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Abstract—The article considers the problem of searching for objects of observation for the case,
when the sequence of their appearance satisfies the laws of spatial and temporal Poisson flow. Its
solution is obtained without taking into account the limitations associated with the significant
excess of the search effort intensity over the intensity of the flow of observation objects. As a
mathematical model, used for optimization of the search, the system of differential equations
describing dynamics of changing of mathematical expectation of number of objects present
in subdomains of the search system’s field of view, but not yet detected. A procedure for
optimizing the distribution of search effort intensity in search system channels for of dynamic
and steady state search modes. Presented are examples.
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1. INTRODUCTION

One of the important varieties of the general class of measurement process control problems
[1, 2] is the class of search control problems [3–6]. A rational distribution of search effort in the
search system (SAR) ensures the reduction of undetected observation objects (OO) in the SAR
viewing area, reducing the search time, increasing the reliability of detection of the OO, and etc.

As a rule, the search task is considered on the assumption that there is one or more OOs in the
SAR viewing area and their number does not change [3–6]. That is a quite rigid assumption, because
for a number of practical problems the number of OOs is arbitrary, and the objects themselves can
appear sequentially, for example, in accordance with the patterns of spatiotemporal random flow.

The works [7–9] are devoted to the study of the search problem in the latter case. Their
common feature is the assumption about the significant excess of intensity of search effort of SAR
over the intensity of Poisson flow of OO. The specified assumption is fulfilled for SAR in the
conditions of high energy signal-to-noise ratio. It allows to approximate the mathematical model
of evolution of probabilistic search characteristics in the form of infinite-dimensional system of
Kolmogorov differential equations with mathematical model of discrete Markov process with two
states, described with two-dimensional system of differential equations.

For a number of practical cases where the signal-to-noise energy ratio turns out to be insufficient,
the assumption of a significant exceed of the intensity of SAR search effort over the intensity of
Poisson’s flow of OOs may not be fullfilled. This situation in particular arises when at a given
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intensity of OO in the field of view it is impossible to provide the necessary intensity search effort.
For example, in the task of active radar search with a fixed probing signal power this may be due
to the large distance between the observation area and the receiving antenna or the small values
of the effective surfaces of scattering of objects of observation from the stream. The decrease of
intensity of search effort for a given intensity of the Poisson flow of OOs leads to increasing of
conditional probability of missing OO [3] and, as a consequence, an increase in the probability of
the presence of not one, but several undetected OO, which makes application of the approaches
considered in [7–9] inappropriate.

In this connection, the issue of determining the control of search effort distribution in multi-
channel parallel-type SAR at intensities of the Poisson flow of the appearance of OO in area of the
search system both comparable with intensity of search, as well as exceeding it in magnitude.

2. ANALYSIS OF THE STRUCTURE OF THE MATHEMATICAL SEARCH MODEL.
PROBLEM STATEMENT

Let us denote by X ∈Rn (0 < n ≤ 3) the region of the search system with the Cartesian coor-
dinate system {x1, . . . , xn}. Suppose that the observation objects appear in X according to the
patterns of the spatiotemporal Poisson flow ϕ [10–13].

Consider a multi-channel SAR, including I channels, each one serving its own part of the survey
area X, which corresponds to a subset Xi, i = 1, I .

Each of the channels serves a different part of the overview area X, which corresponds to the
subarea Xi, i = 1, I . Here we will assume that X =

⋃

i
Xi, Xi

⋂

Xj = ∅, i = 1, I , j = 1, I , i 6= j.

Then any two streams defined from ϕ as

ϕi(t) = ϕ(Xi, t), ϕj(t) = ϕ(Xj , t), i = 1, I, j = 1, I, i 6= j, (2.1)

are Poisson and independent.

The temporal Poisson flow corresponding to X can be defined through (2.1) as

ϕ(t) = ϕ(X, t) =
∑

i

ϕ(Xi, t). (2.2)

Let us denote the intensity density of the spatiotemporal Poisson flow by ν(x, t), where ν(x, t)
is a non-negative measurable on X function. Then the measures of intensities, or intensities ξi(t),
of temporal Poisson flows ϕi(t) = ϕ(Xi, t), generated by the spatiotemporal Poisson flow ϕ in Xi,
i = 1, I , can be defined through the integral on the Lebesgue measure of ν(x, t) [10–13]

ξi(t) =

∫

Xi

ν(x, t)dx, i = 1, I. (2.3)

For the integral flow ϕ(t) = ϕ(X, t) respectively we get

ξ(t) =

∫

X

ν(x, t)dx =
∑

i

∫

Xi

ν(x, t)dx =
∑

i

ξi(t). (2.4)

Here dx =
n
∏

q=1
dxq, 0 < n ≤ 3.

According to (2.3), (2.4) measures of intensities, or intensities ξi(t), i = 1, I , ξ(t), are known
deterministic functions, in particular they can also be constants, and characterize temporal Poisson
flows ϕi(t), i = 1, I , ϕ(t) as flows with variable parameters [14].

The probability of occurrence of another OO in the subregionXi during time [t, t+∆t] is defined
as ξi(t)∆t+ o(∆t) [7–9], where o(∆t) is a residual order of smallness higher than ∆t.
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Let ith SAR channel provide search intensity λi(t) ≥ 0, t ∈ [0, t̄], where t̄—is the length of the
search time interval. This means that if Xi is present in k OO, then the probability that during time
[t, t+∆t] at least one of them will be found, is kλi(t)∆t+ o(∆t) [3, 7]. The search intensities λi(t)
in the subdomainsXi, i = 1, I are assumed to be unknown deterministic functions to be determined
by solving of the optimization problem.

The problem of the search system considering the subarea Xi can be interpreted as the prob-
lem of its serving for the OOs flow, forming a Poisson-type load with an intensity measure ξi(t).
To describe the problems of this class, as a rule, the mathematical apparatus of multiplication and
death processes is used [10–12, 14–17]. As a mathematical model of such processes one can use
Kolmogorov’s system of linear ordinary differential equations with respect to the probabilities of
each of possible states, forming a Cauchy problem with some initial conditions [14–16]:

Ṗi0 = −ξi(t)Pi0 + λi(t)Pi1,

Ṗik = −(ξi(t) + kλi(t))Pik + ξi(t)Pik−1 + (k + 1)λi(t)Pik+1,

k = 1, 2, . . . , Pi0(0) = 1, Pik(0) = 0, i = 1, I, t ∈ [0, t̄],

(2.5)

where Pi0 is the probability of absense of undetected OOs in Xi; Pik—the probability of finding
in Xi k of undetected OOs; the functions {λi(t), ξi(t), i = 1, I} on the interval [0, t̄] are assumed
continuous and bounded.

The Cauchy problem (2.5) reflects the physical meaning of the search problem performed se-
quentially in time as new OO appears in the region of view X. Due to the linear dependence of
the coefficients at Pik on k, the solution (2.5) according to [15, 17] exists, is unique, and satisfies
the the regularity requirement

∑

k Pik = 1.

It should be noted that the solution of the system (2.5) at t ∈ [0, t̄], including at t = t̄, for each
of k = 1, 2, . . . is determined by the values of the functions ξi(t), λi(t), i = 1, I and can be obtained
using the derivative function method [14, 15, 17]. In accordance with the general regularities of
Poisson processes and processes generated by them [10–12, 14, 15], at k → ∞ Pik(t) → 0, i = 1, I
∀t ∈ [0, t̄].

Using mathematical models (2.5) to to find the control law of the search effort distribution in
the SAR is difficult due to their infinite dimensionality.

Let us perform the transformation of the systems of differential equations Kolmogorov (2.5)
(Appendix A). As a result we obtain

µ̇ = −λ(t) ◦ µ+ ξ(t), µ(0) = 0, t ∈ [0, t̄], (2.6)

where µ, λ, ξ ∈ RI ; µT = [µ1 . . . µI ]; λ(t)
T = [λ1(t) . . . λI(t)]; ξ(t)

T = [ξ1(t) . . . ξI(t)]; µi =
∑

k kPik—
is the mathematical expectation of the number of undetected OOs located in Xi, i = 1, I ; the
letter T denotes the transpose operation; the operation ◦ denotes the product of Adamar.

From (2.6) it obviously follows that µ ≥ 0 ∀t ∈ [0, t̄]. The vector equation (2.6) describes a
mathematical model of a dummy dynamical system [1], characterizing the evolution in time of the
mathematical expectations of the number of undetected OOs, located in subdomains Xi of the
survey region X. Equation (2.6) for each value i = 1, I is a one-dimensional convolution of the
infinite dimensional system (2.5).

Let’s define the quality criterion of the SAR operation by the ratio

Υ = ATµ(t̄) +B

t̄
∫

0

λ(t)Tλ(t)dt → min
λ
, (2.7)

where AT = [a1 . . . aI ]; ai > 0, i = 1, I , B ∈ R1 > 0 are weight coefficients.
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The criterion (2.7) implies minimizing two components at the final moment of observation.
The first component characterizes the weighted total mathematical expectation of the number of
undetected OOs in the X review region, and the second—corresponds to the analogue of the energy
cost of the SAR to conduct the search.

Let us set the problem to determine the distribution of search effort intensities λi(t), i = 1, I ,
t ∈ [0, t̄] in (2.6) between channels of a multi-channel search system serving non-intersecting sub-
areas Xi, i = 1, I of the survey region X, which would satisfy the (2.7) criterion.

3. SYNTHESIS OF OO SEARCH CONTROL FROM SPATIO-TEMPORAL POISSON FLOW
IN MULTICHANNEL SEARCH SYSTEM

To synthesize the control of the observation object search from spatiotemporal Poisson flow ϕ
in multi-channel search system according to (2.6), (2.7), let us compose the Hamiltonian

H = ψT (−λ ◦ µ+ ξ) +BλTλ, (3.1)

where ψ = ψ(t) ∈ RI—vector of conjugate variables.

From (3.1) we obtain a system of equations relative to ψ(t):

ψ̇ = − ∂

∂µ
H = ψ ◦ λ, t ∈ [0, t̄]. (3.2)

Given (2.7), the boundary conditions for (3.2) can be represented as

ψ(t̄) =
∂

∂µ(t̄)
ATµ(t̄) = A. (3.3)

From the condition of the Hamiltonian minimum over λ we obtain

∂

∂λ
H = −ψ ◦ µ+ 2Bλ = 0. (3.4)

Given (3.4), determine the structure of the optimal control

λ =
1

2B
ψ ◦ µ. (3.5)

From (2.6), (3.2), (3.3) it obviously it follows that λ ≥ 0 ∀t ∈ [0, t̄].

The set of relations (2.6), (3.2) (3.3), (3.5) form a two-point boundary problem, which is very
difficult to solve. In this connection, we can use the Krylov–Chernousko method of successive
approximations [1, 18] to determine the optimal search control.

Let at the qth step of the iterative procedure form the law of λq.

The method of successive approximations involves the following operations.

1. We solve equations (2.6) in forward time and the vector of variables µq, corresponding to the
control λq.

2. The system of equations (3.2) is solved in inverse time with finite conditions (3.3) and the
values of the vector of conjugate variables ψq(t), t ∈ [0, t̄], corresponding to the control λq and the
vector of variables µq.

3. Using the obtained values of vectors µq(t), ψq(t) according to (3.5), the the intermediate
value of the control vector, corresponding to (q + 1)th step of the iteration procedure

λ̃q+1(t) =
1

2B
ψq(t) ◦ µq(t), t ∈ [0, t̄]. (3.6)
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4. Based on the principle of partial control updating [1, 18] by (3.6) taking into account the
values of the control vector λq obtained at the previous step, the calculation of its (q + 1)th iteration

{λq+1(t)} = {λ̃q+1(t)}εq ∪ {λq(t)}1−εq , t ∈ [0, t̄], (3.7)

where εq ∈ (0, 1).

The parameter εq denotes the degree of updating of the search control law λq(t), t ∈ [0, t̄]. It
is determined from the condition of the minimum of the criterion target function (2.7) at the
corresponding step of the iteration procedure.

Next, the (q + 2)th step is used as the initial control λq+1(t), and the iterative procedure 1–4 is
repeated.

Note that for the initial step of the iteration procedure (q = 0) the initial control law λ0 is chosen
from the set of of admissible control laws given by the structure (3.5).

The optimal control is determined by the ratio

λop(t) = lim
q→∞

λq(t), t ∈ [0, t̄]. (3.8)

In practice, it is usually limited to a finite number of iterations q ≤ Q, where Q—the number of
step after which variations of the target criterion function (2.7) become insignificant. In this case,
it is assumed that λop(t) ≃ λQ(t).

4. EXAMPLE OF SYNTHESIS OF THE CONTROL LAW FOR THE SEARCH OF OBJECTS
OF SPATIOTEMPORAL POISSON FLOW FOR TWO-CHANNEL SEARCH SYSTEM

Let

I = 2, AT = [1 1], B = 0.1, t̄ = 1, ξ1 = 2, ξ2 = 1. (4.1)

Hereinafter, the variables are presented in dimensionless units. Different values of the flux intensities
ξ1 and ξ2 in the subdomains X1, X2 of the survey area X, corresponding to the channels of the
two-channel search system, are chosen to illustrate the influence of their values on the structure of
the control law of the search control law.

Considering (4.1), we specify the mathematical models (2.5). As a result, we obtain

Ṗ10 = −2P10 + λ1(t)P11,

Ṗ1k = −(2 + kλ1(t))P1k + 2P1k−1 + (k + 1)λ1(t)P1k+1,

Ṗ20 = −P20 + λ2(t)P21,

Ṗ2k = −(1 + kλ2(t))P2k + P2k−1 + (k + 1)λ2(t)P2k+1,

k = 1, 2, . . . , P10(0) = P20(0) = 1, P1k(0) = P2k(0) = 0, t ∈ [0, 1].

(4.2)

According to (2.6) from (4.2), the equations of the time evolution of the mathematical expecta-
tions of the number of undetected OOs in subdomains X1, X2 of the survey region X:

µ̇1 = −λ1(t)µ1 + 2, µ1(0) = 0,

µ̇2 = −λ2(t)µ2 + 1, µ2(0) = 0, t ∈ [0, 1].
(4.3)

Concretizing the quality criterion (2.7), we get

Υ = µ1(t̄) + µ2(t̄) +B

t̄
∫

0

(λ21(t) + λ22(t))dt → min
λ1,λ2

. (4.4)
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The Hamiltonian according to (3.1) is defined by by the relation

H =ψ1(−λ1µ1 + 2) + ψ2(−λ2µ2 + 1) +B(λ21 + λ22). (4.5)

From (3.2), (3.3) (4.3), (4.5) follow the equations for conjugate variables

ψ̇1 = ψ1λ1, ψ1(t̄) = 1,

ψ̇2 = ψ2λ2, ψ2(t̄) = 1, t ∈ [0, 1].
(4.6)

From (3.5) follows the structure of the control law of search

λ1 =
1

2B
ψ1µ1, λ2 =

1

2B
ψ2µ2. (4.7)

When implementing the procedure of the method of successive approximations as an initial
approximation for the subdomains X1 and X2 of the SAR review area X was used as an initial
approximation of search intensity on the interval [0, 1] (lines 1, 2, Fig. 1)

λ01 = λ02 =

{

f = 1, t ∈ [0, 1]

0, t /∈ [0, 1].
(4.8)

At each step of the iterative procedure according to item 4 of the sequential approximation
algorithm, the optimal value of the parameter εq ∈ (0, 1) associated with (3.7) with partial updating
of the control.

The graph of the dependence of the target function Υ(q) of the criterion (4.4) on the number of
iteration at f = 1 is shown in Fig. 2 (curve 1).

The same figure shows the dependencies of the target function on the number of iterations at
other initial approximations of the control law search, corresponding to f = 0.75 (curve 2) and
f = 0.5 (curve 3).

The presented graphs have a piecewise linear structure and illustrate the greatest contribution
of the first step of the iterative procedure in reduction of the target function Υ.

In all cases, variations in the values of Υ become insignificant already at q > 2. The corre-
sponding q = Q = 3, f = 1 search control laws for the subdomains X1 − λ1(t) and X2 − λ2(t) of
the review region X of the two-channel SAR is presented in Fig. 1 (respectively curves 3, 4). It
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should be noted that similar control laws obtained at f = 0.75, f = 0.5 practically do not differ. It
follows from the graphs that the intensity of of search effort for the X1 subarea is higher than for
the X2. This is due to the fact that according to (4.1) the intensity measure ξ1 of the Poisson flow
ϕ1(t) = ϕ(X1, t) is greater than the measure of the intensity ξ2 of the Poisson flow ϕ2(t) = ϕ(X2, t).

Note that in the conditions of the example the gain from the optimization of the search control,
defined according to the relation δ =

Υ0−Υop

Υ0 , is δ ≃ 0.14 (f = 1), δ ≃ 0.19 (f = 0.75), δ ≃ 0.25
(f = 0.5).

5. OPTIMIZATION OF DISTRIBUTION OF SEARCH EFFORT INTENSITIES
AMONG CHANNELS OF MULTI-CHANNEL SEARCH SYSTEM

IN STEADY STATE SEARCH MODE OF OBSERVATION OBJECTS
FROM SPATIOTEMPORAL POISSON FLOW

When solving a number of practical problems, the functioning of the SAR in the search for
objects of observation from the spatial-temporal Poisson flow is carried out in a steady-state mode.
In particular, they can include the problem of search and detection of space debris, whose particle
flux can be regarded as a stationary Poisson flow [19].

Let the intensity density of the spatiotemporal Poisson flow ϕ is independent of time ν(x, t)=ν(x).
Then for sublattices Xi, i = 1, I of the review region X measures the intensities Poisson flows
ϕi(t) = ϕ(Xi, t), i = 1, I will not depend on time:

ξi = const, i = 1, I. (5.1)

Let us define for the intensities of search efforts in the SAR channels the following constraints:

λi = const, λi ≥ 0, i = 1, I, (5.2)

‖λ‖1 = Λ, (5.3)

where ‖·‖1 with (5.2) means l1-norm of vector λ on CI [20].

Then the mathematical model (2.6) for the mathematical expectation of the number of undetected
objects in the steady-state (µ̇ = 0) can be represented as

λ ◦ µ = ξ. (5.4)
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Let us define, taking into account the constraint (5.3), the criterion of the quality of search effort
distribution in SAR channels

Υ = ATµ+ η(‖λ‖1 − Λ) → min
λ
, (5.5)

where η ∈ R1—indeterminate Lagrange multiplier.

Solving the optimization problem (5.4) (5.5) leads to the following result:

λop = sV, (5.6)

where

s =
Λ

∑

i

√
aiξi

, V T = [
√

a1ξ1 . . .
√

aIξI ].

Let us compare the obtained optimal distribution of the search effort (5.6) in the SAR with a
uniform control law of search

λeven =
Λ

I
EI , (5.7)

where (EI)
T = [1 . . . 1] ∈ RI—a unit vector.

Let A = EI . Then the mathematical expectation of the number of undetected OOs in the survey
area X, for (5.6)

µop =
∑

i

µopi =

(

∑

i

√
ξi

)2

Λ
, (5.8)

where

µopi =

√
ξi
∑

i

√
ξi

Λ
.

When the search effort is evenly distributed (5.7) for a similar characteristic respectively we get

µeven = µeveni =

I
∑

i

ξi

Λ
, (5.9)

where

µeveni =
Iξi
Λ
.

The relative gain is defined as δ = µeven−µop

µeven
or

δ = 1−

(

∑

i

√
ξi

)2

I
∑

i
ξi

. (5.10)
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It can be shown (Appendix B) that for any ξi > 0, i = 1, I

(

∑

i

√
ξi

)2

I
∑

i
ξi

≤ 1, (5.11)

where the equal sign obviously takes place for the same values of intensities ξ1 = ξ2 = . . . = ξI .

Then, for example, in the exponential distribution of measures of intensities ξi of Poisson

flows ϕi(t) in Xi, i = 1, I , given by the relation ξi = exp
{

− (i−m)2

D

}

, where m = 50, D = 500,

I = 100, the optimization gain is δ = 0.246.

6. CONCLUSION

The considered approach to the control of the search for OO from spatiotemporal Poisson flow
in a multichannel search system does not imply the use of restrictions on the significant excess of
the intensity of the search effort of the SAR over the intensity of the Poisson flow of observation
objects.

It is based on mathematical models of the time evolution of the probabilistic characteristics of
Poisson flows in the subdomains of the survey area served by the SAR channels. Each of these
models, which is an infinite system of Kolmogorov differential equations, is reduced to a scalar
differential equation describing the dynamics of changes in the mathematical expectation of the
number of undetected SN located in the corresponding subarea of the viewing area.

The dimensionality of the optimized dummy dynamic system is equal to the number of SAR
channels. Due to the high complexity of the two-point boundary value problem arising during
optimization, it is reasonable to determine the search control using the Krylov–Chernousko method
of successive approximations with application of the partial control update principle.

The problem of optimization of search effort distribution in multi-channel SAR is significantly
simplified if the search system operates in a steady-state mode. Its solution is reduced to the search
of the conditional extremum argument by the uncertain Lagrange multipliers method.

The above examples illustrated the gain obtained from optimizing the distribution of search
effort in a multi-channel SAR when searching for OO from a spatio-temporal Poisson flow.

APPENDIX A

Sequence of Transformation of Differential Kolmogorov Equations (2.5)

Let us multiply the kth equation of each ith (i = 1, I) of the system (2.5) by k (k = 1, 2, . . .)
and sum them by k. As a result, we obtain

∞
∑

k=1

Ṗikk = λiF + ξiG, (A.1)

where
∑∞

k=1 Ṗikk = µ̇i—the rate of change of the mathematical expectation of the number of un-
detected OOs in Xi, i = 1, I ;

G = −
∞
∑

k=1

Pikk +
∞
∑

k=1

Pik−1k, (A.2)

Fi = −
∞
∑

k=1

Pikk
2 +

∞
∑

k=1

Pik+1k
2 +

∞
∑

k=1

Pik+1k. (A.3)
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By revealing the sums in (A.2), it can be shown that

G =
∞
∑

k=0

Pik = 1. (A.4)

Carrying out a similar operation for (A.3), we obtain

Fi = −
∞
∑

k=1

Pikk = −µi. (A.5)

From (A.1), (A.4), (A.5) it follows that

µ̇i = −λi(t)µi + ξi(t), i = 1, I. (A.6)

The description of the system of differential equations (A.6) corresponds to vector notation (2.6).

APPENDIX B

Rationale for Inequality (5.11)

From (5.11) it follows that

I
I

∑

i=1

ξi ≥
I

∑

i=1

ξi + 2
I−1
∑

j=1

I
∑

i=j+1

√

ξjξi. (B.1)

Or

(I − 1)
I

∑

i=1

ξi ≥ 2
I−1
∑

j=1

I
∑

i=j+1

√

ξjξi. (B.2)

Let us write a system of inequalities

ξ1 + ξ2 ≥ 2
√

ξ1ξ2,

ξ1 + ξ3 ≥ 2
√

ξ1ξ3,

. . . . . . . . . . . . . . . . . .

ξI−1 + ξI ≥ 2
√

ξI−1ξI .

(B.3)

Summing up the inequalities in (B.3), we obtain (B.2) and, respectively (B.1). The equa-
tion (5.11) is valid.
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