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Abstract—This paper considers the boundary control problem for a distributed heterogeneous
vibrating system described by a one-dimensional wave equation with piecewise constant char-
acteristics. The travel time of a wave through each homogeneous section is assumed the same.
The control is implemented by displacement at the two ends. A constructive control design
approach is proposed to transfer the vibrations on a given time interval from the initial state
through the multipoint intermediate states to the terminal state. The control design scheme
is as follows: the original problem is reduced to a control problem with distributed actions
and zero boundary conditions. Then the variable separation method and control methods for
finite-dimensional systems with multipoint intermediate conditions are used. The results are
illustrated by an example.
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1. INTRODUCTION

Boundary and optimal control problems for distributed vibrating systems were studied by many
researchers; in particular, see [1–15]. For a distributed homogeneous vibrating system described by
a homogeneous wave equation with multipoint intermediate conditions, boundary control problems
were considered in [2–6]. Their solutions were constructed based on Fourier methods and control
methods for finite-dimensional systems with multipoint intermediate conditions.

The solutions of control problems for heterogeneous distributed compound systems were an-
alyzed in [7–15]. The paper [8] was one of the first works in this field; the author solved the
control problem for a distributed vibrating system consisting of two piecewise homogeneous me-
dia, originally formulated by A.G. Butkovskii. The solution was constructed using the method of
propagating waves. In [9, 10] and other publications, the same author and his students studied
similar boundary control problems for heterogeneous vibrating processes. Those boundary con-
trol problems were examined using the d’Alembert method, and d’Alembert-type formulas were
derived. The papers [13–19] were devoted to boundary problems for the equation describing the
longitudinal vibrations of a rod with piecewise constant characteristics (consisting of at least two
sections) with a free or fixed right end. The studies were carried out in the class of generalized
solutions. A mechanical system consisting of two equal-length pieces of a string connected by a
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136 BARSEGHYAN

spring was considered in [20]. The boundary control problem for the vibrations of a complexly
coupled system with singularities was investigated using the d’Alembert formula.

The need to model and control distributed vibrating processes of compound systems with piece-
wise constant (heterogeneous) characteristics arises in many theoretical and applied fields of science
and technology. However, control of heterogeneous elastic vibrations is still insufficiently investi-
gated: this research area is at the stage of formation.

Below, we consider the boundary control problem for some distributed heterogeneous vibrating
system with given states at intermediate time instants. This system is described by the homoge-
neous wave equation and reflects the transverse vibrations of a heterogeneous string and also the
longitudinal vibrations of a heterogeneous rod. The vibrating process is characterized by different
elastic properties and densities of the section. Their lengths are such that the wave travels through
each section in equal time.

The conditions determining contact interactions between the materials of heterogeneous bodies
are important. In mathematical modeling, these conditions of coupling (connection or gluing) for
two sections with different physical characteristics of materials must be considered properly to
match the continuous flow of excited wave processes.

This paper aims at developing an analytical boundary control design approach to one-dimensional
vibrating heterogeneous processes that transfer vibrations on a given time interval from an initial
state through multipoint intermediate states to a terminal state.

2. PROBLEM STATEMENT

Consider the vibrations of a distributed piecewise homogeneous medium along a segment

−l1 ≤ x ≤ l that consists of two sections, −l1 ≤ x ≤ 0 and 0 ≤ x ≤ l. Let ai =
√

ki
ρi

denote the

wave velocity along the sections, where ρi = const is the density and ki = const is Young’s modulus,
i = 1, 2. Following [9], assume that the lengths l1 and l of the sections are chosen so that the wave
travels through the sections l1 ≤ x ≤ 0 and 0 ≤ x ≤ l in the same time, i.e.,

l1

a1
=

l

a2
. (2.1)

Note that the vibrating heterogeneous process under consideration can be the longitudinal vi-
brations of a piecewise homogeneous rod (with the density ρ and the modulus of elasticity k) or
the transverse vibrations of a piecewise homogeneous string (with the density ρ and the string
tension k).

Let the state (longitudinal vibrations) of the rod (or the transverse vibrations of the string) be
represented by a function Q(x, t), −l1 ≤ x ≤ l, 0 ≤ t ≤ T . The deviation from the equilibrium is
described by the equation

∂2Q(x, t)

∂t2
=



















a21
∂2Q(x, t)

∂x2
, −l1 ≤ x ≤ 0, 0 ≤ t ≤ T

a22
∂2Q(x, t)

∂x2
, 0 ≤ x ≤ l, 0 ≤ t ≤ T

(2.2)

with boundary conditions

Q(−l1, t) = µ(t), Q(l, t) = ν(t), 0 ≤ t ≤ T, (2.3)

and coupling conditions at the junction point x = 0 of the form

Q(0− 0, t) = Q(0 + 0, t),

a21ρ1

∣

∣

∣

∣

∂Q(x, t)

∂x x=0−0
= a22ρ2

∣

∣

∣

∣

∂Q(x, t)

∂x x=0+0
. (2.4)
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The initial (t = t0 = 0) and terminal (t = T ) conditions are given by

Q(x, 0) = ϕ0(x),
∂Q(x, t)

∂t

∣

∣

∣

∣

t=0
= ψ0(x), −l1 ≤ x ≤ l, (2.5)

Q(x, T ) = ϕT (x),
∂Q

∂t

∣

∣

∣

∣

t=T

= ψT (x), −l1 ≤ x ≤ l. (2.6)

In addition, at some intermediate time instants tk (k = 1, . . . ,m) such that

0 = t0 < t1 < . . . < tm < tm+1 = T,

the state function takes given values

Q(x, ti) = ϕi(x), −l1 ≤ x ≤ l, i = 1, . . . ,m. (2.7)

The functions µ(t) and ν(t) in formula (2.3) are control actions (boundary controls).

By assumption, Q(x, t) ∈ C2(ΩT ), where ΩT = {(x, t) : x ∈ [−l1, l], t ∈ [0, T ]}, and ϕi(x) ∈
C2[−l1, l], i = 0, 1, . . . ,m,m+ 1, and ψ0(x), ψT (x) ∈ C1[−l1, l].

Also, all these functions satisfy the following matching conditions:

µ(0) = ϕ0(−l1), µ̇(0) = ψ0(−l1), ν(0) = ϕ0(l), ν̇(0) = ψ0(l),

µ(ti) = ϕi(−l1), ν(ti) = ϕi(l), i = 1, . . . ,m,

µ(T ) = ϕT (−l1), µ̇(T ) = ψT (−l1), ν(T ) = ϕT (l), ν̇(T ) = ψT (l).

(2.8)

The boundary control problem. It is required to find controls µ(t) and ν(t) (0 ≤ t ≤ T ) trans-
ferring the vibrations of system (2.2) from the given initial state (2.5) through the intermediate
states (2.7) to the terminal state (2.6) (t = T ).

Note that the coupling conditions (2.4) at the junction point x = 0 also hold for the functions
ϕ0(x), ϕT (x), and ϕi(x), i = 1, . . . , m.

3. REDUCTION TO A PROBLEM WITH ZERO BOUNDARY CONDITIONS

To solve the problem, we pass to the new variable [21]

ξ =







a2

a1
x, −l1 ≤ x ≤ 0

x, 0 ≤ x ≤ l,
(3.1)

which extends or compresses the segment −l1 ≤ x ≤ 0 with respect to the point x = 0. Due to (2.1),
in this case, the segment −l1 ≤ x ≤ 0 is transformed to the segment −l ≤ ξ ≤ 0. On equal-length
sections, the function Q(ξ, t) satisfies the same equation

∂2Q(ξ, t)

∂t2
=



















a22
∂2Q(ξ, t)

∂ξ2
, −l ≤ ξ ≤ 0, 0 ≤ t ≤ T

a22
∂2Q(ξ, t)

∂ξ2
, 0 ≤ ξ ≤ l, 0 ≤ t ≤ T
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or, equivalently,

∂2Q(ξ, t)

∂t2
= a22

∂2Q(ξ, t)

∂ξ2
, −l ≤ ξ ≤ l, 0 ≤ t ≤ T, (3.2)

with the corresponding boundary conditions

Q(−l, t) = µ(t), Q(l, t) = ν(t), 0 ≤ t ≤ T, (3.3)

the initial conditions

Q(ξ, 0) = ϕ0(ξ),
∂Q(ξ, t)

∂t

∣

∣

∣

∣

t=0
= ψ0(ξ), −l ≤ x ≤ l, (3.4)

the intermediate conditions

Q(ξ, ti) = ϕi(ξ), −l ≤ ξ ≤ l, i = 1, . . . ,m, (3.5)

the terminal conditions

Q(ξ, T ) = ϕT (ξ),
∂Q(ξ, t)

∂t

∣

∣

∣

∣

t=T

= ψT (ξ), −l ≤ ξ ≤ l, (3.6)

and the coupling conditions

Q(0− 0, t) = Q(0 + 0, t), a1ρ1
∂Q(ξ, t)

∂ξ
|ξ=0−0 = a2ρ2

∂Q(ξ, t)

∂ξ
|ξ=0+0 (3.7)

at the junction point ξ = 0.

For the sake of convenience, after the change of variable (3.1), all the functions are written in
the original notations.

Note that the boundary conditions (3.3) are heterogeneous. Therefore, we construct the solution
of equation (3.2) as the sum

Q(ξ, t) = V (ξ, t) +W (ξ, t), (3.8)

where a function V (ξ, t) with the boundary conditions

V (−l, t) = V (l, t) = 0 (3.9)

has to be determined and the function W (ξ, t) is the solution of equation (3.2) with the conditions

W (−l, t) = µ(t), W (l, t) = ν(t); (3.10)

it has the form

W (ξ, t) =
1

2l
[(l − ξ)µ(t) + (l + ξ)ν(t)] . (3.11)

In view of (3.11), substituting (3.8) into (3.2) gives the following equation for the function
V (ξ, t) :

∂2V (ξ, t)

∂t2
= a22

∂2V (ξ, t)

∂ξ2
+ F (ξ, t), −l ≤ ξ ≤ l, 0 ≤ t ≤ T, (3.12)
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where

F (ξ, t) =
1

2l
[(ξ − l)µ̈(t)− (ξ + l)ν̈(t)] . (3.13)

The function V (ξ, t) satisfies the coupling condition at the junction point ξ = 0 that corresponds
to (3.7). According to (3.1), we have

ϕ0(−l1) = ϕ0(−l), ϕi(−l1) = ϕi(−l), ϕT (−l1) = ϕT (−l),

ψ0(−l1) = ψ0(−l), ψT (−l1) = ψT (−l). (3.14)

Due to the initial, intermediate, and terminal conditions, (3.4)–(3.6), the function V (ξ, t) satis-
fies:

the initial conditions

V (ξ, 0) = ϕ0(ξ)−
1

2l
[(l − ξ)µ(0) + (l + ξ)ν(0)] ,

∂V (ξ, t)

∂t

∣

∣

∣

∣

t=0
= ψ0(ξ)−

1

2l
[(l − ξ)µ̇(0) + (l + ξ)ν̇(0)] , (3.15)

the intermediate conditions

V (ξ, ti) = ϕi(ξ)−
1

2l
[(l − ξ)µ(ti) + (l + ξ)ν(ti)] , i = 1, . . . ,m, (3.16)

and the terminal conditions

V (ξ, T ) = ϕT (ξ)−
1

2l
[(l − ξ)µ(T ) + (l + ξ)ν(T )] ,

∂V (ξ, t)

∂t

∣

∣

∣

∣

t=T

= ψT (ξ)−
1

2l
[(l − ξ)µ̇(T ) + (l + ξ)ν̇(T )] . (3.17)

Considering (2.8) and (3.14), conditions (3.15)–(3.17) can be written as follows:

V (ξ, 0) = ϕ0(ξ)−
1

2l
[(l − ξ)ϕ0(−l) + (l + ξ)ϕ0(l)] ,

∂V (ξ, t)

∂t

∣

∣

∣

∣

t=0
= ψ0(ξ)−

1

2l
[(l − ξ)ψ0(−l) + (l + ξ)ψ0(l)] , (3.18)

V (ξ, ti) = ϕi(ξ)−
1

2l
[(l − ξ)ϕi(−l) + (l + ξ)ϕi(l)] , i = 1, . . . ,m, (3.19)

V (ξ, T ) = ϕT (ξ)−
1

2l
[(l − ξ)ϕT (−l) + (l + ξ)ϕT (l)] ,

∂V (ξ, t)

∂t

∣

∣

∣

∣

t=T

= ψT (ξ)−
1

2l
[(l − ξ)ψT (−l) + (l + ξ)ψT (l)] . (3.20)

Thus, the original problem has been reduced to the following vibration control problem: find
boundary controls µ(t) and ν(t), 0 ≤ t ≤ T , under which the vibration described by (3.12) with the
homogeneous boundary conditions (3.9) will pass from the given initial state (3.18) through the
intermediate states (3.19) to the terminal state (3.20).
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4. SOLUTION

We find the solution of equation (3.12) under the boundary conditions (3.9) and the matching
conditions in the form

V (ξ, t) =
∞
∑

k=1

Vk(t) sin
πkξ

l
, Vk(t) =

1

l

l
∫

−l

V (ξ, t) sin
πkξ

l
dξ. (4.1)

Let the functions F (ξ, t), ϕi(ξ) (i = 0, 1, . . . ,m+ 1), ψ0(ξ), and ψT (ξ) be expanded in the

Fourier series in the basis
{

sin πkξ
l

}

(k = 1, 2, . . .). Substituting their values and V (ξ, t) into equa-

tions (3.12), (3.13) and conditions (3.18)–(3.20) yields

V̈k(t) + λ2kVk(t) = Fk(t), λ
2
k =

(

a2πk

l

)2

, k = 1, 2, . . . , (4.2)

Fk(t) =
a2

λkl

[

ν̈(t)
(

2(−1)k − 1
)

− µ̈(t)
]

, (4.3)

Vk(0) = ϕ
(0)
k −

a2

λkl

[

ϕ0(−l) −ϕ0(l)
(

2(−1)k − 1
)]

,

V̇k(0) = ψ
(0)
k −

a2

λkl

[

ψ0(−l)− ψ0(l)
(

2(−1)k − 1
)]

, (4.4)

Vk(ti) = ϕ
(i)
k −

a2

λkl

[

ϕi(−l) −ϕi(l)
(

2(−1)k − 1
)]

, (4.5)

Vk(T ) = ϕ
(T )
k −

a2

λkl

[

ϕT (−l) −ϕT (l)
(

2(−1)k − 1
)]

,

V̇k(T ) = ψ
(T )
k −

a2

λkl

[

ψT (−l)− ψT (l)
(

2(−1)k − 1
)]

. (4.6)

Here, Fk(t), ϕ
(i)
k (i = 0, 1, . . . ,m,m+ 1), ψ

(0)
k , and ψ

(T )
k denote the Fourier coefficients of the func-

tions F (ξ, t), ϕi(ξ) (i = 0, 1, . . . ,m,m+ 1), ψ0(ξ), and ψT (ξ), respectively.

The general solution of equation (4.2) with conditions (4.4) and its derivative have the form

Vk(t) = Vk(0) cos λkt+
1

λk
V̇k(0) sin λkt+

1

λk

t
∫

0

Fk(τ) sinλk(t− τ)dτ,

V̇k(t) = −λkVk(0) sin λkt+ V̇k(0) cos λkt+

t
∫

0

Fk(τ) cos λk(t− τ)dτ. (4.7)

According to [2–6, 22], due to conditions (4.5) and (4.6) and formula (4.7), the control functions
µ(t) and ν(t) satisfy the following integral relations for each k :

T
∫

0

µ(τ) sinλk (T − τ) dτ + Ek

T
∫

0

ν(τ) sin λk (T − τ) dτ = C1k(T ),

T
∫

0

µ(τ) cos λk (T − τ) dτ + Ek

T
∫

0

ν(τ) cos λk (T − τ) dτ = C2k(T ),

T
∫

0

µ(τ)h
(i)
k (τ) dτ + Ek

T
∫

0

ν(τ)h
(i)
k (τ) dτ = C1k(ti), i = 1, . . . ,m,

(4.8)
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BOUNDARY CONTROL 141

where

C1k(T ) =
1

λ2k

[

λkl

a2
C̃1k +X1k + EkY1k

]

,

C̃1k = λkVk(T )− λkVk(0) cos λkT − V̇k(0) sin λkT,

C2k(T ) =
1

λ2k

[

λkl

a2
C̃2k +X2k + EkY2k

]

,

C̃2k = V̇k(T ) + λkVk(0) sin λkT − V̇k(0) cos λkT,

C1k(ti) =
1

λ2k

[

λkl

a2
C̃1k(ti) +X

(i)
1k + EkY

(i)
1k

]

,

C̃1k(ti) = λkVk(ti)− λkVk(0) cos λkti − V̇k(0) sin λkti,

X1k = λkϕT (−l)− ψ0(−l) sin λkT − λkϕ0(−l) cos λkT, Ek = 1− 2(−1)k, (4.9)

X2k = ψT (−l)− ψ0(−l) cos λkT + λkϕ0(−l) sinλkT,

Y1k = λkϕT (l)− ψ0(l) sin λkT − λkϕ0(l) cos λkT,

Y2k = ψT (l)− ψ0(l) cos λkT + λkϕ0(l) sin λkT,

X
(i)
1k = λkϕi(−l)− ψ0(−l) sinλkti − λkϕ0(−l) cos λkti,

Y
(i)
1k = λkϕi(l)− ψ0(l) sinλkti − λkϕ0(l) cos λkti,

h
(i)
k (τ) =

{

sinλk(ti − τ) for 0 ≤ τ ≤ ti
0 for ti < τ ≤ T.

We introduce the notations

H̄k(τ) =



















sinλk (T − τ) Ek sinλk (T − τ)

cos λk (T − τ) Ek cos λk (T − τ)

h
(1)
k (τ) Ekh

(1)
k (τ)

. . . . . .

h
(m)
k (τ) Ekh

(m)
k (τ)



















,

Ck(t1, . . . , tm, T ) =



















C1k(T )

C2k(T )

C1k(t1)
...

C1k(tm−1)



















,

U (τ) =

(

µ(τ)

ν(τ)

)

. (4.10)

Then equality (4.8) takes the form

T
∫

0

H̄k(τ)U(τ)dτ = Ck(t1, . . . , tm, T ), k = 1, 2, . . . . (4.11)

Hence, the function U (τ), τ ∈ [0, T ], is found from the infinite integral relations (4.11).
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In practice, the control design problem for distributed systems is solved using control methods
for finite-dimensional systems [1, 22, 23]. For the first n harmonics, from (4.11) we obtain

T
∫

0

Hn(τ)Un(τ)dτ = ηn, (4.12)

where the block matrices

Hn(τ) =













H̄1(τ)

H̄2(τ)
...

H̄n(τ)













, ηn =













C1(t1, . . . , tm, T )

C2(t1, . . . , tm, T )
...

Cn(t1, . . . , tm, T )













(4.13)

have the dimensions (n (m+ 2)× 2) and (n (m+ 2)× 1), respectively. From this point onwards,
the subscript “n” means “for the first n harmonics.”

Thus, see (4.12), the first n harmonics of system (4.2) with conditions (4.3)–(4.6) are com-
pletely controllable iff for any vector ηn (4.13), there is a control action Un(t), t ∈ [0, T ], satisfying
condition (4.12).

Following [22, 23], we write the control action Un(t) satisfying the integral relation (4.12) as

Un(t) = HT
n (t)S

−1
n ηn + fn(t), (4.14)

where HT
n (t) is the transposed matrix and fn(t) is a vector function such that

T
∫

0

Hn(t)fn(t)dt = 0, Sn =

T
∫

0

Hn (t)H
T
n (t) dt. (4.15)

In this formula, Sn is a known matrix of dimensions (n (m+ 2)× n (m+ 2)) with the property
detSn 6= 0.

Due to (4.14), we have a set of control functions solving the boundary control problem.

Considering the notations of the function h
(i)
k (τ) for the time intervals [ti−1, ti], i = 1, . . . ,m+ 1,

the control functions µn(t) and νn(t) under fn(t) = 0 can be represented as

µn(t) =







































µ
(1)
n (t), 0≤ t≤ t1

µ
(2)
n (t), t1<t≤ t2
. . .

µ
(m)
n (t), tm−1<t≤ tm

µ
(m+1)
n (t), tm<t≤T,

νn(t) =







































ν
(1)
n (t), 0≤ t≤ t1

ν
(2)
n (t), t1<t≤ t2
. . .

ν
(m)
n (t), tm−1<t≤ tm

ν
(m+1)
n (t), tm<t≤T.

(4.16)

Substituting these expressions for the functions µn(t) and νn(t) into (4.3) and the expression
for Fk(t) into (4.7), we obtain the function Vk (t), t ∈ [0, T ]. Next, formula (4.1) implies

Vn(ξ, t) =
n
∑

k=1

Vk(t) sin
πk

l
ξ. (4.17)

In view of (3.7) and (3.10), the vibration function Qn(ξ, t), −l ≤ ξ ≤ l, for the first n harmonics is
given by

Qn(ξ, t) = Vn(ξ, t) +Wn(ξ, t), (4.18)
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where

Wn(ξ, t) =
1

2l
[(l − ξ)µn(t) + (l + ξ)νn(t)] . (4.19)

With the notations (3.1), the function Qn(x, t), −l1 ≤ x ≤ l, can be written as

Qn(x, t) =















































n
∑

k=1

Vk(t) sin
πk

l1
x+

1

2

[(

1−
x

l1

)

µn(t) +

(

1 +
x

l1

)

νn(t)

]

,

−l1 ≤ x ≤ 0, 0 ≤ t ≤ T

n
∑

k=1

Vk(t) sin
πk

l
x+

1

2

[(

1−
x

l

)

µn(t) +

(

1 +
x

l

)

νn(t)

]

,

0 ≤ x ≤ l, 0 ≤ t ≤ T.

(4.20)

Here, the control functions µn(t) and νn(t) have the form (4.17).

5. AN ILLUSTRATIVE EXAMPLE

To illustrate the proposed control design approach, we fix the right end in the boundary con-
ditions (2.3): Q(l, t) = 0, 0 ≤ t ≤ T . (In other words, ν(t) = 0.) Consider the case m = 1, i.e., the
vibration state

Q(x, t1) = ϕ1(x), −l1 ≤ x ≤ l

is given at one intermediate time instant t1 (0 < t1 < T.)

In this case, formula (4.3) implies Fk(t) = − a2
λkl
µ̈(t); according to (4.8), we obtain the integral

relations

T
∫

0

µ(τ) sin λk (T − τ) dτ = C1k(T ),

T
∫

0

µ(τ) cos λk (T − τ) dτ = C2k(T ),

T
∫

0

µ(τ)h
(1)
k (τ) dτ = C1k(t1), k = 1, 2, . . . ,

where

C1k(T ) =
1

λ2k

[

λkl

a2
C̃1k +X1k

]

, C2k(T ) =
1

λ2k

[

λkl

a2
C̃2k +X2k

]

,

C1k(t1) =
1

λ2k

[

λkl

a2
C̃1k(t1) +X

(1)
1k

]

.

The constants C̃1k, C̃2k, C̃1k(t1),X1k,X2k, and X
(1)
1k are calculated by (4.9). Hence,

H̄k(τ) =









sinλk(T − τ)

cos λk(T − τ)

h
(1)
k (τ)









, Ck(t1, T ) =









C1k(T )

C2k(T )

C1k(t1)









, k = 1, 2, . . . .

For the sake of simplicity, we construct the boundary control function µn(t) for n = 1 (hence,
k = 1) using formulas (4.12) (or (4.14)) and (4.13). According to (4.10) and (4.15), we obtain
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H1(τ) = H̄1(τ), η1 = C1, and the matrix

S1 =







s11 s12 s13
s21 s22 s23
s31 s32 s33






.

In the notations (4.15), the matrix S1 has the elements

s11 =
T

2
−

1

4λ1
sin 2λ1T, s12 = s21 =

1

2λ1
sin2 λ1T, s22 =

T

2
+

1

4λ1
sin 2λ1T,

s13 = s31 =
t1

2
cos λ1 (T − t1)−

1

2λ1
sinλ1t1 cos λ1T,

s23 = s32 =
1

2λ1
sinλ1t1 sinλ1T −

t1

2
sinλ1 (T − t1) , s33 =

t1

2
−

1

4λ1
sin 2λ1t1.

In addition, ∆ = detS1 6= 0.

We introduce the notations S−1
1 =









⌢

s11
⌢

s12
⌢

s13
⌢

s21
⌢

s22
⌢

s23
⌢

s31
⌢

s32
⌢

s33









,

where

⌢

s11 =
1

∆

[

(

T

2
+

1

4λ1
sin 2λ1T

)(

t1

2
−

1

4λ1
sin 2λ1t1

)

−

(

1

2λ1
sinλ1t1 sinλ1T −

t1

2
sinλ1 (T − t1)

)2
]

,

⌢

s12 =
⌢

s21 =
1

∆

[(

t1

2
cos λ1 (T − t1)−

1

2λ1
sinλ1t1 cos λ1T

)

×

(

1

2λ1
sinλ1t1 sinλ1T −

t1

2
sinλ1 (T − t1)

)

−

(

1

2λ1
−

1

2λ1
cos2 λ1T

)(

t1

2
−

1

4λ1
sin 2λ1t1

)]

,

⌢

s13 =
⌢

s31 =
1

∆

[(

1

2λ1
−

1

2λ1
cos2 λ1T

)(

1

2λ1
sinλ1t1 sinλ1T −

t1

2
sinλ1(T − t1)

)

−

(

t1

2
cos λ1 (T − t1)−

1

2λ1
sinλ1t1 cos λ1T

) (

T

2
+

1

4λ1
sin 2λ1T

)]

,

⌢

s22 =
1

∆

[

(

T

2
−

1

4λ1
sin 2λ1T

)(

t1

2
−

1

4λ1
sin 2λ1t1

)

−

(

t1

2
cos λ1 (T − t1)−

1

2λ1
sinλ1t1 cos λ1T

)2
]

,

⌢

s23 =
⌢

s32 =
1

∆

[(

1

2λ1
−

1

2λ1
cos2 λ1T

)(

t1

2
cos λ1(T − t1)−

1

2λ1
sinλ1t1 cos λ1T

)

−

(

T

2
−

1

4λ1
sin 2λ1T

) (

1

2λ1
sinλ1t1 sinλ1T −

t1

2
sinλ1 (T − t1)

)]

,

⌢

s33 =
1

∆

[(

T 2

4
−

1

4λ21
sin2 λ1T cos2 λ1T

)

−

(

1

2λ1
−

1

2λ1
cos2 λ1T

)2
]

.
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From (4.14) it follows that µ1(τ) = HT
1 (τ)S

−1
1 η1 + f1(τ). Letting f1(τ) = 0 and considering (4.16),

we arrive at the following results:

for τ ∈ [0, t1],

µ
(1)
1 (τ) = sinλ1 (T − τ)

[

⌢

s11C11(T ) +
⌢

s12C21(T ) +
⌢

s13C11(t1)

]

+ cos λ1 (T − τ)

[

⌢

s21C11(T ) +
⌢

s22C21(T ) +
⌢

s23C11(t1)

]

+ sinλ1 (t1 − τ)

[

⌢

s31C11(T ) +
⌢

s32C21(T ) +
⌢

s33C11(t1)

]

;

for τ ∈ (t1, T ],

µ
(2)
1 (τ) = sinλ1 (T − τ)

[

⌢

s11C11(T ) +
⌢

s12C21(T ) +
⌢

s13C11(t1)

]

+ cos λ1 (T − τ)

[

⌢

s21C11(T ) +
⌢

s22C21(T ) +
⌢

s23C11(t1)

]

.

Due to the expressions (4.17)–(4.19), the function Q1(ξ, t) for −l ≤ ξ ≤ l takes the form

Q1(ξ, t) =















V1(t) sin
π

l
ξ +

1

2l
(l − ξ)µ

(1)
1 (t), 0 ≤ τ ≤ t1

V1(t) sin
π

l
ξ +

1

2l
(l − ξ)µ

(2)
1 (t), t1 < τ ≤ T.

In the notations (3.1), the state function Qn(x, t) on −l1 ≤ x ≤ l can be represented as follows:

for τ ∈ [0, t1],

Q1(x, t) =



















V1(t) sin
π

l1
x+

1

2

(

1−
x

l1

)

µ
(1)
1 (t), −l1 ≤ x ≤ 0

V1(t) sin
π

l
x+

1

2

(

1−
x

l

)

µ
(1)
1 (t), 0 ≤ x ≤ l;

for τ ∈ (t1, T ],

Q1(x, t) =



















V1(t) sin
π

l1
x+

1

2

(

1−
x

l1

)

µ
(2)
1 (t), −l1 ≤ x ≤ 0

V1(t) sin
π

l
x+

1

2

(

1−
x

l

)

µ
(2)
1 (t), 0 ≤ x ≤ l.

6. CONCLUSIONS

This paper has considered the boundary control problem for a one-dimensional wave equation
describing the transverse vibrations of a piecewise homogeneous string or the longitudinal vibra-
tions of a piecewise homogeneous rod. A constructive boundary control design approach has been
proposed for one-dimensional heterogeneous vibrating processes. The boundary control function
has been explicitly expressed through the given initial, intermediate, and terminal state functions
of the distributed system.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 2 2023



146 BARSEGHYAN

REFERENCES

1. Butkovskii, A.G., Metody upravleniya sistemami s raspredelennymi parametrami (Control Methods for
Distributed Parameter Systems), Moscow: Nauka, 1975.

2. Barseghyan, V.R., Control Problem of String Vibrations with Inseparable Multipoint Conditions
at Intermediate Points in Time, Mechanics of Solids, 2019, vol. 54, issue 8, pp. 1216–1226.
https://doi.org/10.3103/S0025654419080120

3. Barsegyan, V.R., The Problem of Optimal Control of String Vibrations, International Applied Mechan-
ics, 2020, vol. 56(4), pp. 471–48. https://doi.org/10.1007/s10778-020-01030-w

4. Barseghyan, V.R., Optimal Control of String Vibrations with Nonseparate State Function Conditions
at Given Intermediate Instants, Autom. Remote Control, 2020, vol. 81, no. 2, pp. 226–235.

5. Barseghyan, V. and Solodusha, S., Optimal Boundary Control of String Vibrations with Given Shape of
Deflection at a Certain Moment of Time, Mathematical Optimization Theory and Operations Research
(MOTOR 2021), Lecture Notes in Computer Science, 2021, vol. 12755, pp. 299–313. https://doi.org/
10.1007/978-3-030-77876-7 20

6. Barseghyan, V. and Solodusha, S., On One Problem in Optimal Boundary Control for String Vibrations
with a Given Velocity of Points at an Intermediate Moment of Time, 2021 International Russian Au-
tomation Conference (RusAutoCon), IEEE, pp. 343–349. https://doi.org/10.1109/RusAutoCon52004.
2021.9537514

7. Barseghyan, V.R., On the Controllability and Observability of Linear Dynamic Systems with Variable
Structure, Proceedings of 2016 International Conference “Stability and Oscillations of Nonlinear Control
Systems” (Pyatnitskiy’s Conference), STAB 2016. https://doi.org/10.1109/STAB.2016.7541163

8. L’vova, N.N., Optimal Control of a Certain Distributed Nonhomogeneous Oscillatory System, Autom.
Remote Control, 1973, vol. 34, no. 10, pp. 1550–1559.

9. Il’in, V.A., Boundary Control Optimization for the Vibrations of a Rod Consisting of Two Different
Segments, Dokl. Math., 2011, vol. 84, pp. 629–633. https://doi.org/10.1134/S106456241106010X

10. Il’in, V.A., Reduction of the Vibrations of an Initially Stationary Rod Consisting of Two Different
Segments to an Arbitrary State, Dokl. Math., 2010, vol. 82, pp. 955–958. https://doi.org/10.1134/
S106456241006030X

11. Egorov, A.I. and Znamenskaya, L.N., On the Controllability of Elastic Oscillations of Serially Con-
nected Objects with Distributed Parameters, Tr. Inst. Mat. Mekh. Ural. Otd. RAN, 2011, vol. 17, no. 1,
pp. 85–92.

12. Provotorov, V.V., Construction of Boundary Controls in the Problem of Oscillation Damping of a System
of Strings, Vest. Sankt-Petersburg. Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2012, no. 1, pp. 62–71.

13. Amara, J. Ben and Bouzidi, H., Null Boundary Controllability of a One-Dimensional Heat Equation
with an Internal Point Mass and Variable Coefficients, Journal of Mathematical Physics, 2018, vol. 59,
no. 1, pp. 1–22.

14. Amara, J. Ben and Beldi, E., Boundary Controllability of Two Vibrating Strings Connected by a Point
Mass with Variable Coefficients, SIAM J. Control Optim., 2019, vol. 57, no. 5, pp. 3360–3387. https://
doi.org/10.1137/16M1100496
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