi|} of operations in a given order:
(Qi,1, . . . , Qi,|Qi|). Each operation Qij ∈ Qi must be executed on a dedicated machine Mµ(i,j) of
the set M ∋ Mµ(i,j).

All jobs of the set J = {J1, . . . , J|J |} are ready to be processed at the initial time t = 0 of the
planning horizon and preemptions are prohibited when executing any operation Qij ∈ Qi of each
job Ji ∈ J . Hence, an admissible schedule for processing the jobs of the set J = {J1, . . . , J|J |}
is uniquely defined by the times to start S(Qij) > 0 = t or complete C(Qij) = S(Qij) + pij all

operations Qij ∈ Q :=
⋃|J |

i=1Qi.

Let a subset Q(k) of the set Q consist of all the operations to be executed on the machine
Mk ∈ M. Any pair of operations from the set Q(k) may not be executed simultaneously when
implementing an admissible schedule.

From the above statement of the problem of scheduling theory, it follows that an admissible
schedule for the problem J |pij = 1|Cmax must define |M| linear strict orders of sets of opera-
tions Q(k) on machine Mk ∈ M.

According to this problem statement, an admissible schedule for the problem J |pij = 1|Cmax

defines |M| linear strict orders of executing the operation sets Q(k) on dedicated machines Mk ∈ M;
moreover, the makespan-optimal schedule

{

C(Q1,1), . . . , C(Q1,|Q1|), . . . , (C(Q|J |,1), . . . , C(Q|J |,|Q|J ||)
}

=: S (1)

has the minimum length Cmax := max{C1, . . . , C|J |} among all admissible schedules for processing
the job set J . Throughout this paper, Ci denotes the completion time of a job Ji ∈ J , i.e.,
Ci = C(Qi,|Qi|), where Qi,|Qi| is the last operation of the job Ji.

When solving the problem α|β|Cmax, an optimal schedule can be found in the set of semi-active
schedules [12]: there exists a makespan-optimal schedule that is semi-active.

Definition 2. An admissible schedule for the problem α|β|Cmax is said to be semi-active if the
execution of any operation from the set Q can not be started earlier without violating the order
of operations in the schedule S or (and) another operation will be executed later than in the
schedule S.

A strict mixed graph coloring was defined in [2] as follows.

Definition 3 [2]. An integer function c< : V → {1, . . . , t} is called a strict coloring c<(G) of a
mixed graph G = (V,A,E) if

c<(vi) < c<(vj) (2)

for each arc (vi, vj) ∈ A and c<(vp) 6= c<(vq) for each edge [vp, vq] ∈ E. A strict coloring c<(G) is
optimal if it uses the minimum number t =: χ<(G) of different colors c<(vi) ∈ {1, . . . , t}.

A strict coloring c<(G) can be interpreted as a special case of a coloring c(G) of a mixed graph
G = (V,A,E); see Definition 1.

Remark 1. A coloring c(G) can be used instead of a strict coloring c<(G) for any mixed graph
G = (V,A,E) in which

(vi, vj) ∈ A ⇒ [vi, vj ] ∈ E (3)

for each arc (vi, vj) ∈ A.

If a mixed graph G = (V,A,E) has an arc (vi, vj) ∈ A without the implication (3), then we add
the edge [vi, vj ] in the graph G for each such arc (vi, vj). Therefore, any strict coloring c<(G)
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of a mixed graph G can be represented as a coloring c(G+) of the mixed graph G+ = (V,A,E+)
obtained by adding all such edges.

The following corollary of Theorem 1 gives a criterion for the existence of a strict coloring c<(G)
of a mixed graph G = (V,A,E).

Corollary 1. There exists a strict coloring c<(G) of a mixed graph G = (V,A,E) iff the directed
subgraph (V,A, ∅) of the same mixed graph G = (V,A,E) contains no circuits.

The next result for the problem J |pij = 1|Cmax was established in [4].

Theorem 2 [4]. The problem J |pij = 1|Cmax is equivalent to the problem of finding an optimal
strict coloring c<(G) of a mixed graph G = (V,A,E) with V = Q and the following conditions:

(a) (Q, A, ∅) =
⋃|J |

i=1(Qi, Ai, ∅), where each directed subgraph (Qi, Ai, ∅) of the mixed graph G =
(V,A,E) is a path passing through all vertices of the set Qi and Qi ∩ Qj = ∅ for all i 6= j.

(b) (Q, ∅, E) =
⋃|M|

k=1(Q
(k), ∅, E(k)), where each subgraph (Q(k), ∅, E(k)) of the mixed graph G =

(V,A,E) is a complete graph and Q(k) ∩ Q(l) = ∅ for all k 6= l.

Considering Remark 1, Theorem 2 yields the following fact.

Corollary 2. The problem J |pij = 1|Cmax is equivalent to the problem of finding an optimal col-
oring c(G) of a mixed graph G = (V,A,E) with V = Q and conditions (a), (b), and (3).

2.2. Preemptions of Integer-Time Operations

In this subsection, Theorem 2 is generalized to the problem J |[pij ], pmtn|Cmax of constructing
a makespan-optimal schedule for processing the job set J with integer durations pij > 1 of the
operations Qij ∈ Q with possible preemptions. In the problem notation, pmtn indicates the possi-
bility of operation preemptions, whereas [pij] means the integer durations of the operations. Due
to possible preemptions of operations from the set Q, the set of semi-active schedules becomes
wider. In many cases, this fact may complicate finding a makespan-optimal schedule. On the other
hand, the preemptions of all or some operations of the set Q may reduce the length Cmax of the
optimal semi-active schedule. Hence, for many problems J |[pij ], pmtn|Cmax, it is desirable to limit
the number of times with possible preemptions of operations from the set Q without losing the
semi-active schedule of the smallest length Cmax.

In the sequel, an optimal schedule for the problem J |[pij ], pmtn|Cmax will be restricted to the
set of semi-active schedules with possible operation preemptions at integer times only. Such a
reduction of the solution set in the problem J |[pij ], pmtn|Cmax rests on the following remark.

Remark 2. All jobs of the set J = {J1, . . . , J|J |} are ready to be processed at the initial time
t = 0 and all operations Qij ∈ Q have integer durations pij > 1. Therefore, there exists an optimal
semi-active schedule in which the preemptions of operations occur at integer times only.

Remark 2 is valid since the preemption of an operation Qij ∈ Q may reduce the length of a semi-
active schedule S without preempted operations only if this preemption occurs at the completion
time of at least one operation. (In this case, another operation Quv ∈ Q, u 6= i, can be started on
the available machine Mµ(i,j) = Mµ(u,v) ∈ M.) All jobs of the set J = {J1, . . . , J|J |} are ready to
be processed at the time t = 0 and all operations Qij ∈ Q have integer durations pij > 1. Hence,
in a semi-active schedule S without operation preemptions, the execution of any operation can
complete at an integer time only.

In view of Remark 2, we partition the operation Q1,1 ∈ Q1 of an integer duration into p1,1
unit-time operations, denoting them by {v1, . . . , vp1,1}.

Here and elsewhere, the unit-time operations are supposed linearly ordered and must be executed
in ascending order of their numbers during the implementation of any admissible schedule.
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Let {vp1,1+1, . . . , vp1,1+p1,2} denote the set of unit-time operations obtained by partitioning
the next operation Q1,2 ∈ Q1 of the job J1. By analogy, we partition the operations of the set
Q1 \ {Q1,1, Q1,2} into unit-time operations and assign sequential numbers to them. For exam-
ple, the last operation Q1,|Q1| ∈ Q1 of the job J1 will be partitioned into the following unit-time

operations:
{

v∑|Q1|−1

j=1
p1,j+1

, . . . , v∑|Q1|

j=1
p1,j

}

.

This partition procedure of all operations from the set Q1 yields the set

W1 =

{

v1, . . . , v∑|Q1|

j=1
p1,j

}

(4)

of all linearly ordered unit-time operations of the first job J1 ∈ J in the problem J |[pij ], pmtn|Cmax.

Consider the next unit-time operation v∑|Q1|

j=1
p1,j+1

, sequentially numbering all unit-time oper-

ations into which the operations of the set Q2 = {Q2,1, . . . , Q2,|Q2|} of the second job J2 ∈ J are
partitioned. As a result, we obtain the set

W2 =

{

v∑|Q1|

j=1
p1,j+1

, . . . , v∑|Q1|

j=1
p1,j+

∑|Q2|

j=1
p2,j

}

(5)

of all linearly ordered unit-time operations of the job J2 ∈ J .

Following this technique, we sequentially number the unit-time operations of the jobs from the
set J \{J1, J2} in an ascending order of the job numbers and the numbers of the resulting unit-time
operations.

At the last stage of the partition procedure for the integer-time operations of the set J , we
construct the set

W|J | =

{

v∑|Q1|

j=1
p1,j+...+

∑|Q|J |−1|

j=1 p|J |−1,j+1
, . . . , v∑|Q1|

j=1
p1,j+...+

∑|Q|J ||

j=1 p|J |,j

}

(6)

of all linearly ordered unit-time operations of the last job J|J | from the set J .

Thus, by Remark 2, all jobs of the set J are processed by executing the set W :=
⋃|J |

i=1 Wi of
unit-time operations.

Let J (k) denote a subset of jobs J ⊇ J (k) with operations executed on a machine Mk ∈ M. If

Ji ∈ J (k), the subset Q
(k)
i of the set Qi ⊇ Q

(k)
i contains all operations of the job Ji executed on a

machine Mk ∈ M.

2.3. Example 1 of the Problem J5|[pij ], pmtn|Cmax

We reduce the problem J |[pij ], pmtn|Cmax to finding an optimal strict coloring c<(G) of a mixed
graph G for Example 1 of the problem J5|[pij ], pmtn|Cmax with the job set J = {J1, J2, J3} and
the machine set M = {M1, . . . ,M5}. The input data of this example are presented in Table 1.

Table 1. The input data of Example 1 of problem J5|[pij ], pmtn|Cmax

Operations Q1,j of job J1 Q1,1 Q1,2 Q1,3 Q1,4 –

Machines Mµ(1,j) M1 M2 M3 M4 –

Durations p1,j of operations Q1,j 2 4 2 1 –

Operations Q2,j of job J2 Q2,1 Q2,2 Q2,3 Q2,4 Q2,5

Machines Mµ(2,j) M2 M5 M1 M2 M4

Durations p2,j of operations Q2,j 3 2 2 3 1

Operations Q3,j of job J3 Q3,1 Q3,2 Q3,3 Q3,4 Q3,5

Machines Mµ(3,j) M5 M3 M1 M5 M3

Durations p3,j of operations Q3,j 2 1 1 3 1
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A MAKESPAN-OPTIMAL SCHEDULE FOR PROCESSING JOBS 195

Let us construct a mixed graph G = (V,A,E) defining all input data of Example 1 in the network
form.

The job J1 consists of four operations Q1,1, Q1,2, Q1,3, and Q1,4 with the durations p1,1 = 2,
p1,2 = 4, p1,3 = 2, and p1,4 = 1, respectively. Using the notations (4), we obtain the linearly ordered
set of unit-time operations W1 = {v1, . . . , v9} and include them in the desired vertex set V ⊃ W1.
All operations of the job J1 and all unit-time operations yielded by partitioning each operation from
the set Q1 are linearly ordered when implementing any admissible schedule. Therefore, we include
the following arc set into the mixed graph G = (V,A,E) : A1 = {(v1, v2), (v2, v3), . . . , (v8, v9)},
where A1 ⊂ A.

The job J2 consists of five operations Q2,1, Q2,2, Q2,3, Q2,4, and Q2,5 with the durations p2,1 = 3,
p2,2 = 2, p2,3 = 2, p2,4 = 3, and p2,5 = 1, respectively. Using the notations (5), we obtain the set of
unit-time operations W2 = {v10, . . . , v20} and include them into the vertex set V ⊃ W2. Since all
operations of the job J2 are linearly ordered when implementing any admissible schedule, we include
the following arc set into the mixed graph G = (V,A,E) : A2 = {(v10, v11), (v11, v12), . . . , (v19, v20)},
where A2 ⊂ A.

The job J3 consists of five operations Q3,1, Q3,2, Q3,3, Q3,4, and Q3,5 with the durations p3,1 = 2,
p3,2 = 1, p3,3 = 1, p3,4 = 3, and p3,5 = 1, respectively. Using the notations (6), we obtain the set of
unit-time operations W3 = {v21, . . . , v28} and include them into the vertex set V ⊃ W3. Since all
operations of the job J3 are linearly ordered when implementing any admissible schedule, we include
the following arc set into the mixed graph G = (V,A,E) : A3 = {(v21, v22), (v22, v23), . . . , (v27, v28)},
where A3 ⊂ A.

Thus, the directed subgraph (V,A, ∅) =
⋃|J |

i=1(Wi,Ai, ∅), |J | = 3, of the desired mixed graph
(V,A,E) has the vertex set

V = W :=

|J |
⋃

i=1

Wi (7)

and the arc set

A = A :=

|J |
⋃

i=1

Ai. (8)

We sequentially construct the edge set E of the mixed graph G = (V,A,E) for each set Q(k) =
⋃

Ji∈J (k) Q
(k)
i of operations executed on each machine Mk ∈ {M1, . . . ,M5}.

For the machine M1, the set Q(1) is partitioned into two unit-time operations {v1, v2} of the
job J1, two unit-time operations {v15, v16} of the job J2, and one unit-time operation v24 of the
job J1. None of the pairs of operations from the set Q(1) may be executed simultaneously. Hence, it
is necessary to construct a complete tripartite graph (V1, ∅, E1) in which V1 = {v1, v2; , v15, v16; v24}
and E1 = {[v1, v15], [v1, v16], [v2, v15], [v2, v16]; [v1, v24], [v2, v24]; [v15, v24], [v16, v24]}. Here and else-
where, the vertices belonging to different parts of the k-partite graph and the edges incident to such
vertices are separated by the symbol “;” (semicolon).

For the machine M2, the set Q(2) is partitioned into four unit-time operations {v3, v4, v5, v6} of
the job J1 and six unit-time operations {v10, v11, v12, v17, v18, v19} of the job J2. None of the pairs
of operations from the set Q(2) may be executed simultaneously. Hence, it is necessary to con-
struct a complete bipartite graph (V2, ∅, E2) in which V2 = {v3, v4, v5, v6;v10, v11, v12, v17, v18, v19}

and |E2| = |Q
(2)
1 | · |Q

(2)
2 | = 4 · 6 = 24.

For the machine M3, the set Q
(3) is partitioned into two unit-time operations {v7, v8} of the job

J1 and two unit-time operations {v23, v28} of the job J3. A pair of operations from the set Q(3)
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v1 v2 v3
v4 v5 v6 v7

v8 v9

v10 v11

v21 v22 v23 v24 v25 v26 v27 v28

v12 v13 v14 v15 v16 v17
v18 v19

v20

Fig. 1. Mixed graph G = (V,A,E) defining all input data of Example 1 of problem J5|[pij ], pmtn|Cmax.

may not be executed simultaneously. Hence, it is necessary to construct a complete bipartite graph

(V3, ∅, E3) in which V3 = {v7, v8; v23, v28} and |E3| = |Q
(3)
1 | · |Q

(3)
3 | = 2 · 2 = 4.

For the machine M4, the set Q(4) is partitioned into one unit-time operation v9 of the job J1
and one unit-time operation v20 of the job J2. The operations from the set Q(4) may not be
executed simultaneously. Hence, it is necessary to connect the operations v9 and v20 with an edge.
Thereby, we construct a trivial complete bipartite graph (V4, ∅, E4) in which V4 = {v9; v20} and
E4 = {[v9, v20]}.

For the machine M5, the set Q(5) is partitioned into two unit-time operations {v13, v14} of the
job J2 and five unit-time operations {v21, v22, v25, v26, v27} of the job J3. None of the pairs of op-
erations from the set Q(5) may be executed simultaneously. Hence, it is necessary to construct
a complete bipartite graph (V5, ∅, E5) in which V5 = {v13, v14; v21, v22, v25, v26, v27} and |E5| =

|Q
(5)
2 | · |Q

(5)
3 | = 2 · 5 = 10.

Thus, the subgraph (V, ∅, E)=
⋃|M|

k=1(Vk, ∅, Ek), |M|=5, of the desired mixed graphG=(V,A,E)
has the edge set

E = E :=

|M|
⋃

i=1

Ei. (9)

Each subgraph (Vk, ∅, Ek) of the mixed graph G is a complete |J (k)|-partite graph and Vk ∩ Vl = ∅
for all k 6= l.

Figure 1 presents the mixed graph G = (V,A,E) defining all input data of Example 1. Let us
demonstrate that an optimal strict coloring c<(G) of the mixed graph G can be found by solving
Example 1.

Note that pij = 1 for all operations Qij ∈ Q in the problem J |pij = 1|Cmax (subsection 2.1).
Therefore, the schedule (1) for the problem J |pij = 1|Cmax is determined by the completion times
of all unit-time operations Q of all jobs from the set J .

For the problem J |[pij ], pmtn|Cmax with possible preemptions of integer-time operations, an
admissible schedule for processing jobs from the set J = {J1, . . . , J|J |} is determined by the com-

pletion times C(vj) of all unit-time operations vj ∈ W =
⋃|J |

i=1 Wi. The value pij is the integer
duration of the operation Qij . Considering Remark 2, besides the set (1) of the completion times
of all integer-time operations Q of jobs from the set J , we have to determine the completion times
of all unit-time operations from the set W. Therefore, in the problem J |[pij ], pmtn|Cmax with
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A MAKESPAN-OPTIMAL SCHEDULE FOR PROCESSING JOBS 197

possible preemptions of integer-time operations, an admissible schedule S is given by the set
{

C(v1), . . . , C(v|W|)
}

=: S. (10)

As is easily verified, for all vertices vi ∈ W of the mixed graph G = (V,A,E) in Example 1, we
have

C(vi) = c<(vi). (11)

Due to equalities (10) and (11), the makespan-optimal schedule S =
{

C(v1) = c<(v1), . . . ,
C(v28) = c<(v28)

}

in Example 1 is determined by the following optimal strict coloring c<(G) of the
mixed graph G (Fig. 1):

c<(v1) = 1, c<(v2) = 2, c<(v3) = 4, c<(v4) = 5, c<(v5) = 6,

c<(v6) = 7, c<(v7) = 8, c<(v8) = 9, c<(v9) = 10, c<(v10) = 1,

c<(v11) = 2, c<(v12) = 3, c<(v13) = 4, c<(v14) = 5, c<(v15) = 6,

c<(v16) = 7, c<(v17) = 8, c<(v18) = 9, c<(v19) = 10, c<(v20) = 11,

c<(v21) = 1, c<(v22) = 2, c<(v23) = 3, c<(v24) = 4, c<(v25) = 6,

c<(v26) = 7, c<(v27) = 8, c<(v28) = 10.

We calculate the optimal schedule length in Example 1:

Cmax = max{C1, C2, C3} = max{c<(v9), c<(v20), c<(v28)} = max{10, 11, 10} = 11.

The strict coloring c<(G) is optimal according to the following considerations: there exists a path
(v10, . . . , v20) of length 11 in the subgraph (V,A, ∅) of the constructed mixed graph G = (V,A,E);
hence, χ<(G) > 11.

2.4. The Problem J |[pij ], pmtn|Cmax and the Corresponding Problem
of Finding a Strict Coloring of Mixed Graph Vertices

with Complete k-partite Subgraphs

Using the introduced notations, we formulate the following result based on condition (a) of
Theorem 2.

Theorem 3. The problem J |[pij ], pmtn|Cmax is pseudopolynomially reduced to the problem of
finding an optimal strict coloring c<(G) of a mixed graph G = (V,A,E) with the vertex set V = W,

condition (a) and the additional condition

(c) (V, ∅, E) =
⋃|M|

k=1(Vk, ∅, Ek), where each graph (Vk, ∅, Ek) is a complete |J (k)|-partite graph
and Vk ∩ Vl = ∅ for all k 6= l.

Proof. For an arbitrary problem J |[pij ], pmtn|Cmax, we prove the existence of a mixed graph
G = (V,A,E) with the vertex set V = W and an optimal strict coloring determining an optimal
schedule for the problem J |[pij ], pmtn|Cmax under conditions (a) and (c).

According to Remark 2, an optimal schedule for the problem J |[pij ], pmtn|Cmax can be found
in the class of semi-active schedules with possible preemptions at integer times only. Hence, the
problem J |[pij ], pmtn|Cmax can be represented as the problem J |pij = 1|Cmax of constructing an

optimal schedule for processing a given set W = {v1, . . . , v|W|} =
⋃|J |

i=1 Wi of unit-time jobs. The
job set W for the problem J |pij = 1|Cmax is obtained by the sequential partition of the operation
sets Qi of all jobs Ji ∈ J in the problem J |[pij ], pmtn|Cmax into unit-time operations. For details,
see subsection 2.2: formulas (4), (5), and (6) for the operations of the sets Q1, Q2, and Q|J |,

respectively.

Obviously, Theorem 3 follows from Theorem 2: condition (b) for a mixed graph G = (V,A,E)
with the vertex set V = Q turns into condition (c) for the mixed graph (W,A, E) with the vertex
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set W =
⋃|J |

i=1 Wi (formula (7)), the arc set A =
⋃|J |

i=1 Ai (formula (8)), and the edge set E =
⋃|J |

i=1 Ei
(formula (9)). The proof of Theorem 3 is complete.

In view of Remark 1, we arrive at the following result.

Corollary 3. The problem J |[pij ], pmtn|Cmax is pseudopolynomially reduced to the problem of
finding an optimal coloring c(G) of a mixed graph G = (V,A,E) with conditions (a) and (c) and
V = W.

3. AN OPTIMAL SCHEDULE FOR MULTI-PROCESSOR OPERATIONS
AND THE CORRESPONDING COLORING OF MIXED GRAPH VERTICES

In Section 2, we have provided Theorem 2 and proved Theorem 3 on the reduction of the
classical scheduling problems J |pij = 1|Cmax and J |[pij ], pmtn|Cmax to the problems of finding
optimal strict colorings c<(G) of mixed graphs G = (V,A,E) with conditions (a) and (b) and
conditions (a) and (c), respectively. For an arbitrary mixed graph G = (V,A,E), the problem of
finding an optimal strict coloring c<(G) is not generally reduced to the problem J |pij = 1|Cmax or
the problem J |[pij ], pmtn|Cmax. This fact can be easily verified.

The problem of finding an optimal coloring c(G) of any mixed graph G = (V,A,E) can be
reduced to some generalizations of the problems J |pij = 1|Cmax and J |[pij ], pmtn|Cmax. We present
them below.

3.1. Unit-Time Durations of Multiprocessor Operations

In the classical problems J |β|Cmax of scheduling theory, each operation is executed on one
machine from the set M. In contrast, processing systems with multiprocessor operations (jobs)
may require either a single machine or several dedicated machines from the set M to execute an
operation Qij ∈ Q over the entire duration pij > 0 [13]. Like in all scheduling problems α|β||γ,
when implementing any admissible schedule, no pair of operations requiring at least one common
machine Mk ∈ M may be executed simultaneously.

The monograph [13, pp. 264–283] described the results of studying the problems GMPT ||Cmax,
where MPT denotes MultiProcessor Tasks and G is a processing system (a general shop) with
arbitrary precedence relations defined on the set of multiprocessor operations Q. In the problem
GMPT |pij = 1|Cmax, the completion time C(Qij) of an operation Qij = vkij must precede the
starting time S(Qrq) of an operation Qrq = vkrq . Such a completion–start precedence relation
of operations will be written as vkij → vkrq . Obviously, the mixed graph G = (V,A,E) defining
the input data of the problem GMPT |pij = 1|Cmax must contain an arc (vkij , vkrq) and an edge
[vkij , vkrq ] as well; see Definition 1.

Note that intensive research on the problems GMPT |β|γ has been ongoing for several decades
[15–23] since such problems arise in many real production scheduling systems. The research re-
sults on the problems GMPT |β|γ before 1996 were presented in the survey [19]. The problems
GMPT |pij = 1|γ with unit-time multiprocessor operations were considered in [19–23].

Consider the problem GcMPT |pij = 1|Cmax, which is equivalent to the problem of finding
an optimal coloring c(G) of a mixed graph G = (V,A,E); for details, see [24]. The problem
GMPT |pij = 1|Cmax is a special case of the problem GcMPT |pij = 1|Cmax, whereas the problem
J |pij = 1|Cmax is a special case of the problem GMPT |pij = 1|Cmax.

The problem GcMPT |pij = 1|Cmax differs from the problem GMPT |pij = 1|Cmax [13,
pp. 264–268] in the following:

1) Besides the completion–start precedence relations vkij → vkrq , the problemGcMPT |pij = 1|Cmax

may include start–start precedence relations on the operation set Q. (In other words, the starting
time S(Qij) of an operation Qij = vkij must precede the starting time S(Qrq) of an operation
Qrq = vkrq .)
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2) Also, the problem GcMPT |pij = 1|Cmax may include the subsets of unit-time operations
{vh1 , . . . , vh|V (h)|

} =: V (h) of the set V that must be executed simultaneously in any admissible
schedule.

Let us describe the start–start precedence relations as a generalization of the problem
J |pij = 1|Cmax provided that the input data of this problem are represented as a mixed graph
G = (V,A,E). (Hence, the problem J |pij = 1|Cmax is reduced to the problem of finding an optimal
coloring of the mixed graph G; see Corollary 2.)

When describing the precedence relations on the set Q, we use the notations vkij ∈ W of unit-
time operations Qij ∈ Q, which have been introduced in subsection 2.2 for integer-time operations of
the problem J |[pij ], pmtn|Cmax. This is acceptable since all operations of the problem J |pij = 1|Cmax

have unit durations. A bijection between the elements of the sets Q and W is defined by equali-
ties (4), (5), . . . , (6) for the operations of the jobs J1, J2, . . . , Jn ∈ J , respectively.

Let the problem GcMPT |pij = 1|Cmax require that the completion time C(Qij) of an operation
Qij = vkij precede the starting time S(Qrq) of an operation Qrq = vkrq . Then the mixed graph
G = (V,A,E) defining the input data of the problem GcMPT |pij = 1|Cmax must contain the arc
(vkij , vkrq) and the edge [vkij , vkrq ] as well; see Definition 1. In addition to defining the completion–
start relation vkij → vkrq , the problem GcMPT |pij = 1|Cmax may require that the starting time
S(Quv) of an operation Quv = vkuv precede the starting time S(Qel) of an operation Qel = vkel .
Then the mixed graph G = (V,A,E) defining the input data of the problem GcMPT |pij = 1|Cmax

contains the arc (vkuv , vkel) and does not contain the edge [vkuv , vkel ]. Such a start–start precedence
relation will be written as vkuv 7→ vkel .

In addition to the precedence relation vkij → vkrq and vkuv 7→ vkel , the problem
GcMPT |pij = 1|Cmax may require that a given subset of unit-time operations {vh1 , . . . , vh|V (h)|

} =:
V (h) of the set V be executed simultaneously in any admissible schedule. To define such a con-
dition, the directed subgraph (V,A, ∅) of the mixed graph G = (V,A,E) must contain a circuit
(vh1 , vh2 , . . . , vh|V (h)|

, vh1), i.e., the set A must contain the following subset of arcs:
{(

vh1 , vh2

)

,
(

vh2 , vh3

)

, . . . ,
(

vh|V (h)|−1, vh|V (h)|

)

,
(

vh|V (h)|
, vh1

)}

⊆ A.

Consider the problem GcMPT |pij = 1|Cmax with w given subsets V (1), . . . , V (w) of unit-time
operations. The operations of each subset V (h) = {vh1 , . . . , vh|V (h)|

} ⊆ V must be executed simul-
taneously in any admissible schedule, h ∈ {1, . . . , w}. Then the directed subgraph (V,A, ∅) of the
mixed graph G = (V,A,E) must contain the following subset of arcs:

A0 =
w
⋃

h=1

{(

vh1 , vh2

)

,
(

vh2 , vh3

)

, . . . ,
(

vh|V (h)|−1, vh|V (h)|

)

,
(

vh|V (h)|
, vh1

)}

. (12)

Since the mixed graph G = (V,A,E) defines the input data of an individual problem (example)
GcMPT |pij = 1|Cmax, this example will be called the problem GcMPT |pij = 1|Cmax on the mixed
graph G = (V,A,E). Unlike classical scheduling problems J |pij = 1|Cmax and J |[pij ], pmtn|Cmax,

which have solution under any input data, there are examples of GcMPT |pij = 1|Cmax without
admissible schedules. The following criterion for the existence of an admissible schedule in the
problem GcMPT |pij = 1|Cmax on a mixed graph G = (V,A,E) was proved in [24, p. 76].

Theorem 4 [24]. There exists an admissible solution of the problem GcMPT |pij = 1|Cmax

on a mixed graph G = (V,A,E) iff the directed subgraph (V,A, ∅) of the same mixed graph G =
(V,A,E) contains no circuit with adjacent vertices of the subgraph (V, ∅, E).

The next result was also established in [24, p. 76].

Lemma 1 [24]. The solvable problem GcMPT |pij = 1|Cmax on a mixed graph G = (V,A,E) is
equivalent to the problem of finding an optimal coloring c(G) of the same mixed graph G = (V,A,E).
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As is easily verified, not all problems GcMPT |pij = 1|Cmax are reduced to optimal strict col-
orings c<(G) of mixed graphs G = (V,A,E). Indeed, the strict inequality (2) cannot be used to
define the start–start precedence relation vkij 7→ vkrq ; hence, the directed subgraph (V,A, ∅) of the
mixed graph G with a strict coloring c<(G) contains no circuits. (For clarity, Theorems 1 and 4
should be compared with Corollary 1.)

3.2. Preemptions of Integer-Time Multiprocessor Operations

Theorem 5 generalizes Lemma 1 to the problem GcMPT |[pij ], pmtn|Cmax of finding a makespan-
optimal schedule for processing the job set J with integer durations pij > 1 of all operationsQij ∈ Q
with their possible preemptions.

Theorem 5. The solvable problem GcMPT |[pij], pmtn|Cmax is pseudopolynomially reduced to
the problem of finding an optimal coloring c(G) of a mixed graph G = (V,A,E). For any colorable
mixed graph G = (V,A,E), there exists a problem GcMPT |[pij ], pmtn|Cmax on the same mixed
graph G = (V,A,E) that is equivalent to the problem of finding an optimal coloring c(G) of the
mixed graph G = (V,A,E).

Proof. Consider the solvable problem GcMPT |[pij ], pmtn|Cmax of finding a makespan-
optimal schedule for processing the job set J = {J1, . . . , J|J |} on given dedicated machines
M = {M1, . . . ,M|M|}. Let us construct a mixed graph G = (V,A,E) whose optimal coloring de-
termines the solution of this problem.

Due to Remark 2, we will find a makespan-optimal schedule for the solvable problem
GcMPT |[pij], pmtn|Cmax in the class of semi-active schedules with possible preemptions at integer

times only. To this effect, we define the set of unit-time operations W = {v1, . . . , v|W|} =
⋃|J |

i=1Wi

by partitioning sequentially the sets of integer-time operations Qi of all jobs Ji ∈ J in the problem
GcMPT |[pij], pmtn|Cmax into unit-time operations (see subsection 2.2): equality (4) defines the
subset W1 of unit-time operations for the operations Q1 of the first job, whereas equality (5) defines
the subset W2 of unit-time operations for the operations Q2 of the second job. Similar equalities
for the sets Q3, . . . ,Q|J |−1 sequentially define the subsets W3, . . . ,W|J |−1 of unit-time operations.
For example, equality (6) defines the subset W|J | of unit-time operations for the operations Q|J |

of the last job J|J |. The sequential partition of all integer-time operations into unit-time opera-
tions yields a subgraph (W, ∅, ∅) of the desired mixed graph G = (V,A,E) with the vertex set

V = W =
⋃|J |

i=1Wi.

In any semi-active schedule, a job Ji ∈ J consists of a linearly ordered set Qi ⊂ Q of integer-time
operations, which is associated with a linearly ordered set of unit-time operations of the form

Wi =

{

v∑|Q1|

j=1
p1,j+...+

∑|Qi−1|

j=1 pi−1,j+1
, . . . , v∑|Q1|

j=1
p1,j+...+

∑|Qi|

j=1
pi,j

}

.

The arc set

Ai =

{(

v∑|Q1|

j=1
p1,j+...+

∑|Qi−1|

j=1 pi−1,j
, v∑|Q1|

j=1
p1,j+...+

∑|Qi−1|

j=1 pi−1,j+1

)

, . . . ,

(

v∑|Q1|

j=1
p1,j+...+

∑|Qi|

j=1
pi,j

, v∑|Q1|

j=1
p1,j+...+

∑|Qi|

j=1
pi,j+1

)}
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and the edge set

Ei =

{[

v∑|Q1|

j=1
p1,j+...+

∑|Qi−1|

j=1 pi−1,j
, v∑|Q1|

j=1
p1,j+...+

∑|Qi−1|

j=1 pi−1,j+1

]

, . . . ,

[

v∑|Q1|

j=1
p1,j+...+

∑|Qi|

j=1
pi,j

, v∑|Q1|

j=1
p1,j+...+

∑|Qi|

j=1
pi,j+1

]}

determine a linear order of executing the operation set Wi when implementing an admissible sched-
ule for the problem GcMPT |[pij], pmtn|Cmax.

In addition to the completion–start precedence relations between the operations of the set Qi

for processing the same job Ji ∈ J , we assume that the problem GcMPT |[pij ], pmtn|Cmax includes
the following sets:

—the set R→ of completion–start relations between the operations of different jobs, given by

R→ = {vr1 → vr2 , . . . , vrn−1 → vrn}; (13)

—the set R7→ of start–start precedence relations between the operations of different jobs, given
by

R7→ = {vl1 7→ vl2 , . . . , vlm−1 → vlm}. (14)

According to Definition 1, we introduce the precedence relations (13) by adding the arc set
A|J |+1 := {(vr1 , vr2), . . . , (vrn−1 , vrn)} and the edge set E|J |+1 := {[vr1 , vr2 ], . . . , [vrn−1 , vrn ]} in the
desired mixed graph G = (V,A,E). For introducing the precedence relations (14), it suffices to add
the arc set A|J |+2 := {(vl1 , vl2), . . . , (vlm−1 , vlm)} in the mixed graph G = (V,A,E).

In the problem GcMPT |pij = 1|Cmax, we can also define subsets V (1), . . . , V (w) of unit-time
operations from the set Q such that all operations of the subset V (h) = {vh1 , . . . , vh|V (h)|

} ⊆ V

must be executed simultaneously in any admissible schedule, h ∈ {1, . . . , w}. In the problem
GcMPT |[pij], pmtn|Cmax with such a condition, the set of precedence relations R7→ (14) must

contain the following subset of precedence relations:
⋃w

h=1

{

vh1 7→ vh2 , vh2 7→ vh3 , . . . , vh|V (h)|−1 7→

vh|V (h)|
, vh|V (h)|

7→ vh1

}

. Then the constructed arc set A|J |+2 must also contain the set A0 ⊆ A

defined in (12).

Let us denote A :=
⋃|J |+2

i=1 Ai and E :=
⋃|J |+1

i=1 Ei. Thus, we have constructed the subgraph
(W,A, E) of the desired mixed graph G = (V,A,E) in which V = W and A = A.

We define the set E \ E of other edges of the mixed graph G so that it is impossible to execute
simultaneously any pair of unit-time operations from the set Q(k), k ∈ {1, . . . , |M|}, on a machine
Mk ∈ M in any admissible schedule of the problem GcMPT |[pij], pmtn|Cmax. For each machine
Mk ∈ M, the set Q(k) of integer-time operations executed on this machine determines the set Vk

of all unit-time operations executed on the machine Mk.

The cardinality of the set Vk is the total duration of all operations for processing the jobs

of the set J (k) =:
{

Jk1 , . . . , J|J (k)|

}

, i.e., |Vk| =
∑

Ji∈J (k) pik. We partition the set Vk into |J (k)|

subsets Vj
k of unit-time operations for processing jobs Jkj ∈ J (k):

Vk = V1
k

⋃

. . .
⋃

V
|J (k)|
k , Vj

k 6= ∅, Vj
k

⋂

V l
k = ∅, k 6= l.

Obviously, the prohibition to execute simultaneously any pair of unit-time operations from the
set Vk in an admissible schedule is defined by a complete |J (k)|-partite graph (Vk, ∅, Ek) with the

sets V1
k , . . . ,V

|J (k)|
k as the parts and the edge set Ek of cardinality

∏

Jkj∈J
(k) |V

j
k|.

Well, we have defined the edge set E \ E =
⋃|M|

k=1Ek and have constructed the mixed graph
G = (V,A,E) in which V = W, A = A, and E = E

⋃

E1
⋃

. . .
⋃

E|M|. By the construction
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of the mixed graph G = (V,A,E), all precedence relations of the operations in the problem
GcMPT |[pij], pmtn|Cmax are defined by the subgraph (W,A, E) of the mixed graph G = (V,A,E);
the prohibition to execute simultaneously any pair of operations from the set Vk on the same

machine Mk ∈ M is defined by the subgraph
(

W,
⋃|J |

i=1 Ai,
{
⋃|M|

k=1Ek

}
⋃
{
⋃|J |

i=1 Ei
})

of the mixed
graph G = (V,A,E). Hence, for the solvable problem GcMPT |[pij ], pmtn|Cmax on the mixed graph
G = (V,A,E), there exists an admissible schedule

S =
{

C(v1), . . . , C(v|W|)
}

(15)

defining a coloring c(G) of the mixed graph G = (V,A,E) in which c(vi) = C(vi) for all vertices
vi ∈ W. Evidently, the makespan-optimal schedule defines the optimal coloring c(G) of the mixed
graph G = (V,A,E). The proof of the first part of Theorem 5 is complete.

Note that the makespan-optimal schedule for the problem GcMPT |pij = 1|Cmax coincides with
the solution of the problem GcMPT |pij = 1, pmtn|Cmax : by Remark 2, if all operations Qij ∈ Q
have the unit durations pij = 1, the preemptions of a certain operation from the set Q will not
reduce the length Cmax of the desired makespan-optimal semi-active schedule. Therefore, the
possibility of preempting unit-time operations in the problem GcMPT |pij = 1, pmtn|Cmax can be
simply neglected when finding the makespan-optimal semi-active schedule. Hence, the problem
GcMPT |pij = 1|Cmax can be solved as a particular case GcMPT |pij = 1, pmtn|Cmax of the problem
GcMPT |[pij], pmtn|Cmax; see Theorem 5. Thus, the second part of Theorem 5 directly follows from
Lemma 2.

Lemma 2 [24]. For any colorable mixed graph G = (V,A,E), there exists a problem
GcMPT |pij = 1|Cmax on the same mixed graph G = (V,A,E) that is equivalent to the problem
of finding an optimal coloring c(G).

The proof of Lemma 2, provided in the paper [24, pp. 78–79], contain an algorithm as follows:
for a given colorable mixed graph G = (V,A,E), it constructs the problem GcMPT |pij = 1|Cmax

on the same mixed graph G that is equivalent to the problem of finding an optimal coloring c(G)
of the mixed graph G = (V,A,E). The proof of Theorem 5 is complete.

4. EXAMPLE 2 OF THE PROBLEM GcMPT |[pij ], pmtn|Cmax

Let us illustrate the first part of Theorem 5 by Example 2 of the solvable problem
GcMPT |[pij], pmtn|Cmax with five jobs J = {J1, . . . , J5} and nine machines M = {M1, . . . ,M9}.
Table 2 presents the operations of the sets Q, their durations, and the machines of the sets
Mµ(i,j) ⊆ M required to execute an operation Qij ∈ Q. Prior to defining the precedence relations
between the operations of different jobs for Example 2, we construct a subgraph G′ = (V,A′, E′) of
the desired mixed graph G = (V,A,E).

The mixed graph G′ = (V,A′, E′) will represent the part of the input data of Example 2 shown
in Table 2. The entire mixed graph G = (V,A,E) will be constructed using the following fact.

Remark 3. Since the problem GcMPT |[pij], pmtn|Cmax on the mixed graph G = (V,A,E) is
solvable, by Theorem 4 the directed subgraph (V,A, ∅) of the mixed graph G = (V,A,E) contains
no circuit with adjacent vertices of the subgraph (V, ∅, E).

Table 2. Some input data of Example 2 of the problem GcMPT |[pij], pmtn|Cmax

Operations Q1,1 Q1,2 Q2,1 Q2,2 Q2,3 Q3,1 Q3,2 Q3,3 Q4,1 Q4,2 Q4,3 Q5,1 Q5,2

Machines M1 M7 M1 M6 M7 M2 M5 M3 M3 M8 M9 M4 M5

sets M6 M2 M3 M7 M8 M4 M9

Mµ(i,j) M5

pij 5 1 3 1 3 2 1 2 4 2 2 4 2
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The job J1 consists of two operations Q1,1 and Q1,2 with the durations p1,1 = 5 and p1,2 = 1,
respectively. Using the notations (4), we obtain the linearly ordered set of unit-time opera-
tions W1 = {v1, . . . , v6} and include them in the vertex set V ⊃ W1 of the mixed graph G′.
All operations of the job J1 are linearly ordered when implementing any admissible schedule.
Therefore, we include the arc set A1 = {(v1, v2), (v2, v3), . . . , (v5, v6)}, A1 ⊂ A′, and the edge set
E1 = {[v1, v2], [v2, v3], . . . , [v5, v6]}, E1 ⊂ E′, into the mixed graph G′.

The job J2 consists of three operations Q2,1, Q2,2, and Q2,3 with the durations p2,1 = 3, p2,2 = 1,
and p2,3 = 3, respectively. Using the notations (5), we obtain the set of unit-time operations W2 =
{v7, . . . , v13} and include them in the vertex set V ⊃ W2. All operations of the job J2 are linearly
ordered when implementing any admissible schedule. Therefore, we include the arc set A2 =
{(v7, v8), (v8, v9), . . . , (v12, v13)}, A2 ⊂ A′, and the edge set E2 = {[v7, v8], [v8, v9], . . . , [v12, v13]},
E2 ⊂ E′, into the mixed graph G′.

The job J3 consists of three operations Q3,1, Q3,2, and Q3,3 with the durations p3,1 = 2,
p3,2 = 1, and p3,3 = 2, respectively. Using the notations (6), we obtain the set of unit-time
operations W3 = {v14, . . . , v18} and include them in the vertex set V ⊃ W3. All operations of
the job J3 are linearly ordered when implementing any admissible schedule. Therefore, we in-
clude the arc set A3 = {(v14, v15), (v15, v16), (v16, v17), (v17, v18)}, A3 ⊂ A′, and the edge set E3 =
{[v14, v15], [v15, v16], [v16, v17], [v17, v18]}, E3 ⊂ E′, into the mixed graph G′.

The job J4 consists of three operations Q4,1, Q4,2, and Q4,3 with the durations p4,1 = 4, p4,2 = 2,
and p4,3 = 2, respectively. Continuing the sequential numbering of unit-time operations, we obtain
the set of unit-time operations W4 = {v19, . . . , v26} and include them in the vertex set V ⊃ W4.

All operations of the job J4 are linearly ordered when implementing any admissible schedule.
Therefore, we include the arc set A4 = {(v19, v20), (v20, v21), . . . , (v25, v26)}, A4 ⊂ A′, and the edge
set E4 = {[v19, v20], [v20, v21], . . . , [v25, v26]}, E4 ⊂ E′, into the mixed graph G′.

The job J5 consists of two operations Q5,1 and Q5,2 with the durations p5,1 = 4 and p5,2 = 1,
respectively. Using the notations (6), we obtain the set of unit-time operations W5 = {v27, . . . , v32}
and include them in the desired vertex set V ⊃ W5. All operations of the job J5 are lin-
early ordered when implementing any admissible schedule. Therefore, we include the arc set
A5 = {(v27, v28), (v28, v29), . . . , (v31, v32)}, A5 ⊂ A′, and the edge set E5 = {[v27, v28], [v28, v29] . . . ,
[v31, v32]}, E5 ⊂ E′, into the mixed graph G′. Thus, the subgraph G′ = (V,A′, E′) of the desired
mixed graph G = (V,A,E) has the vertex set V = W :=

⋃5
i=1 Wi, the arc set A′ :=

⋃5
i=1Ai, and

the edge set E′ :=
⋃5

i=1 Ei.

In addition to the precedence relations between the operations of the set Qi for processing the
same job Ji ∈ J = {J1, . . . , J5}, we assume that Example 2 includes the following sets:

—the set R→ of precedence relations between the operations of different sets Qi ⊆ Q (i.e.,
vkij ∈ Qi, vkrq ∈ Qr, r 6= i), given by

R→ = {v1 → v7, v22 → v14, v22 → v30, v27 → v19}; (16)

—the set R7→ of precedence relations vkij 7→ vkrq , given by

R7→ = {v9 7→ v19, v10 7→ v23, v23 7→ v15, v15 7→ v10, v17 7→ v25}. (17)

Note that the operations of the set V (h) = {v10, v15, v23} must be executed simultaneously
when implementing any admissible schedule since the set (17) contains the precedence relations
v10 7→ v23, v23 7→ v15, and v15 7→ v10. Hence, the directed subgraph (V,A, ∅) of the desired mixed
graph G = (V,A,E) must contain the circuit (v10, v23, v15, v10).

We introduce the precedence relations vkij → vkrq (16) by adding the arc set A6 = {(v1, v7),
(v22, v14), (v22, v30), (v27, v19)}, A6 ⊂A′, and the edge set E6 = {[v1, v7], [v14, v22], [v22, v30], [v19, v27]},
E6 ⊂ E′, in the constructed mixed graph G′ = (V,A′, E′).
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Also, we introduce the precedence relations vkij 7→ vkrq (17) by adding the arc setA7 = {(v9, v19),
(v10, v23), (v23, v15), (v15, v10), (v17, v25)}, A7 ⊂ {A′ ∪ A6}, in the constructed mixed graph.

Thus, we have constructed the directed subgraph (V,A, ∅) of the desired mixed graph
G = (V,A,E) and the subset E6 ∪ E′ of the edge set E.

The other edges of the set E \ {E6 ∪ E′} of the desired mixed graph G = (V,A,E) will be

constructed sequentially for all sets Q(k) =
⋃

Ji∈J (k) Q
(k)
i of operations executed on machines Mk ∈

{M1, . . . ,M9}.

For the machine M1, the set Q(1) = {Q1,1, Q2,1} of integer-time operations defines the set of
eight unit-time operations {v1, . . . , v5, v7, v8, v9} =: V1, which is partitioned into five unit-time
operations {v1, . . . , v5} of the job J1 and three unit-time operations {v7, v8, v9} of the job J2.
The prohibition to execute simultaneously any pair of operations from the set V1 is defined
by a complete bipartite graph (V1, ∅, E

′
1) in which V1 = {v1, . . . , v5; v7, v8, v9}. Like in subsec-

tion 2.3, the vertices of different parts of the k-partite graph are separated by the semicolon.
Due to Remark 3, the edges [v1, v7], [v1, v8], and [v1, v9] can be eliminated from the complete bi-
partite graph (V1, ∅, E

′
1) since the order of executing the operations v1 and vi, i ∈ {7, 8, 9}, is

determined by a path in the directed graph (V,A, ∅) and a chain in the graph (V, ∅, {E6 ∪ E′})
between the vertices v1 and vi. Therefore, we construct the bipartite graph (V1, ∅, E1) with
E1 = {[v2, v7], . . . , [v5, v7], [v2, v8], . . . , [v5, v8], [v2, v9], . . . , [v5, v9]} instead of the complete bipartite

graph (V1, ∅, E
′
1) with |E′

1| = |Q
(1)
1 | · |Q

(1)
2 | = 5 · 3 = 15.

For the machine M2, the set Q(2) of integer-time operations defines the set V2 of five unit-
time operations, which is partitioned into three unit-time operations {v7, v8, v9} of the job J2 and
two unit-time operations {v14, v15} of the job J3. The prohibition to execute simultaneously any
pair of operations from the set V2 is defined by a complete bipartite graph (V2, ∅, E

′
2) in which

V2 = {v7, v8, v9; v14, v15} and E2 = {[v7, v14], [v7, v15], [v8, v14], [v8, v15], [v9, v14], [v9, v15]}.

For the machine M3, the set Q
(3) of integer-time operations defines the set V3 of eight unit-time

operations, which is partitioned into four unit-time operations {v14, v15, v17, v18} of the job J3 and
four unit-time operations {v19, . . . , v22} of the job J4. The set R→ contains the precedence relation
v22 → v14, and the operations of the sets Q3 and Q4 for processing the jobs J3 and J4 are ordered.
Hence, it is unnecessary to add edges in the desired mixed graph for prohibiting the simultaneous
execution of a pair of operations from the set Q(2). In this case, let E3 = ∅.

For the machine M4, the set Q(4) of integer-time operations defines the set V4 of eight unit-
time operations, which is partitioned into four unit-time operations {v19, . . . , v22} of the job J4
and four unit-time operations {v27, . . . , v30} of the job J5. The prohibition to execute simul-
taneously any pair of operations from the set V4 is defined by a complete bipartite graph
(V4, ∅, E

′
4) in which V4 = {v19, . . . , v22; v27, . . . , v30}. Due to Remark 3, the edges of the set

{[v19, v28], [v19, v29], [v19, v30]} can be eliminated from the complete bipartite graph (V4, ∅, E
′
4)

since the order of executing the operations v19 and vi, i ∈ {28, 29, 30}, is determined by a path
in the directed graph (V,A, ∅) and a chain in the graph (V, ∅, {E6 ∪ E′}) between the ver-
tices v19 and vi. Since the set R→ contains the precedence relation v22 → v30, we eliminate
the edges of the set {[v19, v30], [v20, v30], [v21, v30]} and construct the bipartite graph (V4, ∅, E4) with
E4 = {[v20, v28], [v20, v29], [v21, v28], [v21, v29]} instead of the complete bipartite graph (V4, ∅, E′

4) with

|E′
4| = |Q

(4)
4 | · |Q

(4)
5 | = 4 · 4 = 16.

For the machine M5, the set Q
(5) of integer-time operations defines the set V5 of seven unit-time

operations, which is partitioned into one unit-time operation v16 of the job J3, four unit-time op-
erations {v19, . . . , v22} of the job J4, and two operations {v31, v32} of the job J5. The prohibition
to execute simultaneously any pair of operations from the set V5 is defined by a complete tripartite
graph (V5, ∅, E

′
5) in which V5 = {v16; v19, . . . , v22; v31, v32}. Due to Remark 3, we eliminate the edges
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of the set {[v16, v19], . . . , [v16, v22]} from the complete tripartite graph (V5, ∅, E
′
5) since the set R→

contains the precedence relation v22 → v14. Also, the set R→ contains the precedence relation
v22 → v30, and we eliminate the edges of the set {[v19, v31], [v19, v32], [v20, v31], [v20, v32], [v21, v31],
[v21, v32], [v22, v31], [v22, v32]} as well. Therefore, we construct the tripartite graph (V5, ∅, E5)
with E5 = {[v16, v31], [v16, v32]} instead of the complete tripartite graph (V4, ∅, E

′
4) with |E′

5| =

|Q
(5)
3 | · |Q

(5)
4 | · |Q

(5)
5 | = 1 · 4 · 2 = 8.

For the machine M6, the set Q(6) of integer-time operations defines the set V6 of six unit-time
operations, which is partitioned into five unit-time operations {v1, . . . , v5} of the job J1 and one unit-
time operation v10 of the job J2. The prohibition to execute simultaneously any pair of operations
from the set V6 is defined by a complete bipartite graph (V6, ∅, E6) in which V6 = {v1, . . . , v5; v10}
and E6 = {[v1, v10], . . . , [v5, v10]}.

For the machine M7, the set Q(7) of integer-time operations defines the set V7 of five unit-time
operations, which is partitioned into one unit-time operation v6 of the job J1, three unit-time oper-
ations {v11, v12, v13} of the job J2, and one unit-time operation v16 of the job J3. The prohibition
to execute simultaneously any pair of operations from the set V7 is defined by a complete tri-
partite graph (V7, ∅, E7) in which V7 = {v6; v11, v12, v13; v16} and E6 = {[v6, v11], [v6, v12], [v6, v13];
[v6, v16]; [v11, v16], [v12, v16], [v13, v16]}.

For the machine M8, the set Q(8) of integer-time operations defines the set V8 of four unit-
time operations, which is partitioned into two unit-time operations {v17, v18} of the job J3 and
two unit-time operations {v23, v24} of the job J4. The prohibition to execute simultaneously any
pair of operations from the set V8 is defined by a complete bipartite graph (V8, ∅, E8) in which
V8 = {v17, v18; v23, v24} and E8 = {[v17, v23], [v17, v24], [v18, v23], [v18, v24]}.

For the machine M9, the set Q(9) of integer-time operations defines the set V9 of four unit-
time operations, which is partitioned into two unit-time operations {v25, v26} of the job J4 and
two unit-time operations {v31, v32} of the job J5. The prohibition to execute simultaneously any
pair of operations from the set V9 is defined by a complete bipartite graph (V9, ∅, E9) in which
V9 = {v25, v26; v31, v32} and E9 = {[v25, v31], [v25, v32], [v26, v31], [v26, v32]}.

Thus, we have constructed the subgraph (V, ∅, E \ {E6 ∪ E′}) =
⋃9

k=1(Vk, ∅, Ek) of the mixed
graph (V,A,E) in which each graph (Vk, ∅, Ek) is a |J (k)|-partite graph. Figure 2 shows the
constructed mixed graph G = (V,A,E) defining a input data of Example 2 of the problem
GcMPT |[pij], pmtn|Cmax with five jobs J = {J1, . . . , J5} and nine machines M = {M1, . . . ,M9}.

According to Theorem 5, the individual problem GcMPT |[pij ], pmtn|Cmax on the mixed
graph G = (V,A,E) (Example 2) has been reduced to the problem of finding an optimal col-
oring c(G) of the same mixed graph G = (V,A,E). An admissible schedule S for the problem
GcMPT |[pij], pmtn|Cmax with possible preemptions of operations Q is defined by the set (15) of
the completion times of unit-time operations from the set W. A semi-active schedule is defined by
a coloring c(G) of a mixed graph G in which c(vi) = C(vi) for all vertices vi ∈ W.

A makespan-optimal semi-active schedule for Example 2 is defined by the following optimal
coloring c(G) of the mixed graph G in Fig. 2:

c(v1) = 1, c(v2) = 5, c(v3) = 6, c(v4) = 7, c(v5) = 8, c(v6) = 9, c(v7) = 2,

c(v8) = 3, c(v9) = 4, c(v10) = 9, c(v11) = 11, c(v12) = 12, c(v13) = 13, c(v14) = 8,

c(v15) = 9, c(v16) = 10, c(v17) = 11, c(v18) = 12, c(v19) = 4, c(v20) = 5,

c(v21) = 6, c(v22) = 7, c(v23) = 9, c(v24) = 10, c(v25) = 12, c(v26) = 13, c(v27) = 1,

c(v28) = 2, c(v29) = 3, c(v30) = 8, c(v31) = 9, c(v32) = 11.

The coloring c(G) is optimal due to the inequality χ(G) > 13, holding since the directed subgraph
(V,A, ∅) of the mixed graph G contains the path (v1, v7, v8, v9, v19, v20, v21, v22, v14, v15, v16, v17, v18,
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v1
v2 v3 v4 v5 v6

v7 v8 v9 v10 v11

v21 v22
v23 v24 v25 v26

v27
v28 v29 v30 v31 v32

v12 v13

v14 v15 v16 v17 v18

v19 v20

Fig. 2. Mixed graph G= (V,A,E) defining the input data of Example 2 of problem GcMPT |[pij ], pmtn|Cmax.

v25, v26) with a weight of 13. Here, the weight of a path in a mixed graph G = (V,A,E) is the
sum of the weights w(vi, vj) of all arcs (vi, vj) in this path; the weight of an arc (vi, vj) ∈ A is 1 if
[vi, vj ] ∈ E and w(vi, vj) = 0 otherwise.

5. SEMI-ACTIVE SCHEDULES FOR THE PROBLEM GcMPT |[pij ], pmtn|Cmax

AND THE CORRESPONDING MINIMAL COLORINGS OF MIXED GRAPH VERTICES

Let E∗ denote the subset of all edges [vi, vj ] of a set E for which the vertices vi and vj are
not adjacent in a directed graph (V,A, ∅). By Definition 1, any coloring c(G) of a mixed graph
G = (V,A,E) defines different colors c(vi) 6= c(vj) for each edge [vi, vj ] ∈ E∗. If c(vi) < c(vj), we
add the arc (vi, vj) in the mixed graph G; if c(vi) > c(vj), we add the symmetric arc (vj, vi) in this
graph. After adding these arcs for all edges [vi, vj ] ∈ E∗, the mixed graph G = (V,A,E) becomes
a mixed graph G(c) = (V,A ∪A(c), E), |E∗| = |A(c)| where

[vp, vq] ∈ E ⇒ (vp, vq) ∈ A ∪A(c) (18)

for each edge [vp, vq] ∈ E.

According to (18), any coloring c(G) of a mixed graph G = (V,A,E) defines an order of col-
ors c(vi) for all vertices vi ∈ V . Hence, it is possible to define the following set of minimal color-
ings c(G) of a mixed graph G.
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Definition 4. A coloring c(G) of a mixed graph G = (V,A,E) is said to be minimal if none of
the colors c(vi), vi ∈ V , can be reduced without violating the order of colors c(vi) defined by this
coloring c(G) for all vertices vi ∈ V and (or) some vertex vj ∈ V \ {vi} would be required to assign
a color greater than the color c(vj).

An optimal coloring of a mixed graph G = (V,A,E) can be found in the set of minimal colorings:
obviously, there exists an optimal coloring of a given colorable mixed graph G that is minimal. Note
that the optimal coloring c(G) of the mixed graph G in Example 2 is minimal.

A minimal coloring c(G) defines the optimal scheduling (15) for the problem
GcMPT |[pij], pmtn|Cmax on a mixed graph G = (V,A,E); moreover, this schedule is semi-
active. By Lemma 2 and Definitions 2 and 4, any semi-active schedule S existing for the problem
GcMPT |[pij], pmtn|Cmax on a mixed graph G = (V,A,E) uniquely defines a minimal coloring of
its vertices, and vice versa. Thus, we arrive at the following result.

Theorem 6. There exists a bijection between the set C(G) of all minimal colorings c(G) of a
colorable mixed graph G = (V,A,E) and the set S(G) of all semi-active schedules existing for the
problem GcMPT |[pij ], pmtn|Cmax on the same mixed graph G = (V,A,E).

According to Theorems 5 and 6, it is possible to reduce the dimension of the set of admis-
sible schedules compared when solving the problem GcMPT |[pij ], pmtn|Cmax (hence, reduce the
dimension of the set of compared colorings c(G) when finding an optimal one).

It follows from the second part of Theorem 5 that the problem of finding an optimal coloring c(G)
of any colorable mixed graph G = (V,A,E) has the same asymptotic complexity as the problem
GcMPT |[pij], pmtn|Cmax on the mixed graph G = (V,A,E) and, moreover, |C(G)| = |S(G)|.

According to the first part of Theorem 5, the reduction of the problem GcMPT |[pij ], pmtn|Cmax

to finding an optimal coloring c(G) of a mixed graph G is pseudopolynomial. Such a reduction is
reasonable in real production scheduling systems if the durations cij of operations Qij ∈ Q are not
high. For the problem with long integer-time operations of the set Q, we can calculate the greatest
common divisor D of their integer durations.

If the value D exceeds 1, the original problem GcMPT |[pij], pmtn|Cmax should be replaced by
its analog with the modified durations

cij
D

for all operations Qij ∈ Q.

The dimension of the mixed graph G = (V,A,E) induced by the problem
GcMPT |[pij], pmtn|Cmax can also be reduced through a suitable decomposition of the origi-
nal problem into smaller-dimension subproblems based on planned preemptions of the production
process, e.g., when a lunch break begins or a work shift ends. During such interruptions, the
updated and supplemented data can be included in the input data of the next subproblem
GcMPT |[pij], pmtn|Cmax to obtain a more effective schedule of the production process.

Note that by a common assumption of scheduling theory, an operation is preempted with any
cost and instantaneously, like its subsequent resumption. Such ideal preemptions are not typical
of many real production scheduling systems. In practice, some time is required to interrupt a
production operation; also, it is necessary to consider the machine changeover time after a pre-
emption and the machine set-up time for resuming the operation preempted. For this purpose,
special operations (machine changeover and set-up) should be included into the input data of the
problems GcMPT |[pij], pmtn|Cmax. The durations of changeover and set-up operations of machines
Mµ(ij) ∈ M should be less than the durations of operations Qij ∈ Q reasonable to be preempted.

6. DISCUSSION OF THE RESULTS AND POTENTIAL USE

The assertions in Sections 1–5 can be used to construct network models in the form of mixed
graphs G = (V,A,E) for numerous scheduling problems α|[pij ], pmtn|Cmax with possible opera-
tion preemptions and scheduling problems α|pij = 1|Cmax without them. The constructed network
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models may serve for developing algorithms and computer programs to minimize the length Cmax of
semi-active schedules. Such algorithms would involve finding the optimal colorings c(G) or strict col-
orings c<(G) of mixed graphs G = (V,A,E) defining the input data of the problem α|pij = 1|Cmax

or the solvable problem α|[pij ], pmtn|Cmax.

As established in the paper, the generalizations of classical scheduling problems (see above)
are related to the problems of finding optimal (strict) colorings of mixed graph vertices. This
relationship allows solving any solvable problems α|[pij ], pmtn|Cmax and any problems α|[pij ]|Cmax,

as well as their numerous particular cases, using only terms of graph theory without using special
terms of scheduling theory associated with real production scheduling systems. As it turned out,
graph theory terms are sufficient for investigating any problem α|[pij ], pmtn|Cmax or α|pij = 1|Cmax

and developing solution algorithms for scheduling problems by finding optimal (strict) colorings of
mixed graphs G = (V,A,E) defining the problem input data.

To illustrate the advantages of using the terminology of graph theory when solving problems
α|[pij ], pmtn|Cmax and α|pij = 1|Cmax, we list the graph theory terms employed in this paper:
(general) work shop, (multistage) processing or service system, job-shop, general shop, (service or
dedicated) machine, equipment, processor, (semi-active, admissible, optimal) schedule, optimality
criterion for schedules, implementing an admissible schedule, makespan-optimal schedule, (first,
second, last) job, processing jobs, the time of job readiness to processing, planning horizon, schedul-
ing length, (multiprocessor, preempted) operation, (integer) preemption, job processing route, first
(last) job operation, unit- or integer-time operation, assignment of operation to machine, the pro-
hibition of executing operations simultaneously, joint execution of (unit-time) operations, operation
start, operation completion, start (completion) time of operation, operation preemption, schedule
time, precedence relation of operations (completion–start, start–start), job realization time, produc-
tion conditions (efficiency), and (integer) time. Fewer graph theory terms have been adopted to
describe and prove the same results of the paper in the terminology of colorings of mixed graph ver-
tices, namely: (incident, adjacent) vertex, arc, (incident) edge, (finite, directed, mixed, k-partite,
complete, colorable) graph, subgraph, (strict, minimal, optimal) coloring, vertex color, chromatic
number, path, path length (weight), chain, and circuit.

The following assertions, proved above, are important both for scheduling theory and graph
theory:

1. The problems α|pij = 1|Cmax on a mixed graph G = (V,A,E) are equivalent to the problems
of finding an optimal c(G) or strict c<(G) coloring of the same mixed graph G = (V,A,E).

2. The problem of finding an optimal coloring c(G) of any colorable mixed graph G = (V,A,E)
is polynomially reduced to the problem α|[pij ], pmtn|Cmax on the same mixed graph G = (V,A,E).

3. Any solvable problem α|[pij ], pmtn|Cmax on a mixed graph G = (V,A,E) is pseudopoly-
nomially reduced to the problem of finding an optimal coloring c(G) on the same mixed graph
G = (V,A,E).

The results of this paper justify the graph-theoretic approach to solving the scheduling problems
α|pij = 1|Cmax and α|[pij ], pmtn|Cmax by reducing them to the corresponding problems of finding
optimal c(G) or optimal strict c<(G) colorings of mixed graphs G = (V,A,E) defining the condi-
tions and constraints of scheduling problems under considerartion. The conditions and constraints
(input data) of an individual problem α|pij = 1|Cmax or GcMPT |[pij ], pmtn|Cmax are defined by
the corresponding mixed graph G = (V,A,E). For the problem α|pij = 1|Cmax, such a mixed graph
G = (V,A,E) is uniquely defined. For the problem GcMPT |[pij ], pmtn|Cmax, it is defined up to
the redundant edges from the set E, which can be found and removed by the rank-based parti-
tion of the vertices of the directed subgraph G = (V,A, ∅) of the mixed graph G = (V,A,E); for
details, see Example 2 in Section 4. The results of this paper can be used to investigate the col-
orings of special classes of mixed graphs induced by the scheduling problems α|pij = 1|Cmax and
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α|[pij ], pmtn|Cmax, which may involve graph theory experts in solving the problems α|pij = 1|Cmax

and GcMPT |[pij ], pmtn|Cmax and their numerous particular cases.

As is easily verified, different problems α|pij = 1|Cmax or α|[pij ], pmtn|Cmax can be defined by
the same mixed graph G = (V,A,E). Therefore, the results obtained for a coloring c(G) or strict
coloring c<(G) of a particular mixed graph G = (V,A,E) are generally applicable to the entire set of
scheduling problems α|pij = 1|Cmax or α|[pij ], pmtn|Cmax, respectively. Hence, coloring properties
and algorithms for finding optimal colorings of mixed graphs G = (V,A,E) of special form can be
used to solve all problems α|pij = 1|Cmax or α|[pij ], pmtn|Cmax, respectively, with the input data
defined by the same mixed graphs.

7. CONCLUSIONS

We have studied the relationship between optimal vertex coloring problems of a mixed graph
G = (V,A,E) and the problems GcMPT |[pij], pmtn|Cmax of constructing a makespan-optimal
schedule for executing a partially ordered set of integer-time operations with possible preemptions
with two types of precedence relations on the operation set (completion–start and start–start)
and the simultaneous execution of a subset of unit-time operations. According to Theorem 5, the
problem of finding an optimal coloring of the vertices of a mixed graph G = (V,A,E) is poly-
nomially reduced to the problem GcMPT |[pij ], pmtn|Cmax on the same mixed graph G. The
constructive proof of this theorem indicates the following: for many assertions proved for optimal
colorings of mixed graph vertices (e.g., see [1–9, 24]), there are similar assertions for the problem
GcMPT |[pij], pmtn|Cmax and its particular cases. Also, it has been established that any solvable
problem GcMPT |[pij], pmtn|Cmax on a mixed graph G = (V,A,E) is pseudopolynomially reduced
to the problem of finding an optimal coloring c(G) of vertices of the same mixed graph G. There-
fore, assertions for the problems of finding optimal colorings of mixed graph vertices can be derived
directly from the assertions proved for the problems GcMPT |[pij ], pmtn|Cmax and its numerous
particular cases [2, 5, 12, 13, 15–24].
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