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Abstract—An original analytical method is developed to design the selectively invariant control
systems for nonlinear plants with differentiable nonlinearities. To solve the design problem, the
method of designing nonlinear control systems is applied on the base of a quasilinear model
of nonlinear plants and the internal models principle of external impacts is used, taking into
account the requirements for the relative order of the control device and the fast response of the
designed system. The system of linear algebraic equations is solved to determine the parameters
of the nonlinear control device. The suggested method can be applied to design the control
systems for nonlinear plants of various purposes, operating under conditions of regular external
impacts of the known form.
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1. INTRODUCTION

In practice, we often meet the plants exposed to the effect of regular external impacts of the
known form. Such plants include electromechanical systems, electric and pneumatic drives, mobile
robots, unmanned aerial vehicles, grain combines and many other plants [1–6]. Usually the control
systems for these plants must provide a complete parry to the effect of these impacts in the steady-
state mode. As is known, the most effective way to solve this problem is to ensure the invariance of
control systems to the external impacts. However, the conditions for ensuring an absolute invariance
are most often unattainable; therefore, the selective invariance is used, to ensure which the models
of the external impacts are introduced into the system, which causes a significant increase in the
order and complexity of the control device.

Traditionally, the design of the selectively invariant control systems is carried out on the basis of
the linear models of the plants [1, 2, 7–12] and the internal models principle of the external impacts.
In some works, the external impacts of the type under consideration are called “finite-dimensional”
impacts [12, 13]; however, the design problem of the control systems is also solved on the basis of
the internal models principle.

The increased requirements for the control systems quality lead to the need to apply the nonlinear
models of the plants [13–19]. When using the well-known methods for the nonlinear control systems
design, such as the plant model conversion to the Brunovsky canonical form, the state feedback
linearization, backstepping, the passification and others, it is usually assumed that the plant’s
nonlinearities are differentiable, and their state variables are measurable. However, the application
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of these design methods for the nonlinear control systems is complicated by the necessity to bring
the nonlinear plants models to the special forms, which requires searching the suitable nonlinear
transformations.

The nonlinear systems exposed to the finite-dimensional external impacts are considered in the
works of V.O. Nikiforov, A.A. Bobtsov and others (see [13]). The problem of parrying their effect
on the system is also solved on the basis of the internal models principle using the Lyapunov
function method, but under the condition that for the unperturbed plant the following are known:
a) stabilizing control and b) the Lyapunov function, which allows us to prove the stability of
equilibrium of a closed unperturbed system.

In the suggested approach to the design of the nonlinear selectively invariant control systems
for the nonlinear plants, both the setting and disturbing external impacts are taken into account.
To solve the problem, here we use the method for designing nonlinear control systems on the base
of the quasilinear models (QLM) of the nonlinear plants, suggested in [20, 21]. In comparison with
the above design methods for nonlinear systems [14–19] the advantage of this method is that to
construct a QLM, only the differentiability of the plant’s nonlinearities in all their arguments is
required, and the parameters of the nonlinear control device are determined by the solution of a
resolving system of linear algebraic equations (SLAE). The conditions for solving the considered
problem of designing nonlinear selectively invariant control system are determined by the property
of fullness (controllability and observability) of the “control-output” channel of the QLM of the
nonlinear plant and the condition of disjointness of its transmission zeros and spectrums of external
impacts.

Very often, the functional matrices of controllability or observability of the QLM of the control
plant turn out to be nonsingular only in the bounded neighborhood of its equilibrium. In this
case, the equilibrium of the designed nonlinear system is asymptotically locally stable [22, 23].
If the fullness conditions are satisfied in the entire state space of the plant and the feedbacks are
chosen in such a way that the functional matrix of the resolving SLAE is also nonsingular in the
entire state space of the plant, then the equilibrium of the closed system can be asymptotically
globally stable. The latter can be established on the basis of a theorem proved in [20]. The QLM’s
matrices and vectors are functions of the state variables [20–23], but, as it turned out, this is not an
obstacle to the analytical solution of the design problem the nonlinear selectively invariant control
systems.

2. STATEMENT OF THE PROBLEM

A control system is called selectively invariant if it contains a model of the external impact, and
a system error caused by this impact is zero in the steady-state mode [9–11]. Such a model is called
exogenous [8, p. 168] or internal [10, 22]. The mathematical models of the impacts are homogeneous
differential equations. They can be represented either by the operators of these equations, or by the
corresponding equations in the Cauchy form (in state variables) [7–13]. Some features and examples
of the external impact models are given in the Appendix. If there is an external impact model in a
stable system, then as soon as this impact begins to affect the system, the model generates a signal
that completely parries its effect in the steady-state mode. In this case, the corresponding initial
conditions of this model are set automatically during the transient that occurs when this impact
is applied to the system.

Considering the problem of designing the nonlinear selectively invariant control systems, for
definiteness we will assume that the plant does not have internal models of the impacts or their
separate components. We also assume that the nonlinearities of the plant are differentiable, and
the state variables are measurable, which allows us to apply the method of designing the nonlinear
control systems based on the QLM [20–22].
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Let the QLM of the nonlinear plant in deviations from some steady-state mode has the following
form

ẋ = A(x)x+ b(x)u+ bf (x)f, y = cT(x)x, (1)

where x ⊂ Rn is state vector of the plant; u, y and f are scalar control action, controlled output
variable and external unmeasured disturbance; A(x) and b(x), bf (x), c(x) are known functional
n× n-matrix and n-vectors. In [22, 24], a method is given for constructing the quasilinear models
of type (1) for the nonlinear plants given by the equations ẋ = ϕ (x, u), y = ψ(x), if ϕ (0, 0) = 0,
ψ(0) = 0 and ∂ϕ(x, u)/∂u = ϕ′

u(x), i.e. under conditions that ϕ (x, u) and ψ(x) are functions dif-
ferentiable with respect to all arguments; x = 0 is an equilibrium of plant (1); the partial derivative
with respect to u of the vector-function ϕ (x, u) does not depend on u. Here 0 is a zero n-vector.

Further, the full plants are considered, i.e. the plants, QLM (1) of which satisfies the conditions
of controllability and observability:

∣

∣

∣det
[

b(x) A(x)b(x) . . . An−1(x)b(x)
]∣

∣

∣ ≥ εc > 0,
∣

∣

∣det
[

c(x) AT(x)c(x) . . . (AT(x))n−1c(x)
]
∣

∣

∣ ≥ εo > 0, ∀ x ⊂ ΩCO ∈ Rn,
(2)

where εc, εo are some constants; ΩCO is some neighborhood of the point x = 0 [22].

The nonlinear control device (NCD) suggested in [20, 21] is used in the designed selectively
invariant system. In this case, its equations have the following form:

ż = R(x)z + q(x)g − l(x)y −
q

∑

i =1

li(x)x̃i, u = kT(x)z, (3)

where z ⊂ Rr is state vector of the NCD, g is scalar setting impact of designed system; R(x) and
q(x), l(x), li(x), i = 1, . . . , q are functional r×r-matrix and r-vectors; q is number of state variables
x̃i ∈ x used in NCD (3) and renumbered in the ascending order x̃1, . . . x̃q, q ≤ n. The value of r,
the variables x̃i and the number q are determined during the formation of matrix Gy (22) of the
resolving SLAE (see below). Equations (3) differ from those given in [20] only in the following: the
setting impact and the controlled output variable are present here, and feedbacks are not introduced
on all state variables.

Bearing in mind the design of nonlinear selectively invariant control systems (1)–(3), we will as-
sume that the spectral models are known in the form ofKp-images of the setting impact g = g(t) and
the disturbance f = f(t), i.e. the operators-polynomials G(p) and F (p) of the degrees νg = degG(p)
and νf = degF (p) are known, where p is an operator d/dt, such thatG(p)g(t) ≡ 0 and F (p)f(t) ≡ 0.
Let a polynomial be Φ(p) = lcm{G(p)F (p)}, where the lcm is the least common multiple [10, 11].
The operator equation “input-output” of closed system (1), (3) with respect to the deviation
ε = g − y can be written as follows:

H(p, x) ε = Hεg(p, x)g −Hf (p, x)f,

Hεg(p, x) = H(p, x)−Hg(p, x),
(4)

where H(p, x), Hg(p, x), Hf (p, x) are some polynomials of p the coefficients of which are functions
of the state variables xi, i = 1, n [20, 22]. The derivation of these polynomials from equations (1)
and (3) is given in the Appendix. On the base of equation (4), the conditions for selective invariance
of system (1), (3) with respect to the impacts g = g(t) and f = f(t) have the following form:

Hεg(p, x) = H̃εg(p, x)G(p),

Hf (p, x) = H̃f (p, x)F (p), ∀ x ⊂ ΩCO ∈ Rn,
(5)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 2 2023



DESIGN OF NONLINEAR SELECTIVELY INVARIANT CONTROL SYSTEMS 151

where H̃εg(p, x), H̃f (p, x) are polynomials of the same type as in (4), but of lower degrees. In this
case, the design problem has a solution if conditions (2) are met and

GCD{B(p, x),Φ(p)} = const,

GCD{H(p, x),Φ(p)} = const, ∀ x ⊂ ΩCO ∈ Rn.
(6)

where GCD is greatest common divisor.

Conditions (2) and the first condition of (6) are necessary to solve the design problem, since
they include the characteristics of the given plant and impacts. The physical meaning of the first
condition of (6) lies in the spectrum disjointness of the impacts g(t) and f(t) with the zeros of
the plant transmission over the channel u→ y, which makes possible to reproduce the setting
impact g(t) at the system output and parry the disturbance f(t) [10]. The second condition of (6)
is a condition of the spectrum disjointness of the impacts g(t) and f(t) with the roots of the closed
system’s characteristic polynomial. This condition is constructive and can always be satisfied if the
above necessary solvability conditions are met.

Thus, to solve the design problem, it is necessary to choose the parameters of the functional
matrices and vectors in (3) for satisfying the conditions of selective invariance (5), the conditions
of stability, the conditions of the requirement to duration of the transients, and the conditions of
physical feasibility, taking into account a relative order µNCD of the NCD [22, 25].

3. SOLUTION OF THE PROBLEM

If the control action u is excluded from equations (1), (3) and the resulting equations are written
in a vector-matrix form, then the closed system QLM will have the form:

ẇ = H(x)w + h(x)g + hf (x)f, y = [cT(x) 0̄
T]w, (7)

where w = [xT zT]T ∈ Rℓ, ℓ = n+ r, 0̄—zero r-vector,

H(x) =

[

A(x) b(x)kT(x)

−Π(x) R(x)

]

, h(x) =

[

0

q(x)

]

, hf (x) =

[

bf (x)

0̄

]

, (8)

and Π(x) = l(x)cT(x) +
q
∑

i=1

li(x)ei; ei—ith row of the n× n-identity matrix E.

It is shown in the Appendix that the equation “input-output” of the closed system follows from
equations (7), taking into account (8),

H(p, x)y = Hg(p, x)g +Hf (p, x)f, (9)

where

H(p, x) = A(p, x)R(p, x) +B(p, x)L(p, x) +
q

∑

i=1

Li(p, x)Vi(p, x), (10)

Hg(p, x) = B(p, x)Q(p, x), (11)

Hf (p, x) = Bf (p, x)R(p, x) +
q

∑

i=1

Li(p, x)Ñi(p, x), (12)

Ñi(p, x) =
(

Bf (p, x)Vi(p, x)−B(p, x)Wi(p, x)
)

A−1(p, x). (13)
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In expressions (10)–(13):

A (p, x) = det [pE −A (x)] , (14)

B (p, x) = cT (x) adj [pE −A (x)] b (x) ,

Bf (p, x) = cT (x) adj [pE −A (x)] bf (x) ;

R (p, x) = det [pE −R (x)] , (15)

L (p, x) = kT (x) adj [pE −R (x)] l (x) ,

Q (p, x) = kT (x) adj [pE −R (x)] q (x) ;

Vi (p, x) = eiadj [pE −A (x)] b (x) , (16)

Li (p, x) = kT (x) adj [pE −R (x)] li (x) ,

Wi (p, x) = eiadj [pE −A (x)] bf (x) , i = 1, q.

Note that in (13) there is an exact division by the polynomial A(p, x). Let’s turn to solving the
above problems on choosing the parameters of equation (3).

Ensuring the selective invariance. According to the definition the system has this property if
it contains the internal models of impacts. Under the statement of the problem, the plant does
not contain them, so they must be introduced into the NCD. For this purpose, its characteris-
tic polynomial is taken as R(p, x) = R̃(p, x)Φ(p). According to (4), the action f(t) is multiplied
by polynomial (12), equal to the sum of two summands; where the spectral model F (p) there is
in R(p, x), so we assume that Li(p, x) = L̃i(p, x)Φ(p). In this case, in equation (4), the distur-
bance f(t) will be multiplied by F (p); thus, the second condition of (5) will be satisfied and the
effect of f(t) on the system error will be parried, since F (p)f(t) ≡ 0. Similarly, the setting im-
pact g(t) according to (4) is multiplied by the polynomial Hεg(p, x) = H(p, x)−Hg(p, x), therefore,
for R(p, x) = R̃(p, x)Φ(p) and Li(p, x) = L̃i(p, x)Φ(p) to fulfill the first condition in (5), it is neces-
sary that L(p, x)−Q(p, x) = Q̃(p, x)G(p). Here R̃(p, x), Q̃(p, x) and L̃i(p, x) are some polynomials
of lower degrees compared to the degrees of the polynomials R(p, x), Q(p, x) and Li(p, x), i = 1, q
respectively.

Ensuring the stability. For this purpose, according to the design method based on the QLM, the
functional characteristic polynomial H(p, x) of ℓ = n+ r degree is replaced in (10) by a Hurwitz
polynomial H∗(p) of the same degree, the roots of which are constant, real, and various numbers
[20, 22, 23]. As a result, taking into account the polynomials R(p, x) and L̃i(p, x) chosen above,
equality (10) takes the form:

H∗(p) = Ā(p, x)R̃(p, x) +B(p, x)L(p, x) +
q

∑

i=1

V̄i(p, x)L̃i(p, x), (17)

where Ā(p, x) = A(p, x)Φ(p); V̄i(p, x) = Vi(p, x)Φ(p) are polynomials with the known coefficients.

The roots p∗i of the polynomial H∗(p) can be chosen using, in particular, the conditions:

∣

∣

∣Re(p∗j)
∣

∣

∣ ≥ (5÷ 7)/t∗s , p∗j = −σ∗j , σ∗j > εσ > 0, (18)
∣

∣

∣σ∗j − σ∗ς

∣

∣

∣ ≥ ∆σ > 0, j 6= ς, j, ς = 1, ℓ,

here t∗s is required duration of the transient [25]; εσ , ∆σ are some numbers.
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Ensuring the solvability of the design problem. Expression (17) is actually a polynomial equa-
tion with respect to the unknown polynomials R̃(p, x) = ρ0(x) + ρ1(x)p + . . .+ ρr̃(x)p

r̃, L(p, x) =

λ0(x) + λ1(x)p + . . .+ λl(x)p
l and L̃i(p, x) = λ̃i,0(x) + λ̃i,1(x)p+ . . .+ λ̃i,l̃i(x)p

l̃i . According to [20,
22, 26], equation (17) is solved by turning to the SLAE equivalent to it:

Gyd = hγ , (19)

where the vectors d, hγ are defined by the expressions:

d = [λ0λ1 . . . λl λ̃1,0 λ̃1,1 . . . λ̃1,l̃1 . . . λ̃q,0 λ̃q,1 . . . λ̃q,l̃q ρ0 ρ1 . . . ρr̃]
T, (20)

hγ = [δ∗0 δ∗1 . . . δ∗ℓ ]
T, (21)

δ∗j—coefficients of the Hurwitz polynomial H∗(p), and the matrix has the form

Gy =





































β0 0
β1 β0
... β1

. . .

βm
...

. . . β0

0 βm
. . . β1

... 0
. . .

...
...

. . . βm
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v10 0
v1,1 v10
... v1,1

. . .

v1,ς1
...

. . . v10

v1,ς1
. . . v1,1
. . .

...
v1,ς1

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · ·
· · ·
· · ·
· · ·

l + 1—columns l̃1 + 1—columns

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

vq0 0
vq1 vq0
... vq1

. . .

vq,ςq
...

. . . vq0

vq,ςq
. . . vq1
. . .

...
vq,ςq

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α0 0
α1 α0

... α1

. . .
...

...
. . . α0

αñ
...

. . . α1

αñ
. . .

...
. . .

...
0 αñ





































.

l̃q + 1—columns r̃ + 1—columns

(22)

In expressions (19), (20) Gy = Gy(x), d = d(x) and in (22) βj = βj(x), vi,j = vi,j(x) and
αj = αj(x) are functional coefficients of the polynomials B(p, x), V̄i(p, x) and Ā(p, x) at pj ; for
brevity, the argument x in (19), (20) and (22) is omitted.

To ensure the solvability of system (22), in equation (17) only those polynomials V̄i(p, x), are
taken into account for which the degree ℓ of the polynomial H∗(p) will be minimal, the matrix Gy

is square, and detGy 6= 0 [22, 26]. In [26], a method is given for determining the necessary degrees

of the polynomials R̃(p), L(p) and L̃i(p) in the linear case, taking into account µNCD. However,
this method can also be applied in the case of quasilinear models. Therefore, it is not considered
here, but it will be illustrated below when solving a numerical example.

The solution of system (22) determines the polynomials R̃(p), L(p) and q of the polynomials
L̃i(p, x), by which the characteristic polynomial of matrix H(x) (8) is equal to the polynomial
H∗(p).
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Implementation of the NCD. For this purpose, by turning to (3), the corresponding equation
“input-output” of the NCD is written to the operator form:

R(p, x)u = Q(p, x)g − L(p, x)y −
q

∑

i=1

Li(p, x)x̃i. (23)

The polynomials R(p, x) and Li(p, x) are found by the formulas R(p, x) = R̃(p, x)Φ(p),
Li(p, x) = L̃i(p, x)Φ(p), and the polynomial L(p, x) is determined by the solution of system (22).
The polynomial Q(p, x) of degree κ = νg − 1, where νg = degG(p), is found from the above expres-
sion L(p, x) −Q(p, x) = Q̃(p, x)G(p) in the following way. If the polynomial G(p) 6= pνg , then the
following polynomial equation is written:

Q̃(p, x)G(p) +Q(p, x) = L(p, x), (24)

where the polynomials Q̃(p, x) and Q(p, x) are its minimal solution, which is found by turning to
the equivalent SLAE [11, 22]. If G(p) ≡ pνg , then the following polynomial is taken:

Q(p, x) = λ0(x) + λ1(x)p+ . . .+ λνg−1(x)p
νg−1. (25)

Thus, all polynomials of the equation “input-output” NCD are defined. To be sure that the NCD
with the accepted µNCD can be physically implemented, it is sufficient to turn from equation (25)
to the equations equivalent to it in state variables, for example, using the formulas given in [22,
p. 346]. In this case, to ensure the parametric robustness of the selective invariance property, it is
required to ensure the formation of the spectral models in an explicit form. This point is shown in
details in the example below.

Matrix H(x) (8) of system (7) is generally functional, the roots of its characteristic polyno-
mial are real, negative and different in the area x ⊂ ΩCO ∈ Rn, ‖x‖ <∞. If the area ΩCO = Rn,
‖x‖ <∞, then to make the equilibrium of system (7) globally stable, the existence of an ℓ-vector of
b1(w) with differentiable components or constants is sufficient, under which the following conditions
are satisfied:

|detUs(w)| ≥ εs > 0, Us(w) =
[

b1(w) H(x)b1(w) . . . Hℓ−1(x)b1(w)
]

, (26)

Sup
w

SpP1(w)

(detP1(w))
1/ℓ

≤ K <∞, ∀ w ⊂ Rl, ‖w‖ <∞, (27)

where Sp(·) is trace of the matrix (·); P1(w) = (Us(w)Ms) (Us(w)Ms)
T; εs, K—positive numbers;

Ms =

















δ1 δ2 · · · δℓ−1 1
δ2 · . .

.
1 0

... . .
.

. .
. ...

...
δℓ−1 1 . . . 0 0
1 0 . . . 0 0

















, (28)

δi are polynomial coefficients H(p, x) = det (pE −H(x)) = pℓ + δℓ−1p
ℓ−1 + . . . + δ1p+ δ0 [20].

The conditions for the roots of the characteristic polynomial H(p, x) of the functional ma-
trix H(x) are constructive and are satisfied by choosing the polynomial H∗(p). If conditions (2)
and the first condition of (6) are met in the area ΩCO = Rn, ‖x‖ <∞, then the system equilibrium
will be asymptotically globally stable when conditions (26) and (27) are satisfied [20]. If, in this
case, matrix H(x) (8) turns out to be constant, then the equilibrium w = 0 of system (7) will
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be asymptotically globally stable [22], regardless of conditions (26), (27). If the area ΩCO ∈ Rn,
‖x‖ <∞ is bounded, then the equilibrium w = 0 of system (7) will be asymptotically locally sta-
ble [22], also independently of conditions (26), (27).

Let us show the effectiveness of the developed method for the design of nonlinear selectively
invariant control systems using a numerical example.

4. EXAMPLE

Suppose a nonlinear plant is described by the equations:

ẋ1 = 2x1 + 3 sinx2 + 1.5u + f, ẋ2 = 4 sinx2 + 2u+ 3f, y = 3x1 − 2.25x2, (29)

where x1, x2 and y are measured state variables and an controlled output variable; the disturbance
f(t) = f0 + fm sin(0.5t + ϕ0), t ≥ 0 is not measured; the setting impact g(t) = g01(t) is measured;
f0, fm, ϕ0, g0 are unknown bounded constants. Design a nonlinear selectively invariant system to
g(t) and f(t) in such a way that the settling time ts ≤ t∗s = 1.5 s; the relative order of the desired
NCD µNCD = 0 [22, 25].

Decision. First of all, let’s construct the QLM of the plant. For this purpose, following [22], we
find the derivative d sinx2/dx2 = cos x2 and integrate it with respect to the auxiliary variable:

as(x2) =

1
∫

0

cos(x2θ)dθ = x−1

2
sin(x2θ)

∣

∣

∣

∣

1

0

= x−1

2
sinx2 = ω(x2).

Replacing the function sinx2 in (29) by its QLM as(x2)x2, we obtain the QLM of the plant:

ẋ =

[

2 3ω(x2)
0 4ω(x2)

]

x+

[

1.5
2

]

u+

[

1
3

]

f, y = [3 −2.25]x, (30)

where x = [ x1 x2 ]T. Comparing systems (30) and (1), we conclude that in this case

A(x) =

[

2 3ω(x2)
0 4ω(x2)

]

, b(x) =

[

1.5
2

]

, bf (x) =

[

1
3

]

, c(x) =

[

3
−2.25

]

. (31)

The determinants of the matrices from condition (2) are found according to (31):

det

[

1.5 3 + 6ω(x2)
2 8ω(x2)

]

= −6, det

[

3 −2.25
6 0

]

= 13.5;

thus, conditions (2) are satisfied and QLM (30) is full in the area ΩCO = R2, ‖x‖ <∞.

In this case, Kp-images of the external impacts have the following form: G(p) = p, F (p) =
p(p2 + 0.25), i.e. Φ(p) = p(p2 + 0.25). According to formulas (14)–(16), the polynomials are found:
B(p, x) = 9, A(p, x) = (p− 2)(p − 4ω(x2)), Bf (p, x) = −3.75p + 15ω(x2) + 13.5, V1(p, x) = 1.5p,
V2(p, x) = 2(p − 2), W1(p, x) = p+ 5ω(x2), W2(p, x) = 3(p − 2). First condition (6) is obviously
satisfied.

Following [26], we establish that, in order to obtain a square matrix Gy with a minimal ℓ, it is
sufficient to provide the feedback only on one state variable, i.e., q = 1 and x̃1 = x1. In this case,
polynomial equation (17) takes the form:

H∗(p) = Ā(p, x)R̃(p, x) +B(p, x)L(p, x) + V̄1(p, x)L̃1(p, x), (32)

where Ā(p, x) =
[

p2 − (4ω(x2) + 2) p+ 8ω(x2)
] (

p3 + 0.25p
)

, V̄1(p, x) = 1.5p
(

p3 + 0.25p
)

.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 2 2023



156 GAIDUK

From the above form of the polynomials R(p, x), L(p, x), Q(p, x), Li(p, x) and q = 1, µNCD = 0,
the equalities follow: r̃ = deg R̃(p, x) = r − 3, l = degL(p, x) = r, l̃1 = deg L̃1(p, x) = r − 3,
ℓ = degH∗(p) = r + 2. Moreover, in algebraic system (19), which is equivalent to polynomial
equation (32), the number of equations is Ne = ℓ+ 1 = 2 + r + 1, and the number of unknown
coefficients is Nc = 3r − 3. Then the condition Nc = Ne implies r = 3, and, therefore, ℓ = 5, r̃ = 0,
l̃1 = 0, l = 3. At the same time, R̃(p, x) = ρ0(x), L̃1(p, x) = λ̃10(x), detGy(x) 6= 0 and L(p, x) =
λ0(x) + λ1(x)p + λ2(x)p

2 + λ3(x)p
3.

In this case, t∗s = 1.5 s, ℓ = 5, so the first inequality in (18) takes the form
∣

∣

∣Re(p∗j)
∣

∣

∣ ≥ 3.33÷ 4.67,

j = 1, 5. Taking into account this inequality and other conditions of (18), we take: p∗1 = −4,
p∗2 = −6, p∗3 = −9, p∗4 = −12, p∗5 = −15, which leads to the polynomialH∗(p) = p5 + 46p4 + 807p3+
6714p2 + 26352p + 38880. As a result of substituting the obtained values into expressions (19)–(22),
together with the polynomials B(p, x) = 9, Ā(p, x) and V̄1(p, x) we obtain a system of linear alge-
braic equations:



















9 0 0 0 0 0
0 9 0 0 0 2ω
0 0 9 0 0.375 −ω − 0.5
0 0 0 9 0 8ω + 0.25
0 0 0 0 1.5 −4ω − 2
0 0 0 0 0 1





































λ0
λ1
λ2
λ3
λ̃10
ρ0



















=



















38 880
26 352
6714
807
46
1



















. (33)

The solution of system (33) allows us to write polynomials:

L(p, x) = [(806.75 − 8ω(x2))p
3 + 6702.5p2 + (26 352 − 2ω(x2))p + 38880]/9,

R(p, x) = p(p2 + 0.25), L1(p, x) = [48 + 4ω(x2)](p
3 + 0.25p)/1.5.

In this case, G(p) ≡ p, i.e. νg = 1, therefore, from expression (25) we find κ = 0 and
Q(p, x) = 4320. The obtained data lead to equation “input-output” (23) of the required NCD:

p
(

p2 + 0.25
)

u = 4320g −
(

λ0 + λ1p+ λ2p
2 + λ3p

3
)

y − 2 [48 + 4ω(x2)] p
(

p2 + 0.25
)

x1/3. (34)

In order to form the internal spectral models of the external impacts in an explicit form in the
NCD, which is necessary to ensure the parametric robustness of the selective invariance property
[22], equation (34) is reduced to the form:

u =

(

17 280

p
−

17 280p

p2 + 0.25

)

g −

(

806.75 − 8ω(x2)

9
+

17 280

p
−

148 817.5p − 26 150.3125

9 (p2 + 0.25)

)

y

−
2

3
[48 + 4ω (x2)]x1.

Applying the relations (A.2.6) and (A.2.7)) from [22, p. 347] to this expression we will arrive to a
quasilinear model of the desired NCD:

ż =







0 0 0
0 0 −0.25
0 1 0






z +







17 280
0
0






ε−







0
0

17 280






g −

1

9







0
26 150.3125
−148 817.5






y, (35)

u = z1 + z3 − {[806.75 − 8ω(x2)] y + 6 [48 + 4ω(x2)] x1} /9. (36)

As can be seen, the obtained NCD contains internal spectral models of both the constant com-
ponents of the external impacts and the harmonic component with a frequency of ω = 0.5 rad/s.
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Combining equations (30), (35) and (36) into one system, we find that the parameters of this
system are constant numbers, and the roots of its characteristic polynomial are strictly less than
zero, therefore, the resulting nonlinear system is asymptotically globally stable.

The simulation results of system (29), (35), (36) in MATLAB are shown in Figs. 1–6. Figure 1
shows the graphs of changes in the state variables x1(t) and x2(t) of plant (29) in the absence of
the external impacts and under “large” initial conditions, i.e. x0 = [500 200]T, z0 = [0 0 0]T and
g(t) = f(t) = 0. These graphs testify to the asymptotic stability of the designed nonlinear system.

Figures 2 and 3 show the system transients with the simultaneous occurrence of the setting im-
pact g(t) = 1.5× 1(t) and a shifted harmonic disturbance f(t) = 1(t) + 2 sin(0.5 t) at t ≥ 0 and zero
initial conditions. Despite the presence of the disturbance, the deviation of the system ε = g − y
in the steady state is zero (Fig. 3).

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 2 2023



158 GAIDUK

For better understanding the nature of the processes in the designed selectively invariant system,
Figs. 4–6 show the graphs of changes in the state variables, the setting impact, the output value of
the plant and the disturbance, as well as the control action in the time interval from zero to 20 s.

In this case, the disturbance f(t) = −0.8 + 1.3 sin(0.5(t − 3) + 2), 3 ≤ t (Fig. 5) occurs 3 seconds
later than the setting impact g(t) = 1(t), therefore, after the end of the transient (0 ≤ t < 3), caused
by the setting impact, the state variables of the plant (Fig. 4), the output variable y(t) (Fig. 5)
and the control action u(t) (Fig. 6) take constant values, which corresponds to the constant setting
impact.

When a disturbance occurs f(t) (t = 3 s) the transient process begins in the system, which is
especially noticeable in the graphs in Figs. 4 and 6. After its completion, the output signal of the
control device becomes similar in shape to an external disturbance, and its constant and harmonic
components are in antiphase with similar components of the external disturbance.

5. CONCLUSION

The suggested method for designing nonlinear selectively invariant control systems is analytical
and makes possible to design the control systems with zero errors both in terms of setting and
disturbing external impacts of the known form. The solution of the design problem is obtained
on the basis of the internal models principle using the original design method for nonlinear con-
trol systems. This method uses quasilinear models, which are exact representations of nonlinear
differential equations in Cauchy form with differentiable right-hand sides. The developed method
is applicable for the design of nonlinear selectively invariant control systems for the plants with
differentiable nonlinearities. The selective invariance property is robust to all system parameters,
except for the spectrum-setting parameters of internal models.

APPENDIX

Mathematical models of impacts are homogeneous differential equations of a certain order, may
be in combination with the algebraic ones [7–13, 27]. For example, the model of impact f(t) = f01(t)
will be the equations ẋf (t) = 0, xf (0) = f0, f(t) = xf (t), where xf (0) is an initial condition. The
model of the harmonic impact f(t) = fm sin(ωf t+ φf ) with frequency ωf , arbitrary amplitude fm
and phase φf will be the equations ẋf1 = −ω2

fxf2, ẋf2 = xf1, f = r1xf1 + r2xf2 with the initial
conditions xf10 and xf20. Here r1, r2 are some constants.

To parry the effect of the external impact on the system error, it is sufficient to have only its
spectral model in system, which unambiguously describes its shape, using only its spectrum. In
the general case, the spectral model of the impact g(t) can be represented either by the equation in
state variables ẋg = Gxg, where G and xg are numerical matrix and state vector, or by Kp-image,
i.e. by the polynomial G(p) = det(pE −G), where p = d/d t. We emphasize that the polynomial
G(p) at p = D is a Kulebakin K(D)-image of this impact [7], i.e., the representations of the spectral
model by the Kp-image or by the equations in the Cauchy form are equivalent [27].

An important property of the impact’s Kp-image is that the product of the Kp-image on this
impact is equal to zero [7] for all t ≥ 0. For example, if the impact ϕ1(t) = ϕ0 exp(λϕt), then
itsKp-image Φ1(p) = p− λϕ, and product Φ1(p)ϕ(t) = (p − λϕ)ϕ0 exp(λϕt) = ϕ0[(d exp(λϕt)/dt)−
λϕ exp(λϕt)] ≡ 0 for the bounded ϕ0, since d exp(λϕt)/dt = λϕ exp(λϕt).

The equation ẋf̃ = F̃ xf̃ , where the matrix F̃ = diag{0 λf̃} is a spectral model of the impact

f̃(t) = f̃01(t) + f̃e exp (λf̃ t), 0 ≤ t <∞, where f̃0 and f̃e are bounded constants. The Kp-image of

this impact is a polynomial F̃ (p) = p2 − λf̃p. It is easy to verify that (p2 − λf̃p)f̃(t) ≡ 0. It follows
from the above examples that the Kp-image of the sum of impacts is equal to the product of the
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Kp-images of each of them. Note also that the Kp-image of the impact f(t) can be easily found
from the table of the Laplace images [25, p. 29]: it is equal to the denominator of its image f(s)
at s = p. The coefficients of the Kp-images or the coefficients of equations in the Cauchy form of
impacts are the spectrum-setting parameters of their models.

Derivation of the “input-output” equation of the closed system. Differential equation (7) in the
operator form can be written as [pE −H(x)]w = h(x)g + hf (x)f . From here w = [pE −H(x)]−1×
{h(x)g+hf (x)f}. Taking into account the equality [pE−H(x)]−1=adj [pE−H(x)]/det [pE−H(x)]
and substituting this expression into second equation (7), we obtain equation (9), where

H(p, x) = det[pE −H(x)], (A.1)

Hg(p, x) = [cT(x) 0̄
T]adj [pE −H(x)]h(x), (A.2)

Hf (p, x) = [cT(x) 0̄
T]adj [pE −H(x)]hf (x). (A.3)

Here the matrix pE −H(x) is defined by the expression

pE −H(x) =

[

pE −A(x) −b(x)kT(x)

Π(x) pE −R(x)

]

=

[

Ã B̃

C̃ D̃

]

. (A.4)

Let us show that the operators of equation (9) are directly related by expressions (10)–(13) with
operators (14)–(16) of the equations “input-output” of quasilinear models (1) and (3). Expressions
(14)–(16) are derived from indicated equations (1) and (3) in exactly the same way as the above
derivation of equation (9). In the general case, NCD output equation (3) can have the form
u = kT(x)z + λr(x)y +

∑q
i = 1

λ̃i r(x)x̃i. In this case, the calculations below will become much more
complicated, but their meaning will not change [22, p. 349–353]. Therefore, for greater clarity, it
is further assumed that λr(x) ≡ 0 and λ̃i r(x) ≡ 0, i = 1, q.

Derivation of operator H(p, x) (10). Accordance to the formula (A.8), given in [28, p. 223], the
expression: H(p, x) = det[pE −H(x)] = det Ãdet(D̃ − C̃Ã−1B̃) follows from (A.4). From here,
taking into account the notation (A.4), we derive the equality:

H(p, x) = det [pE −A(x)] det
{

pE −R(x) + Π(x) [pE −A(x)]−1 b(x)kT(x)
}

.

Since [pE −A(x)]−1 = adj [pE −A(x)]/det [pE −A(x)], then, taking into account (14), (16) and
the notation Π(x), we have

H(p, x) = A(p, x) det

[

pE −R(x) + ψl(p, x)l(x)k
T(x) +

q
∑

i=1

ψi(p, x)li(x) k
T(x)

]

. (A.5)

Here, it is indicated that

ψl(p, x) = B(p, x)/A(p, x), ψi(p, x) = Vi(p, x)/A(p, x). (A.6)

Applying identity (A.25) from [28, p. 233] to the second factor in (A.5) and taking into account (15),
we get:

H(p, x) = A(p, x)









R(p, x) + ψl(p, x)k
T(x)adj [pE −R(x)]l(x) +

q
∑

i=1

ψi(p, x)k
T(x)adj [pE −R(x)]li(x)









.

From here, with taking into account the notation (A.6), (15), operator (10) follows.
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Derivation of operator Hg(p, x) (11). For this purpose, we use formula (A.12) from [28, p. 223],
which for the block matrix (A.4) allows us to write the equality:

adj [pE −H(x)] =

[

detM adj Ã+ α−1(adjA)B̃(adjM)C̃(adj Ã) −(adj Ã)B̃(adjM)

−(adjM)C̃(adj Ã) α× adjM

]

, (A.7)

where α = det Ã 6= 0, M = D̃ − C̃Ã−1B̃. Substituting expressions (A.7) and vector h(x) from (8)
into (A.2), and taking into account notation (14), we obtain the following equality:

Hg(p, x) = cT(x)adj [pE −A(x)]b(x) × kT(x) adjMq(x) = B(p, x) kT(x) adjMq(x). (A.8)

Since the matrix M = D̃ − C̃Ã−1B̃, then, taking into account the notation (A.4), we derive

M = pE −R(x) +A−1(p, x)

{

l(x)cT(x) +
q

∑

i=1

li(x)eiadj [pE −R(x)]

}

b(x)kT(x).

Opening the curly brackets here and taking into account the notation (A.6), we obtain

M = pE −R(x) + ψl(p, x)l(x)k
T(x) +

q
∑

i=1

ψi(p, x) li(x) k
T(x). (A.9)

Consequently, the product kT(x) adjM q(x) in equality (A.8) has the form

kT(x) adjMq(x)=kT(x) adj

[

pE −R(x) + ψl(p, x)l(x)k
T(x) +

q
∑

i=1

ψi(p, x) li(x)k
T(x)

]

q(x).

Hence, by formula (A.27) from [28, p. 233] and third notation (15), we have

kT(x) adjMq(x) = kT(x) adj [pE −R(x)]q(x) = Q(p, x). (A.10)

Substituting this equality into expression (A.8), we obtain operator (11).

Derivation of operator Hf (p, x) (12). From expressions (A.3) and (A.7), we deduce

Hf(p, x) = cT(x)
{

(detM ) adj Ã+ α−1(adj Ã)B̃(adjM)C̃ adj Ã
}

bf (x). (A.11)

Opening the brackets here and substituting the value B̃ from (A.4), we obtain

Hf (p, x) = cT(x) adj Ã bf (x) detM − α−1cT(x) adj Ã b(x)Λ, (A.12)

where it is indicated that

Λ = kT(x)(adjM)C̃(adj Ã)bf (x). (A.13)

Taking into account equalities Ã = pE −A(x) and (14), we find

cT(x)adj Ãbf (x) = Bf (p, x), cT(x)adj Ã b(x) = B(p, x). (A.14)
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Applying formula (A.25) from [28, p. 233)] to (A.9) and taking into account (15), (16) and (A.6),
we have

detM = det

{

pE −R(x) + ψl(p, x)l(x)k
T(x) +

q
∑

i=1

ψi(p, x) li(x)k
T(x)

}

= det [pE −R(x)] + ψl(p, x) k
T(x) adj [pE −R(x)] l(x)

+
q

∑

i=1

ψi(p, x)
[

kT(x)adj [pE −R(x)]li(x)
]

= R(p, x) + ψl(p, x)L(p, x) +
q

∑

i=1

ψi(p, x)Li(p, x). (A.15)

Substituting C̃, Ã from (A.4) into (A.13), and opening the brackets, taking into account (A.9), we
obtain:

Λ =
[

kT(x) adjMl(x)
]

Bf (p, x) +
q

∑

i=1

[

kT(x) adjMli(x)
]

ei adj [pE −A(x)] bf (x). (A.16)

In accordance with the third expression of (16): eiadj [pE −A(x)]bf (x) =Wi(p, x); by analogy
with (A.10) and taking into account (15) we find kT(x) adjM l(x) = L(p, x), kT(x) adjM li(x) =
Li(p, x). Then from (A.16) the equality follows:

Λ = L(p, x)Bf (p, x) +
q

∑

i=1

Li(p, x)Wi(p, x). (A.17)

Substituting expressions (A.14), (A.15) and (A.17) into (A.12), we have

Hf (p, x) = Bf (p, x)R(p, x) + ψl(p, x)L(p, x)Bf (p, x) +
q

∑

i=1

ψi(p, x)Li(p, x)Bf (p, x)

− ψl(p, x)L(p, x)Bf (p, x)− ψl(p, x)
q

∑

i=1

Li(p, x)Wi(p, x).

Taking into account (A.6) here, grouping the sums and taking the factor A−1(p, x) out of the
bracket, we obtain

Hf (p, x) = Bf (p, x)R(p, x) +
q

∑

i=1

Li(p, x) {Vi(p, x)Bf (p, x) −B(p, x)Wi(p, x)}A
−1(p, x).

Finally, taking into account notation (13) here, we obtain operator (12).
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