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1. INTRODUCTION

As is known, there exist two major concepts in the theory of control under uncertainty: stochas-
tic, when uncertain factors (initial conditions, disturbances, and perturbations) are assumed to be
random and are assigned some probabilistic characteristics (mean and covariance), and determin-
istic, when uncertain factors are assumed to be deterministic and take values in some sets. In
the former case, the goal is to optimize a performance criterion of the system in a probabilistic
sense under given probabilistic characteristics or their bounds. given. In the latter case, the goal
is to minimize the maximum value of a performance criterion on the value set of uncertain factors
satisfying given constraints. Within both concepts, effective methods were developed for solving
a variety of linear-quadratic estimation, filtering, and control problems, including problems with
the H∞ norm as a performance criterion for deterministic and stochastic systems; for example,
see [1–5]. However, both concepts suffer from drawbacks: in the stochastic paradigm, it is dif-
ficult to determine the probabilistic characteristics of uncertain factors; in the deterministic one,
it is difficult to find adequate constraints on the values of uncertain factors. To overcome these
disadvantages, broaden the range of problems resolved, and interpret the results obtained in one
paradigm in terms of the other, it is crucial to identify the relationship between these paradigms.

Note that this topic was addressed repeatedly: a classical example is the relationship between
the recurrence least-squares method and the Kalman filter established in [6]. In addition, as shown
in [7], the static Kalman filter is optimal for random (white) noise and, moreover, minimizes over
time the maximum Euclidean norm of the error under deterministic disturbances with bounded
energy. In the widely known paper [8], J.C. Willems gave a purely deterministic interpretation of the
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122 KOGAN

results obtained in linear-quadratic optimal stochastic filtering and control. (Also, see [9].) Namely,
he proved the following fact: among all deterministic disturbances under which the observed signal
can be realized, let us choose the one with the smallest norm and substitute it into the system
equations; then the resulting equations will coincide with the equations of the optimal filter or
controller under random Gaussian disturbances.

In this paper, we demonstrate the Lagrange duality of two optimization problems: maximiz-
ing the squared Euclidean norm of the output of a linear operator (transformation) that maps
deterministic vectors satisfying an ellipsoidal constraint and maximizing the output variance of
this operator that maps random vectors satisfying an averaged ellipsoidal constraint. For opera-
tors generated by linear dynamic systems, this leads to the duality of stochastic and deterministic
minimax estimation and control problems with performance criteria in the form of the generalized
H2 and H∞ norms. With the duality principle, we formulate and solve new problems of optimal
and robust control and filtering in the stochastic statement with unknown covariance matrices of
random factors. Also, we derive equations of generalized H∞-suboptimal controllers, filters, and
identifiers to achieve a trade-off between the error variance at the end of the observation interval
and the sum of the error variances on the entire time interval.

2. THE LAGRANGE DUALITY OF STOCHASTIC AND DETERMINISTIC PARADIGMS

Consider two vectors ξ ∈ Rnξ and η ∈ Rnη , further called the input and output, respectively,
with the linear relationship

η = Ψξ, (2.1)

where Ψ is a deterministic matrix of dimensions (nη × nξ). We introduce the notations

|a|2R = aTR−1a, ‖b‖2G [t0,t]
=

t−1∑

i=t0

|b(i)|2G(i),

where R = RT > 0 and G(t) = GT > 0 are weight matrices. Let the generalized norm of the oper-
ator Ψ with a weight matrix K = KT > 0 be defined as

‖Ψ‖2K = sup
ξ 6=0

|η|2

|ξ|2K
= sup

ξ 6=0

ξTΨTΨξ

ξTK−1ξ
= λmax(ΨKΨT). (2.2)

This induced generalized norm of the operator Ψ, further called the damping rate of deterministic
disturbances, equals the maximum value of the Euclidean norm of the output η under all inputs ξ

belonging to the ellipsoid Eξ(K) =
{
ξ : ξTK−1ξ 6 1

}
. It can be found by solving the following

optimization problem.

Problem D.

γ2d(Ψ) = max
ξ

|η|2 : η = Ψξ, ξTK−1ξ 6 1. (2.3)

If ξ = ξs is a random vector with zero mean and the covariance matrix Eξsξ
T
s = Kξ, then the

output covariance matrix is Kη = ΨKξΨ
T and the expectation of the squared Euclidean norm of

the output is the trace of this matrix, i.e., E|η|2 = tr (ΨKξΨ
T). Given an unknown covariance

matrix of the vector ξ, we define the damping rate of the random disturbance of the operator Ψ as
the square root of the maximum value of the ratio of the output variance to the expectation of the
quadratic form with the input matrix K−1 under all nonzero covariance input matrices Kξ [10]:

γ2s (Ψ) = sup
Kξ>0

E|η|2

E|ξ|2K
= sup

Kξ>0

trΨKξΨ
T

trK−1Kξ
.
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This value represents an induced norm of the operator Ψ with random vectors ξ and η equipped
with the norms |ξ|s = (EξTK−1ξ)1/2 and |η|s = (E|η|2)1/2, respectively. It can be found by solving
the following optimization problem.

Problem S.

γ2s (Ψ) = max
Kξ>0

trΨKξΨ
T : η = Ψξ, trK−1Kξ 6 1. (2.4)

Theorem 2.1. Problems S and D are dual, and the damping rates of the random and determin-

istic disturbances with the weight matrix K of the operator Ψ coincide with the spectral radius of

the output covariance matrix under the input covariance matrix equal to the weight matrix:

γ2s (Ψ) = γ2d(Ψ) = λmax(ΨKΨT).

Proof of Theorem 2.1. We write the Lagrange function for problem S and express the optimal
value of its dual function as

min
λ>0

max
Kξ>0

[
trΨKξΨ

T+λ(1− trK−1Kξ)
]
=min

λ>0
max
Kξ>0

[
λ+trKξ(Ψ

TΨ−λK−1)
]
.

This value is finite if ΨTΨ− λK−1 6 0, and then the maximum is reached at Kξ = 0. In this case,
the optimal value of the dual problem coincides with (2.2). Since the function is convex and there
exists an interior point satisfying the constraint, the optimal values of the primal and dual problems
coincide [11]. The proof of this theorem is complete.

In addition, the image of the operator Ψ (in other words, the reachability set of the vector η

in (2.1) under all deterministic vectors ξ belonging to the ellipsoid Eξ(K)) can be characterized in
terms of the covariance matrix of the random vector ξ, as formulated in the following theorem.

Theorem 2.2. If the deterministic input ξ takes values in the ellipsoid Eξ(K) and the matrix

Kη = ΨKΨT is nonsingular, the reachability set of the vector η in (2.1) is an ellipsoid Eη(Kη)
with the matrix Kη coinciding with the covariance matrix of the random vector η provided that the

covariance matrix of the random vector ξ is K.

Proof of Theorem 2.2. We find the support function of the reachability set η in (2.1), i.e.,

̺(x) = sup
ξ∈Eξ(K)

xTη.

If the vector x has unit length, the support function is the upper bound of the projections of x
onto this set. For the resulting constrained optimization problem, the Lagrange function takes the
form

L(ξ, λ) = xTΨξ + λ(1− ξTK−1ξ).

Equating to zero the gradient of this function with respect to ξ, we find ξ = (2λ)−1KΨTx. Substi-
tuting this expression into the constraint yields 2λ = (xTΨKΨTx)1/2. Finally, we obtain ̺(x) =
(xTΨKΨTx)1/2, which corresponds to the support function of the ellipsoid Eη(ΨKΨT) [12]. The
proof of this theorem is complete.

The results above remain valid if the random vector ξ has a nonzero mean Eξ = ξ∗. In this case,
the damping rate of the random disturbances is given by

γ2s (Ψ) = sup
Kξ>0

E|η −Ψξ∗|
2

E|ξ − ξ∗|2K
= sup

Kξ>0

trΨKξΨ
T

trK−1Kξ
,
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where Kξ = E(ξ − ξ∗)(ξ − ξ∗)
T; the damping rate of the deterministic disturbances is given by

γ2d(Ψ) = sup
ξ 6=ξ∗

|η −Ψξ∗|
2

|ξ − ξ∗|2K
= sup

ξ 6=ξ∗

(ξ − ξ∗)
TΨTΨ(ξ − ξ∗)

(ξ − ξ∗)TK−1(ξ − ξ∗)
= λmax(ΨKΨT).

Here, the reachability set of the vector η is an ellipsoid centered at the point η∗ = Ψξ∗ with the
matrix Kη = ΨKΨT.

Next, we apply these results to linear operators induced by linear dynamic systems.

3. THE MAXIMUM DEVIATION AND THE GENERALIZED H2 NORM

We define a linear operator Ψ2(t) mapping the input ξ(t) = col (x0, v(t0), . . . , v(t− 1)) into the
output η = z(t) of a linear dynamic system described by the equations

x(t+ 1) = A(t)x(t) +B(t)v(t), x(t0) = x0,

z(t) = C(t)x(t), t ∈ [t0, tf ].
(3.1)

The solution of this system can be represented as

z(t) = C(t)Φ(t, t0)x(t0) +
t−1∑

i=t0

F (t, i+ 1)B(i)v(i), (3.2)

where F (t, i) = C(t)Φ(t, i+ 1)B(i), i = t0, . . . , t− 1, is the unit impulse response matrix of the
system and Φ(t, t0) is the transition matrix of the system, i.e.,

Φ(t+ 1, t0) = A(t)Φ(t, t0), t > t0, Φ(t0, t0) = I. (3.3)

Therefore,

Ψ2(t) = (C(t)Φ(t, t0) F (t, t0) . . . C(t)B(t− 1)). (3.4)

With a block-diagonal weight matrix

K(t) = diag (R,G(t0), . . . , G(t− 1)),

where R = RT > 0 and G(i) = GT(i) > 0, i = 0, . . . , t− 1, the generalized norm of this operator,

‖Ψ2(t)‖
2
K(t) = sup

ξ(t)6=0

|Ψ2(t)ξ(t)|
2

|ξ(t)|2K(t)

= sup
x0, v(τ),τ∈[t0,t−1]

|z(t)|2

|x0|2R + ‖v‖2G [t0,t]

,

is the so-called maximum deviation of the system output at the time instant t under arbitrary
deterministic initial state and disturbance satisfying the constraint

|ξ(t)|2K(t) = |x0|
2
R + ‖v‖2G [t0,t]

6 1. (3.5)

It will be called the ellipsoidal constraint. According to [13, 14], the generalized H2 norm of
system (3.1) on a finite horizon [t0, tf ] with weight matrices R and G(t) is defined as

‖H‖2g2 = sup
x0, v(t),t∈[t0 ,tf−1]

max
τ∈[t0,t]

|z(τ)|2

|x0|2R + ‖v‖2G [t0,t]

.

In other words, this norm is the maximum value over time among the maximum deviations of the
system output.
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We define the damping rate of random disturbances in system (3.1) at a time instant t as the
damping rate of the random disturbances of the operator Ψ2(t) :

γ2s (Ψ2(t)) = sup
Kξ(t)>0

E|z(t)|2

E
(
|x0|2R + ‖v‖2G [t0,t]

) ,

where the random initial state and disturbances are independent. (In the general case, they are
colored noises.)

By Theorem 2.1, the damping rates of the random and deterministic disturbances are λmax[Kz(t)],
where Kz(t) denotes the covariance matrix of the system output provided that its input ξ(t) =
col (x0, v(t0), . . . , v(t− 1)) has the covariance matrix K(t) = diag (R,G(t0), . . . , G(t− 1)). (In other
words, its initial state and disturbances are independent and have the covariance matrices R

and G(t), respectively.) From the system equations we obtain Kz(t) = C(t)P (t)CT(t), where P (t)
is the solution of the equation

P (t+ 1) = A(t)P (t)AT(t) +B(t)G(t)BT(t) (3.6)

with the initial condition P (t0) = R. Thus, we arrive at the following result.

Theorem 3.1. The damping rate of random disturbances in system (3.1) coincides with the max-

imum deviation of its output, i.e.,

sup
Kξ(t)>0

E|z(t)|2

E
(
|x0|2R + ‖v‖2G [t0,t]

)

= sup
x0, v(τ),τ∈[t0,t−1]

|z(t)|2

|x0|2R + ‖v‖2G [t0,t]

= λmax[C(t)P (t)CT(t)],

(3.7)

where P (t) is the solution of equation (3.6).

Corollary 3.1. The generalized H2 norm of system (3.1) is characterized as

‖H‖2g2 = max
t∈[t0,tf ]

sup
Kξ(t)>0

E|z(t)|2

E
(
|x0|2R + ‖v‖2G [t0,t]

) = max
t∈[t0,tf ]

λmax[C(t)P (t)CT(t)].

Remark 1. From (3.6) and (3.7) it follows that the damping rate of random disturbances at a
time instant t can be found by solving the semidefinite programming problem

minλ : Y (i+1)−A(i)Y (i)AT(i)−B(i)G(i)BT(i)> 0, i= t0, . . . , t− 1,

Y (t0) = R, C(t)Y (t)CT(t) 6 λI;
(3.8)

the generalized H2 norm is the minimum value λ > 0 under which inequalities (3.8) and
C(i)Y (i)CT(i) 6 λI hold for t = tf and i = t0, . . . , tf , respectively.

4. THE GENERALIZED H∞ NORM

Along the trajectories of the system

x(t+ 1) = A(t)x(t) +B(t)v(t), x(t0) = x0,

z(t) = C(t)x(t) +D(t)v(t), t ∈ [t0, tf ],
(4.1)
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we define a linear operator Ψ∞ such that η = Ψ∞ξ, where

η = col (z(t0), . . . , z(tf − 1), S1/2x(tf )), ξ = col (x(t0), v(t0), . . . , v(tf − 1)),

and S = ST > 0 is a given matrix. Considering (3.2) and (3.3), we find

Ψ∞ =




C(t0) D(t0) · 0

C(t0 + 1)Φ(t0 + 1, t0) F (t0 + 1, t0) · 0

· · · ·

C(tf − 1)Φ(tf − 1, t0) F (tf − 1, t0) · D(tf − 1)

S1/2Φ(tf , t0) S1/2Φ(tf , t0 + 1)B(t0) · S1/2B(tf − 1)




.

With the weight matrix K = diag (R,G(t0), . . . , G(tf − 1)), the generalized norm of this operator
coincides with its generalized H∞ norm:

‖Ψ∞‖2K = sup
ξ 6=0

|Ψ∞ξ|2

|ξ|2K
= sup

x(t0), v(τ),τ∈[t0,tf−1]

‖z‖2[t0,tf ] + x(tf )
TSx(tf )

|x(t0)|2R + ‖v‖2G [t0,tf ]

= ‖H‖2g∞,

where S = ST > 0 is a given weight matrix. Thus, the damping rate of deterministic disturbances
in system (4.1) can be obtained by solving the following optimization problem.

Problem D∞.

γ2d(Ψ∞) = max
x0, v(τ),τ∈[t0,tf−1]

tf−1∑

t=t0

|z(t)|2 + xT(tf )Sx(tf ) : |x0|
2
R +

tf−1∑

t=t0

|v(t)|2G(t) 6 1 (4.2)

under the assumption that the initial and exogenous disturbances in system (4.1) form a sequence
of deterministic vectors ξ = col (x(t0), v(t0), . . . , v(tf − 1)).

In turn, we define the damping rate of random disturbances as

γ2s (Ψ∞) = sup
Kξ>0

E
[
‖z‖2[t0,tf ] + xT(tf )Sx(tf )

]

E
[
|x(t0)|

2
R + ‖v‖2G[t0,tf ]

] , (4.3)

where Kξ is the covariance matrix of the vector ξ = col (x(t0), v(t0), . . . , v(tf − 1)). According to
Theorem 2.1, the damping rates of the random and deterministic disturbances are equal to each
other, i.e., γ2s (Ψ∞) = ‖H‖2g∞.

We show that the damping rate of random disturbances can be found by solving a semidefinite
programming problem with certain covariance matrices as the variables. Denoting

E

(
x(t)

v(t)

)(
x(t)

v(t)

)T

= W (t), M = (I 0), H = (0 I) (4.4)

and omitting the argument t wherever no confusion occurs, from (4.1) we obtain the following
equations for the matrices W (t) :

MW (t+ 1)MT = (A B)W (t)(A B)T, t = t0, . . . , tf − 1. (4.5)

We express the means in (4.3) in terms of the matrices W (t) and formulate another problem.
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Problem S∞.

γ2s (Ψ∞) = max
W (t)>0, t∈[t0,tf ]

tf−1∑

t=t0

tr (C D)W (t)(C D)T + trSMW (tf )M
T :

trR−1MW (t0)M
T +

tf−1∑

t=t0

trG−1HW (t)HT
6 1,

(4.6)

where the matrices W (t) satisfy equations (4.5).

The next result is proved in the Appendix.

Theorem 4.1. Problems S∞ and D∞ are Lagrange dual and their optimal values coincide with

the generalized H∞ norm of system (4.1), i.e.,

‖H‖2g∞ = sup
W (t)>0 t∈[t0,tf ]

tf−1∑
t=t0

tr (C D)W (t)(C D)T + trSMW (tf )M
T

trR−1MW (t0)MT +
tf−1∑
t=t0

trG−1HW (t)HT

.

This norm is calculated as

‖H‖2g∞ = min
λ>0,X(t)

λ :




ATX(t+ 1)A−X(t) ∗ ∗

BTX(t+ 1)A BTX(t+ 1)B −G−1 ∗

C D −λI


 6 0,

X(t0) = R−1,

(
X(tf ) ∗

S1/2 λI

)
> 0, t = t0, . . . , tf − 1.

(4.7)

Now we proceed to filtering and control problems.

5. FILTERING

5.1. The Generalized H2-optimal Filtering

Consider the filtering problem for a linear discrete object described by the difference equations

x(t+ 1) = A(t)x(t) +B(t)v(t), x(0) = x0,

y(t) = C(t)x(t) +D(t)v(t),

z(t) = Cz(t)x(t), t = t0, . . . , tf ,

(5.1)

with the following notations: x(t) ∈ Rnx , y(t) ∈ Rny , and z(t) ∈ Rnz are the object’s state, the
measured output, and the target output, respectively; x0 and v(t) ∈ Rnv are the initial state and
the exogenous disturbance, respectively; finally, A(t), B(t), C(t), and D(t) are given matrices
of compatible dimensions. To estimate the object’s state by available output measurements, we
construct the filter

xf (t+ 1) = A(t)xf (t) + Θ(t)[y(t)− C(t)xf (t)], xf (0) = 0,

zf (t) = Cz(t)xf (t),
(5.2)
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where xf (t) ∈ Rnx is the filter’s state, zf (t) ∈ Rnz is the target output estimate, and Θ(t) is the
filter parameter matrix. Introducing the state estimation error e(t) = x(t)− xf (t) and the output
estimation error ez(t) = z(t)− zf (t), from (5.1) and (5.2) we obtain the filtering error equations

e(t+ 1) = Ac(t)e(t) +Bc(t)v(t), e(0) = x0,

ez(t) = Cz(t)e(t),
(5.3)

where Ac(t) = A(t)−Θ(t)C(t) and Bc(t) = B(t)−Θ(t)D(t). Let the covariance matrix Kξ(t) of
the random vector ξ(t) = col (x0, v(t0), . . . , v(t − 1)) (the initial state and disturbance) be unknown.
We find the parameters Θ∗(t) of the filter (5.2) that minimize the damping rate of the random
disturbances with weight matrices R > 0 and G(i) > 0, i = 1, . . . , t− 1 :

Js(Θ
t−1
t0 ) = sup

Kξ(t)>0

E|ez(t)|
2

E
(
|x0|2R + ‖v‖2G [t0,t]

) , (5.4)

where Θj
i denotes the set Θ(i), . . . ,Θ(j).

According to Theorem 3.1, such a filter minimizes the maximum deviation of the error under
deterministic factors, i.e.,

Jd(Θ
t−1
t0 ) = sup

x0, v(τ),τ∈[t0,t−1]

|ez(t)|
2

|x0|2R + ‖v‖2G [t0,t]

,

and coincides with the filter minimizing the spectral radius of the covariance matrix of the out-
put ez(t) in equation (5.3) provided that the initial state and disturbances form a sequence of
random independent vectors with the covariance matrices R and G(t). This means that its param-
eters are obtained from minΘ λmax(Kz(Θ)), where Kz(Θ) = Cz(t)P (t)CT

z (t) and P (t) satisfies the
equation

P (t+ 1) = [A(t)−Θ(t)C(t)]P (t)[A(t) −Θ(t)C(t)]T + [B(t)−Θ(t)D(t)]G(t)[B(t) −Θ(t)D(t)]T

with the initial condition P (t0) = R. To simplify the formulas, we assume that the disturbances in
the object and output measurements are independent and the matrices D(t) have full rank, i.e.,

(
B(t)

D(t)

)
G(t)

(
B(t)

D(t)

)T

=

(
GB(t) 0

0 GD(t)

)
, GD(t) > 0. (5.5)

Completing the square in Θ(t) on the right-hand side of the latter equation yields

Θ∗(t) = A(t)P2(t)C
T(t)

[
C(t)P2(t)C

T(t) +GD(t)
]−1

, (5.6)

where the matrix P2(t) satisfies the equation

P2(t+ 1) = A(t)P2(t)A
T(t)−A(t)P2(t)C

T(t)
[
C(t)P2(t)C

T +GD(t)
]−1

C(t)P2(t)A
T(t) +GB(t).

By the well-known matrix inversion formula (e.g., see [15, p. 254]), it can be written as

P2(t+ 1) = A(t)
[
P−1
2 (t) + CT(t)G−1

D (t)C(t)
]−1

AT(t) +GB(t) (5.7)

with the initial condition P2(t0) = R.

Note that the resulting filter coincides with the Kalman filter [2] for estimating the state of
system (5.1) under the random and independent initial state and disturbance with the covariance
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matrices R and G(t) (the weight matrices). In other words, the Kalman filter constructed for
the system with the random and independent initial state and disturbance with the covariance
matrices R and G(t) minimizes the maximum deviation of the error under deterministic factors
satisfying the constraint

|x0|
2
R + ‖v‖2G [t0,t]

6 1 (5.8)

and, moreover, minimizes the damping rate of the random disturbances (5.4) under the weight
matrices R and G(t). According to Theorem 2.2, the reachability set of the error ez(t) under (5.8) is
the ellipsoid Ez[Cz(t)P2(t)C

T
z (t)]; hence, the unknown vector z(t) lies in the same ellipsoid centered

at zf (t).

The parameters Θg2(t) of the generalized H2-optimal filter minimizing the maximum variance
of the estimation errors on the entire interval, i.e.,

Jg2(Θ
tf−1
t0 ) = max

t∈[t0,tf ]
sup

Kξ(t)>0

E|ez(t)|
2

E
(
|x0|2R + ‖v‖2G [t0,t]

) ,

are calculated in a standard way: it suffices to solve the linear matrix inequalities (3.8) (e.g.,
see [15]), replacing A by A−Θ(t)C and B by B −Θ(t)D and denoting X(t+ 1)Θ(t) = Z(t). Then
the filter parameters are given by Θg2(t) = X−1

∗ (t+ 1)Z∗(t), where the asterisks indicate the solu-
tions of these inequalities.

5.2. The Generalized H∞-optimal Filtering

Now consider the generalized H∞-optimal filtering problem in the stochastic statement: under an
unknown covariance matrix Kξ of the initial state vector and disturbances ξ = col (x(t0), v(t0), . . . ,
v(tf − 1)) in (5.1), it is required to find the filter parameters (5.2) minimizing the performance
criterion

Jg∞(Θ
tf−1
t0 ) = sup

Kξ>0

E
[
‖ez‖

2
[t0,tf ]

+ eTx (tf )Sex(tf )
]

E
[
|x(t0)|2R + ‖v‖2G[t0,tf1]

]

along the trajectories of system (5.3).

Theorem 5.1. The generalized H∞-norm of system (5.3) describing the estimation error dynam-

ics for the state of (5.1) is smaller than λ, Jg∞ < λ, if the filter (5.2) has the parameters

Θ∞(t) = A(t)
[
P−1
∞ (t) + CT(t)G−1

D (t)C(t)− λ−1CT
z (t)Cz(t)

]−1
CT(t)G−1

D (t), (5.9)

where

P∞(t+ 1) = A(t)
[
P−1
∞ (t) + CT(t)G−1

D (t)C(t)− λ−1CT
z (t)Cz(t)

]−1
AT(t) +GB(t), (5.10)

P∞(t0) = R, and Cz(t)P∞(t)CT
z (t) < λI and S1/2P∞(tf )S

1/2 < λI for all t.

Equations (5.9) and (5.10) determine the so-called central generalized H∞-suboptimal solutions.
These equations have compact form and can be written without the inverse matrices P−1

∞ (t) by
applying the matrix inversion formula. The parameters of the generalized H∞-suboptimal filter
ensuring Jg∞<λ, particularly with the minimum value λ, can also be obtained in the standard
way by solving the linear matrix inequalities (4.7).

A direct comparison of (5.10) and (5.7) shows that P∞(t) → P2(t) as λ → ∞. Passing the limit
as λ → ∞ in (5.9) and (5.10) and applying the matrix inversion formula, we easily establish the
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following result: the limit Θ∞(t) coincides with Θ∗(t) given by (5.6), and the generalized H∞-
suboptimal filter turns into the Kalman filter constructed for system (5.1) in which the independent
initial state and disturbances have the covariance matrices R and G(t), respectively. By tuning
0 < λ < ∞, we can achieve a tradeoff between the variance of the state estimation error at a
certain time instant and the sum of the variances of the target output estimation errors on the
entire (preceding) time interval.

5.3. Optimal Estimation of Linear Regression Parameters

As one application we consider the optimal estimation of unknown parameters of the linear
regression

χ(t) = Φ(t)ζ0 + v(t), t = t0, . . . , tf , (5.11)

with the following notations: χ(t) is the measurement vector, Φ(t) is the regressor matrix, ζ0 is the
unknown parameter vector, and v(t) is the measurement noise vector. We represent this problem
as designing an optimal observer for the system state

ζ(t+ 1) = ζ(t), ζ(t0) = ζ0 (5.12)

of the form

ζ̂(t+ 1) = ζ̂(t) + Θ(t)[χ(t)− Φ(t)ζ̂(t)], ζ̂(t0) = ζ∗.

The error ζ̃(i) = ζ0 − ζ̂(i) satisfies the equation

ζ̃(i+ 1) = [I −Θ(i)Φ(i)]ζ̃(i)−Θ(i)v(i), ζ̃(t0) = ζ0 − ζ∗, i = t0, . . . , t− 1.

Under an unknown covariance matrix of the vector composed of the initial error ζ0 − ζ∗ and the
measurement noises on the entire time interval, the matrix Θ∗(t) = P2(t)Φ(t)

[
Φ(t)P2(t)Φ

T(t)+

G(t)
]−1

yields the parameters of the optimal filter (5.2), (5.6) minimizing the damping rate of
random disturbances at a time instant t for the error equation. (This fact can be easily verified.)
Therefore, the optimal estimates are given by the recurrence equations

ζ̂(t+ 1) = ζ̂(t) + P2(t+ 1)ΦT(t)G−1(t)[χ(t)− Φ(t)ζ̂(t)], ζ̂(t0) = ζ∗,

P−1
2 (t+ 1) = P−1

2 (t) + ΦT(t)G−1(t)Φ(t), P2(t0) = R.
(5.13)

As is well known, these equations describe the recurrent modification of the weighted least squares
method and the Kalman filter for estimating the state of system (5.12) under the covariances
Eζ0ζ

T
0 = R and Ev(t)vT(t) = G(t); moreover, the estimate ζ̂(t) minimizes the performance criterion

Jt(ζ) = (ζ − ζ∗)
TR−1(ζ − ζ∗) +

t−1∑

i=0

(
χ(i)− Φ(i)ζ

)T
G−1(i)

(
χ(i)− Φ(i)ζ

)
.

Thus, the weighted least squares method defines an estimate minimizing the damping rate of
random disturbances with appropriate weight matrices. According to the duality principle, this
estimate minimizes the maximum deviation of the error under unknown deterministic parameters
and disturbances satisfying the constraint

|ζ0 − ζ∗|
2
R + ‖v‖2G [t0,t]

6 1, t ∈ [t0, tf ]. (5.14)
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Finally, we construct a generalized H∞-suboptimal filter to estimate the unknown parameters
in the linear regression (5.11) under which the sum of squared errors on the entire time interval will
not exceed, with a multiplier λ, the weighted sum of the squared initial deviation of the estimate
and squared measurement noises. Due to (5.9) and (5.10), the parameters of this filter are given
by

Θ∞(t) =
[
P∞(t) + ΦT(t)G−1(t)Φ(t)− λ−1I

]−1
ΦT(t)G−1(t);

under the conditions P∞(t) < λI and S1/2P∞(tf )S
1/2 < λI, the filter satisfies the recurrent equa-

tions

ζ̂(t+ 1) = ζ̂(t) + P∞(t+ 1)ΦT(t)G−1(t)[χ(t) − Φ(t)ζ̂(t)], ζ̂(t0) = ζ∗,

P−1
∞ (t+ 1) = P−1

∞ (t) + ΦT(t)G−1(t)Φ(t)− λ−1I, P∞(t0) = R.
(5.15)

As λ → ∞ the equations of the generalized H∞-optimal filter turn into the recurrent equations of
the weighted least squares method. By tuning the value λ, we can achieve a trade-off between the
error variance at the end of the time interval and the sum of the error variances on the entire time
interval.

6. CONTROL

Consider the control problem for a linear discrete-time object described by the difference equa-
tions

x(t+ 1) = A(t)x(t) +Bu(t)u(t) +B(t)v(t), x(0) = x0,

z(t) = Cz(t)x(t) +Dz(t)u(t), t = t0, . . . , tf .
(6.1)

Let the initial state and exogenous disturbances form a random vector ξ(t) = col (x0, v(t0), . . . ,
v(t− 1)) with zero mean and an unknown covariance matrix Kξ(t). A controller of the form
u(t) = Θ(t)x(t) is required to minimize the performance criterion

Js(Θ
t−1
t0 ) = sup

Kξ(t)>0

E|z(t)|2

E
(
|x0|2R + ‖v‖2G [t0,t]

) .

By Theorem 3.1, such a controller minimizes the maximum output deviation under deterministic
factors:

Jd(Θ
t−1
t0 ) = sup

x0, v(τ),τ∈[t0,t−1]

|z(t)|2

|x0|
2
R + ‖v‖2G [t0,t]

;

moreover, it coincides with the controller minimizing the spectral radius of the output covariance
matrix of system (6.1) at a time instant t provided that the initial state and disturbances form a
sequence of random independent vectors with the covariance matrices R and G(i), i = t0, . . . , t− 1.
The parameters of such a controller can be found by solving a semidefinite programming problem
under constraints defined by linear matrix inequalities obtained in the standard way from (3.8).
Note that control problems with a performance criterion formulated in terms of the covariance
matrix of the steady-state output on an infinite horizon were considered in [16].

Now let the initial state and disturbances on the entire time interval [t0, tf ] form a random vector
ξ = col (x0, v(t0), . . . , v(tf − 1)) with zero mean and an unknown covariance matrixKξ. A controller
of the form u(t) = Θ(t)x(t) is required to minimize the total output “energy” on the entire time
interval considering the terminal state provided that the total “energy” of the initial state and
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the exogenous disturbance are bounded on the entire time interval. In this case, the “energy” is
measured by the expected value of the quadratic form of the corresponding vector with a given
weight matrix. Therefore, the performance criterion has the form

Js(Θ
tf−1
t0 ) = sup

Kξ>0

E
[
‖z‖2[t0,tf ] + xT(tf )Sx(tf )

]

E
[
|x0|2R + ‖v‖2G[t0,tf ]

] , (6.2)

where S = ST > 0, R = RT > 0, and G(t) = GT(t) > 0 are given weight matrices. Note that in the
classical stochastic linear-quadratic control problem, the initial state vectors and disturbances are
assumed to form a sequence of independent random vectors with given covariance matrices.

According to Theorem 4.1, this problem is dual to the control problem of the object (6.1) in
which the initial state and external disturbances form an arbitrary deterministic vector sequence
and the performance criterion is given by the generalized H∞ norm with the corresponding weight
matrices:

Jd(Θ
tf−1
t0 ) = sup

x0,v(τ),τ∈[t0,tf−1]

‖z‖2[t0,tf ] + xT(tf )Sx(tf )

|x0|
2
R + ‖v‖2G[t0,tf ]

. (6.3)

The parameters of the desired controller are found by solving a semidefinite programming problem
obtained from (4.7) in the standard way.

7. CONCLUSIONS

We have established the duality principle for linear operators in the deterministic and stochastic
cases. This result is useful due to relating the stochastic and deterministic paradigms in control
and filtering problems. In particular, let the deterministic initial state and disturbance in a linear
time-varying system on a finite horizon satisfy an ellipsoidal constraint with given weight matrices;
in this case, the maximum value (over time) among the maximum output deviations, i.e., the
generalized H2-norm of the system, and the maximum value of the integral quadratic performance
criterion, i.e., the generalized H∞-norm of the system, will coincide with the maximum value (over
time) among the maximum output variances and the maximum value of the averaged integral
quadratic performance criterion, respectively, under the random initial state and disturbance with
unknown covariance matrices satisfying the averaged ellipsoidal constraint. Both of these norms are
also characterized as spectral norms of the covariance matrices of the outputs of linear operators
under random and independent initial states and disturbances of the system in which the covariance
matrices coincide with the corresponding weight matrices of the ellipsoidal constraint.

We have formulated new minimax problems for linear dynamic systems in the stochastic state-
ment with unknown covariance matrices of random factors. As demonstrated above, their solutions
coincide with the solutions of dual deterministic minimax problems. For example, the minimax
stochastic controller under an unknown joint covariance matrix of the initial state and distur-
bances with a bounded trace coincides with the deterministic generalized H∞-optimal controller.
The optimal filter minimizing the damping rate of the random initial state and disturbances with
an unknown joint covariance matrix coincides with the optimal filter minimizing the maximum
deviation of the filtering error under the deterministic initial state and disturbances satisfying an
ellipsoidal constraint with given weight matrices. This filter turns out to be a Kalman filter con-
structed for this system under the random and independent initial state and disturbances whose
covariance matrices are equal to the corresponding weight matrices of the ellipsoidal constraint.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 2 2023



ON THE LAGRANGE DUALITY 133

APPENDIX

Proof of Theorem 4.1. We write the Lagrange function for problem S∞ and find its dual
function:

min
λ>0,X(t)

max
W (t)>0

tf−1∑

t=t0

tr (C(t) D(t))W (t)(C(t) D(t))T + trSMW (tf )M
T

− λ


trR−1MW (t0)M

T +

tf−1∑

t=t0

trG−1(t)HW (t)HT − 1




+

tf−1∑

t=t0

tr
[
(A(t) B(t))W (t)(A(t) B(t))T −MW (t+ 1)MT

]
X(t+ 1)

= min
λ>0,X(t)

max
W (t)>0



λ+

tf−1∑

t=t0

trW (t)
[
(C(t) D(t))T(C(t) D(t)) + (A(t) B(t))TX(t+ 1)(A(t) B(t))

−MTX(t)M − λHTG−1(t)H
]
+ trW (tf )M

T[S −X(tf )]M



 ,

where X(t0) = λR−1. The dual function is finite under the following inequalities:

(C(t) D(t))T(C(t) D(t)) + (A(t) B(t))TX(t+ 1)(A(t) B(t))

−MTX(t)M − λHTG−1(t)H 6 0, t = t0, . . . , tf − 1, S −X(tf ) 6 0.
(A.1)

(Otherwise, W (t) can be chosen so that the corresponding term will become infinite.) Thus, in-
equalities (A.1) must hold, but in this case, the minimum in the minimax problem is reached at
W (t) = 0, t = t0, . . . , tf . As a result, we arrive at the dual problem: minλ subject to the con-
straints (A.1). With the introduced notations and the variable X(t) replaced by λX(t), these
constraints are reduced to inequalities (4.7). Since the function is convex and there exists an
interior point satisfying the constraints, the values of the primal and dual problems coincide.

We define the function V (t) = xT(t)X(t)x(t), where X(t) satisfies inequalities (4.7). The incre-
ment of this function along the trajectories of system (4.1) satisfies the conditions

∆V (t) + λ−1|z(t)|2 − vT(t)G−1v(t) 6 0,

V (t0) = xT(t0)R
−1x(t0), V (tf ) > λ−1xT(tf )Sx(tf ).

(A.2)

Hence,

tf−1∑

t=t0

|z(t)|2 +xT(tf )Sx(tf )6 λ+λ


x(t0)R−1x(t0)+

tf−1∑

t=t0

vT(t)G−1(t)v(t)− 1


,

i.e., the minimum value λ making inequalities (4.7) solvable is the optimal value in problem D∞

and coincides with the generalized H∞ norm of system (4.1).

Proof of Theorem 5.1. Let us apply Theorem 4.1 to system (5.3): if inequalities (4.7) hold with
the matrix A replaced by A−ΘC and the matrix B replaced by B −ΘC, then the generalized H∞

norm of this system is smaller than λ. Using Schur’s complement lemma, we transform these
inequalities to

Y (t+ 1)− (A−ΘC)Y (t)(A−ΘC)T − (B −ΘD)G(B −ΘD)T

− (A−ΘC)Y (t)CT
z (λI −CzY (t)CT

z )
−1CzY (t)(A−ΘC)T > 0
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provided that CzY (t)CT
z < λI. Completing the square in Θ(t) on the left-hand side of the latter

inequality yields

Y (t+ 1)−A
[
Y −1(t) + CTG−1

D C − λ−1CT
z Cz

]−1
AT −GB

− (Θ−Θ∞)
[
Y −1(t) +CTG−1

D C − λ−1CT
z Cz

]
(Θ−Θ∞)T > 0,

where Θ∞ is given by (5.9) for P (t) = Y (t). (Here, we have involved the notations (5.5) and some
manipulations.) Hence, if the filter parameters are given by (5.9), where the matrix P (t) satisfies
equation (5.10), then γ2s < λ.
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