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Abstract—This article discusses the problem of constructing an external estimate of the limit
set of controllability for a linear discrete system with convex control constraints. We have
proposed a decomposition method that allows us to reduce the problem for the initial system
to subsystems of smaller dimension by switching to the normal Jordan basis of the matrix of
the system. The statement about the structure of the reference hyperplane to the limit set of
controllability is formulated and proved. A method for constructing an external estimate of
the limit set of controllability with an arbitrary order of accuracy in the sense of the Hausdorff
distance is proposed based on the principle of contraction mappings. The paper provides
examples.
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1. INTRODUCTION

The issues of constructing reachability and controllability sets [1–6] are closely related to the
tasks of managing dynamic systems. In most mechanical systems, the control action is limited
in its capabilities: jet engines of an aircraft have limited thrust and a finite fuel reserve, servos
of various robotic systems are also capable of developing some fixed force. These limitations lead
to the fact that the controlled object can be brought to the desired mode of operation, generally
speaking, not from all initial states. In this regard, it turns out to be an urgent task to analyze
each individual initial state on the issue of controllability and reachability [7].

For discrete-time control systems, there is an approach aimed at constructing limit sets of
controllability and reachability. However, often, even in the linear case, it is only possible to
formulate sufficient conditions that these sets will be limited. At the same time, only the most
general estimates of their structure are given: in [1] it is demonstrated that the limit sets of
controllability and reachability of linear systems are a cylinder with a certain convex profile. In [2],
also in the case of a certain matrix structure of a linear system based on the maximum principle,
a method for estimating the limit set of reachability is proposed.

Methods of constructing and estimating the limit set of 0-controllability are of particular interest
in the case of solving the speed-in-action problem [8–12]. This problem has a certain specificity
for discrete time, while in the continuous case its solution has been known for a long time and is
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reduced to the use of relay control [8, 9]. For systems described by finite-difference relations, the use
of standard methods (the maximum principle [13, 14] and the dynamic programming method [15])
lead either to a full iteration procedure or to a degenerate situation, since the extremum for almost
all initial states is not regular, and the Lagrange multipliers on the optimal solution simultaneously
turn into zero [3, 16–19]. Due to this fact, an approach based on the use of 0-controllability sets is
applied. The methods for solving this problem are described in [20–23].

Nevertheless, these works postulate the solvability of the initial speed-in-action problem, but do
not provide the necessary and sufficient conditions for the feasibility of this fact. In turn, having the
opportunity to construct a limit set of 0-controllability or its evaluation, it is possible to determine
for a number of initial states whether the speed problem is solvable.

The structure of the article is presented as follows. Section 2 provides a statement of the
problem and introduces the basic concepts. In Section 3, the main lemmas are formulated and
proved, which allow, based on the transition to the normal Jordan basis of the matrix of the
system, to decompose the original system into subsystems of smaller dimensions. Section 4 provides
necessary and sufficient conditions for the limitation of the limit sets of 0-controllability of the
system, and also suggests their external evaluation based on the use of the apparatus of reference
hyperplanes. In Section 5, a method that allows to construct an external estimate of the limit set
of 0-controllability of a discrete linear system with an arbitrary degree of accuracy in the sense
of the Hausdorff distance is presented, based on the principle of contraction mappings. Various
numerical examples demonstrating the effectiveness of proven theorems and lemmas are presented
in Section 6.

2. PROBLEM STATEMENT

We consider an n-dimensional linear autonomous discrete control system (A,U) with limited
control:

x(k + 1) = Ax(k) + u(k),

x(0) = x0, u(k) ∈ U , k ∈ N ∪ {0},
(1)

where x(k), u(k) ∈ R
n are vectors of state and control, respectively, U ⊂ R

n is a convex compact
set of acceptable control values, A ∈ R

n×n—matrix of the system (1). It is assumed that 0 ∈ int U .
Let’s define a family of 0-controllability sets {X (N)}∞N=0, where each X (N) represents a set of

those initial states from which the system (1) can be translated to the origin in N steps by choosing
an acceptable control:

X (N) =

{
{x0 ∈ R

n : ∃u(0), . . . , u(N − 1) ∈ U : x(N) = 0}, N ∈ N

{0}, N = 0.
(2)

It is required to construct a limit set of 0-controllability X∞, i.e. the set of those initial states
from which the system (A,U) can be translated to the origin in any finite number of steps:

X∞ = {x0 ∈ R
n : ∃N ∈ N, u(0), . . . , u(N − 1) ∈ U : x(N) = 0}.

Taking into account (2), the representation is also valid

X∞ =
∞⋃

N=0

X (N). (3)
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3. DECOMPOSITION OF A LINEAR SYSTEM

As will be shown below, the structure of the limit set of 0-controllability of the system (1) is
determined by the properties of the system matrix A. In [1] it is proved that X∞ is a cylindrical set
oriented along the eigenvectors of the matrix A corresponding to eigenvalues that do not exceed 1
in absolute value. For this reason, the process of constructing X∞ is connected with the transition
to the normal Jordan basis A. Due to this fact, in the Section 3, we consider the properties of the
system (1) and sets of the form (2) and (3) associated with various linear transformations of the
coordinate system.

Let (A1,U1) and (A2,U2) be n1-dimensional and n2-dimensional systems of the form (1). Denote
by (A1,U1)× (A2,U2) the system (A,U) of dimension n1 + n2, where

A =

(
A1 O

O A2

)
∈ R

(n1+n2)×(n1+n2), U = U1 × U2 ∈ R
n1+n2 .

Lemma 1. Let {Xi(N)}∞N=0 and Xi,∞ denote the class of 0-controllability sets and the limit set
of 0-controllability, respectively, of the system (Ai,Ui), i ∈ {1, 2}, also (A,U) = (A1,U1)× (A2,U2).

Then

1) X (N) = X1(N)× X2(N), N ∈ N ∪ {0};
2) X∞ = X1,∞ × X2,∞.

The proofs of the Lemma 1 and all subsequent assertions are given in the Appendix.

Lemma 2. Let S ∈ R
n×n, detS 6= 0, (A,U) be an n-dimensional system of the form (1),

{Y(N)}∞N=0 and Y∞ denote the class of 0-controllability sets and the limit set of 0-controllability,
respectively, of the system (S−1AS,S−1U).

Then

1) X (N) = SY(N), N ∈ N ∪ {0};
2) X∞ = SY∞.

Lemma 3. Let A1 ∈ R
n1×n1 , A2 ∈ R

n2×n2 ,

A =

(
A1 O

O A2

)
∈ R

(n1+n2)×(n1+n2),

moreover, all eigenvalues of the matrix A1 do not exceed 1 in absolute value. U2 ⊂ R
n2 denotes the

projection of a convex compact body U ⊂ R
n1+n2 onto an n2-dimensional subspace:

U2 =



0 · · · 0 1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 1




n2×(n1+n2)

U ∈ R
n2 .

Then the (n1 + n2)-dimensional system (A,U) satisfies the equality

X∞ = R
n1 × X2,∞,

where X2,∞ is the limit set of 0-controllability of the system (A2,U2).

The lemmas proved in the Section 3 define the structure of the limit set of 0-controllability of
an arbitrary system of the form (1). According to the Lemma 3, each set X∞ is a cylindrical set
oriented along the eigenvectors and associated vectors of the matrix A corresponding to eigenvalues
not exceeding 1 in absolute value. To pass to a normal Jordan basis of the matrix A, we can use
the Lemma 2. At the same time, the procedure for constructing X∞, due to the block-diagonal
form of the normal Jordan form of the matrix, taking into account the Lemma 1, can be reduced
to constructing similar sets for subsystems of lower dimension with Jordan cells as matrices.
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4. CONSTRUCTION OF ESTIMATES FOR LIMIT SETS OF 0-CONTROLLABILITY

In the 4 section, we consider a method for constructing polyhedral estimates for the X∞ set
based on the apparatus of supporting half-spaces and properties of convex sets. To do this, we
formulate and prove a theorem that guarantees that for an arbitrary system of the form (1) the
set X∞ is convex.

Theorem 1. For any n-dimensional system (A,U) of the form (1) it is true that X∞ is an open
and convex set.

By virtue of the Lemmas 1, 2, and 3, the problem of constructing the limit set of 0-controllability
can be considered only for systems whose matrix eigenvalues are strictly greater than 1. Since
Theorem 1 X∞ is convex by the theorem, its closure can be represented as the intersection of
all supporting half-spaces [24, Theorem 18.8]. Let us formulate the structure of the supporting
half-space to X∞ as a Lemma 4.

Lemma 4. Let all eigenvalues of the matrix A ∈ R
n×n be strictly greater than 1 in absolute value,

X∞ is defined by the relations (3).

Then for all p ∈ R
n \ {0} the following relations hold:

1) X∞ ⊂ Hp =

{
x ∈ R

n : (p, x) 6
∞∑

k=1

max
uk∈U

(
−(A−k)Tp, uk

)}
;

2) x∗ = −
∞∑

k=1

A−ku∗k ∈ X∞ ∩ ∂Hp, where

u∗k = arg max
uk∈U

(
−(A−k)Tp, uk

)
.

Since, according to the Lemma 2, it is permissible to assume that the matrix A is reduced to the
normal Jordan form, it suffices to consider only the case when A has the form of a Jordan cell to
construct the basic outer estimates for X∞.

Lemma 5. Let an n-dimensional system (A,U) satisfy the condition

A =




λ 1 · · · 0

0 λ
. . . 0

...
...

. . . 1
0 0 · · · λ




∈ R
n×n,

where |λ| > 1, ui,max = max
u∈U

ui, ui,min = min
u∈U

ui, i = 1, n.

Then

X∞ ⊂
n⋂

i=1

{x ∈ R
n : xi ∈ (xi,min;xi,max)}.

And

1) if λ > 1 then

xi,min =
n−i∑

j=0

min{(−1)j+1ui+j,min; (−1)j+1ui+j,max}
(λ− 1)j+1

,

xi,max =
n−i∑

j=0

max{(−1)j+1ui+j,min; (−1)j+1ui+j,max}
(λ− 1)j+1

;
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2) if λ < −1 then

xi,min =
n−i∑

j=0

(
ui+j,min − ui+j,max

2(|λ| − 1)j+1
+

ui+j,min + ui+j,max

2(|λ| + 1)j+1

)
,

xi,max =
n−i∑

j=0

(
ui+j,max − ui+j,min

2(|λ| − 1)j+1
+

ui+j,min + ui+j,max

2(|λ| + 1)j+1

)
.

Corollary 1. Let n = 1 under the conditions of the Lemma 5.

Then

X∞ =

(−u1,max −max{λu1,max;λu1,min}
|λ|2 − 1

;
−u1,min −min{λu1,max;λu1,min}

|λ|2 − 1

)
.

Lemma 6. Let 2n-dimensional system (A,U) satisfy the condition

A =




rAϕ I · · · O

O rAϕ
. . . O

...
...

. . . I

O O · · · rAϕ




∈ R
2n×2n, Aϕ =

(
cosϕ sinϕ
− sinϕ cosϕ

)
, I =

(
1 0
0 1

)
,

where r > 1, ϕ ∈ [0; 2π), ri,max = max
u∈U

‖(u2i−1 u2i)
T‖R2 , i = 1, n.

Then

Ri,max =
n−i∑

j=0

ri+j,max

(r − 1)j+1
,

X∞ ⊂
n⋂

i=1

{x ∈ R
2n : ‖(x2i−1 x2i)

T‖R2 < Ri,max}.

The Lemmas 5 and 6 allow us to construct outer estimates for the limit set of 0-controllability
of the system (1) in the direction of each of the eigenvectors and associated vectors. To construct
the corresponding supporting hyperplanes bounding X∞, it suffices to compute the eigenvalues of
the matrix A. If the obtained restrictions on X∞ are not enough, you can apply the Lemma 4 to
construct an arbitrary reference hyperplane.

5. EXTERNAL ESTIMATE OF THE 0-CONTROLLABILITY LIMIT SET
BASED ON THE CONTRACTION MAPPING PRINCIPLE

In the Section 5, we consider the case when the limit set of X∞ 0-controllability of the (A,U)
system is bounded, which, by virtue of the Lemma 4, is equivalent to the fact that all the eigenvalues
of the matrix A are strictly greater than 1 in absolute value. Whence it follows that the matrix A

is invertible [25] and the following lemma holds, which defines the structure of the 0-controllability
sets of the system (A,U).

Lemma 7 [26, Lemma 1]. Let A ∈ R
n×n, detA 6= 0. Then for all N ∈ N the 0-controllability

set (2) of the system (A,U) satisfies the relation

X (N) = −
N∑

k=1

A−kU .
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Lemma 7 can also be reduced to equivalent recurrence relations of the following form:

X (N) = A−1X (N − 1) + (−A−1U).

Denote by Kn the set of all compact sets in R
n, and by ρH the Hausdorff distance [27]:

Kn = {X ⊂ R
n : X – compact},

ρH(X ,Y) = max

{
sup
x∈X

inf
y∈Y

‖x− y‖; sup
y∈Y

inf
x∈X

‖x− y‖
}
.

If we take into account that U is a convex compact set in R
n, then every set of the form (2) is

also a convex compact set, because representable as an algebraic sum of linear transformations of
compact sets [24]. Then in the metric space (Kn, ρH) one can define a mapping T : Kn → Kn of
the following form:

T (X ) = A−1X + (−A−1U). (4)

Taking into account the Lemma 7 and the relation (4), if the mapping T or T ◦ . . . ◦ T︸ ︷︷ ︸
M

for some

M ∈ N are contractive, the limit of a sequence of 0-controllability sets (2) in the space (Kn, ρH)
can be determined by the contraction mapping principle [28]. Also, the principle of contraction
mappings makes it possible to estimate the error of the limit point approximation using the fixed
point iteration method. On the other hand, the limit point, up to closure due to (3), must be c X∞.
We formulate this fact in the form of a theorem.

Theorem 2. Let all eigenvalues of the matrix A ∈ R
n×n be strictly greater than 1 in absolute

value, the family {X (N)}∞N=0 is defined by the relations (2), the set X∞ is defined by (3), the
mapping T has the form (4).

Then
1) there exists M ∈ N such that the mapping TM = T ◦ . . . ◦ T︸ ︷︷ ︸

M

is contractive with some com-

pression ratio α ∈ [0; 1);

2) X∞ is the only fixed point of the mapping T in the space (Kn, ρH);

3) valid estimate

ρH(X∞,X (NM)) 6
αN

1− α
ρH(X (M), {0}).

The value of the contraction factor α from the Theorem 2 generally depends on the choice of the
norm in the space R

n and, as a consequence, on the associated operator norm of the matrix A−1.
For example, the following estimates for the value of α are known under the choice of different
norms in R

n [28]:

α1 = max
16j6n

n∑

i=1

|aij |, α2 =

√√√√
n∑

i=1

n∑

j=1

a2ij ; α∞ = max
16i6n

n∑

j=1

|aij |. (5)

Methods that make it possible in the general case to determine at what value of M ∈ N ∪ {0} the
mapping TM is contractive are currently unknown. However, taking into account the estimates (5),
the value of M can be determined numerically by sequentially calculating α for different values of
M ∈ N ∪ {0}.

Also, the choice of the norm in the space R
n affects the value of the Hausdorff distance in Kn,

which ultimately determines the structure of the external estimates of the set X∞. This fact is
formulated as the following theorem.
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Theorem 3. Let all eigenvalues of the matrix A ∈ R
n×n be strictly greater than 1 in absolute

value, the family {X (N)}∞N=0 is defined by the relations (2), the set X∞ is defined by the rela-
tion (3), the value M ∈ N is chosen so that TM is a contraction mapping with compression ratios
α1, α2, α∞ ∈ [0; 1), which are associated with the norms ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞ in the space Rn respec-
tively. Then

X∞ ⊂ X (NM) + conv





(0, . . . , 0︸ ︷︷ ︸

i

, r, 0, . . . , 0)T : r ∈ {−R1, R1}, i = 0, n − 1





,

X∞ ⊂ X (NM) +




x ∈ R
n :

√√√√
n∑

i=1

|xi|2 6 R2




 ,

X∞ ⊂ X (NM) +

{
x ∈ R

n : max
i=1,n

|xi| 6 R∞

}
,

Rp =
αN
p

1− αp
max

x∈X (M)
‖x‖p, p ∈ {1, 2,∞}, N ∈ N.

Theorem 3 allows one to construct external estimates for the set X∞ with any predetermined
precision. Unlike the results of Section 4, these estimates are not tangent to the limit set of
0-controllability and have a very complex structure, since they are a Minkowski sum of various
convex sets. To obtain more accurate estimates, you can use both approaches at the same time:

X∞ ⊂ X̂ 1
∞ ∩ X̂ 2

∞,

where X̂ 1
∞ is the external estimate of X∞ based on the Lemmas 4, 5, 6, X̂ 2

∞ is the outer estimate
of X∞ constructed according to the Theorem 3.

6. EXAMPLES

Let us demonstrate the theoretical results obtained in Sections 4 and 5 using the example of
constructing a limit set of 0-controllability for various linear discrete systems of the form (1).

Example 1. Let the system matrix A ∈ R
5×5 be of the form

A =




1

2
0 0 0 0

0 2 1 0 0
0 0 2 0 0

0 0 0 3
√
2 3

√
2

0 0 0 −3
√
2 3

√
2




.

Consider the cube U = [−1; 1]5. Let us construct an external estimate for the limit set of
0-controllability of the system (A,U). The matrix A can be represented as

A =



A1 O O

O A2 O

O O A3


 , A1 =

(
1

2

)
, A2 =

(
2 1
0 2

)
, A3 =

(
3
√
2 3

√
2

−3
√
2 3

√
2

)
.

By the Lemma 3, the limit set of 0-controllability of the system (A,U) satisfies the equality

X∞ = R× X23,∞,
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where X23,∞ is the limit set of 0-controllability of the system (A23,U23),

A23 =

(
A2 O

O A3

)
, U23 = [−1; 1]4.

The limit set of 0-controllability X23,∞ can be represented by the Lemma 1 in the form

X23,∞ = X2,∞ × X3,∞,

where X2,∞ is the limit set of 0-controllability of subsystem (A2,U2), U2 = [−1; 1]2, X3,∞—limit
set of 0-controllability of subsystem (A3,U3), U3 = [−1; 1]2.

Consider the subsystem (A2,U2). The matrix A2 has a unique eigenvalue λ2 = 2 of multiplicity 2.
Then (A2,U2) satisfies the conditions of the Lemma 5. Whence it follows that

X2,∞ ⊂
2⋂

i=1

{x ∈ R
2 : xi ∈ (xi,min;xi,max)}.

x1,min =
2−1∑

j=0

min{(−1)j+1u1+j,min; (−1)j+1u1+j,max}
(λ2 − 1)j+1

= min{(−1)u1,min; (−1)u1,max}+min{(−1)2u2,min; (−1)2u2,max} = −2,

x1,max =
2−1∑

j=0

max{(−1)j+1u1+j,min; (−1)j+1u1+j,max}
(λ2 − 1)j+1

= max{(−1)u1,min; (−1)u1,max}+max{(−1)2u2,min; (−1)2u2,max} = 2,

x2,min =
2−2∑

j=0

min{(−1)j+1u2+j,min; (−1)j+1u2+j,max}
(λ2 − 1)j+1

= min{(−1)u2,min; (−1)u2,max} = −1,

x2,max =
2−2∑

j=0

max{(−1)j+1u2+j,min; (−1)j+1u2+j,max}
(λ2 − 1)j+1

= max{(−1)u2,min; (−1)u2,max} = 1.

Then

X2,∞ ⊂ {x ∈ R
2 : x1 ∈ (−2; 2)} ∩ {x ∈ R

2 : x2 ∈ (−1; 1)}(−2; 2) × (−1; 1).

Consider the subsystem (A3,U3). The matrix A3 has two complex conjugate eigenvalues λ3 =
(3 − 3i)

√
2, λ4 = (3 + 3i)

√
2. The matrix A3 can be represented as

A3 = rAϕ = r

(
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)
,

where r = 6, ϕ = π
4 . Then by the Lemma 6

X3,∞ ⊂
{
x ∈ R

2 : ‖(x1 x2)
T‖2 6 R1,max

}
,

r1,max = max
u∈U3

‖(u1 u2)
T‖2 = max

u∈U3

√
u21 + u22 =

√
2,

R1,max =
1−1∑

j=0

r1+j,max

(r − 1)j+1
=

r1,max

(6− 1)
=

√
2

5
.
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x2

x1
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1

1

x(2)
x̂2, ¥

x2

x1
0

1
1

x(10) x̂2, ¥

Fig. 1. The estimate X̂2,∞ for N = 2 (grey). Fig. 2. The estimate X̂2,∞ for N = 10 (grey).

It follows that X3,∞ ⊂ {x ∈ R
2 : ‖(x1 x2)

T‖2 6
√
2
5 }.

Then, according to the Lemmas 1 and 3, the limit set of 0-controllability of the system (A,U)
can be estimated as follows:

X∞ ⊂ R× (−2; 2) × (−1; 1) ×
{
x ∈ R

2 :
√
x21 + x22 6

√
2

5

}
.

Example 2. For the subsystem (A2,U2) from the Example 1, we construct an estimate for the
limit set of 0-controllability X2,∞ according to the Theorem 3. As the value of the parameter that
defines the norm in R

2, we choose p = 1, i.e.

‖x‖1 = |x1|+ |x2|.

Then

A−1
2 =




1

2
−1

4

0
1

2


 , ‖A−1

2 ‖ = α1 =
3

4
,

i.e. M = 1. According to the Lemma 7

X (M) = −A−1
2 U2 = conv









1

4

1

2


 ,



−3

4

1

2


 ,



−1

4

−1

2


 ,




3

4

−1

2








,

max
x∈X (M)

‖x‖1 =
5

4
,

R1(N) =

(
3
4

)N

1− 3
4

· 5
4
= 5

(
3

4

)N

.

Let us construct external estimates for various N .

X̂2,∞ =
N∑

k=1

A−k
2 U2 + conv

{(
R1(N)

0

)
,

(
−R1(N)

0

)
,

(
0

R1(N)

)
,

(
0

−R1(N)

)}
.

The estimates for X̂2,∞ for the cases N = 2 and N = 10 are shown in Figs. 1 and 2.
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Example 3. Consider a three-dimensional system (A,U), where

A =




−3 0 1
0.5 −3.5 0.5
−0.5 0.5 −2.5


 , U = [−1; 1]3.

Matrix A has a single eigenvalue λ1 = −3 of multiplicity 3, which corresponds to a single linearly
independent eigenvector h1 and associated vectors h2, h3:

h1 =



1
1
0


 , h2 =



1
0
1


 , h3 =



0
1
1


 .

The normal Jordan form of the matrix A has the form

J = S−1AS =



−3 1 0
0 −3 1
0 0 −3


 ,

According to the Lemma 2
X∞ = SY∞, (6)

where X∞ is the 0-controllability limit set of (A,U), Y∞ is the 0-controllability limit set of (J, S−1U).

S−1U = conv








0.5
0.5
0.5


 ,



−0.5
−0.5
1.5


 ,



−0.5
1.5
−0.5


 ,




1.5
−0.5
−0.5


 ,



−1.5
0.5
0, 5


 ,




0.5
0.5
−1.5


 ,




0.5
−1.5
0.5


 ,



−0.5
−0.5
−0.5








.

The system (J, S−1U) satisfies the conditions of the Lemma 5. Whence it follows that

Y∞ ⊂
3⋂

i=1

{y ∈ R
3 : yi ∈ (yi,min; yi,max)},

yi,min =
3−i∑

j=0

(
ui+j,min − ui+j,max

2 · 2j+1
+

ui+j,min + ui+j,max

2 · 4j+1

)
,

yi,max =
3−i∑

j=0

(
ui+j,max − ui+j,min

2 · 2j+1
+

ui+j,min + ui+j,max

2 · 4j+1

)
,

where ui,max = max
u∈S−1U

ui = 1.5, ui,min = minu∈S−1U ui = −1.5, i = 1, 3.

y1,min = −21

16
, y1,max =

21

16
, y2,min = −9

8
, y2,max =

9

8
, y3,min = −3

4
, y3,max =

3

4
.

Then

Y∞ ⊂
(
−21

16
;
21

16

)
×
(
−9

8
;
9

8

)
×
(
−3

4
;
3

4

)
.

By virtue of (6), the inclusion

X∞ ⊂ intconv








−39

16

−33

16

−15

8




,




−39

16

− 9

16

−3

8




,




− 3

16

−33

16

3

8




,




− 3

16

− 9

16

15

8




,




3

16

9

16

−15

8




,




3

16

33

16

−3

8




,




39

16

9

16

3

8




,




39

16

33

16

15

8








.
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7. CONCLUSION

The paper considers the problem of constructing an external estimate for the limit set of
0-controllability of a linear discrete system with bounded control. The set of admissible control
values is assumed to be a convex compact containing the origin. It is proved that the structure of
the 0-controllability limit set depends on the normal Jordan form and the eigenvalues of the system
matrix.

Statements that make it possible to reduce the problem of constructing the limit set of
0-controllability of a system with a block-diagonal matrix to the problem of constructing anal-
ogous sets for subsystems of lower dimension are formulated and proved. For subsystems whose
matrix has all eigenvalues that do not exceed one in modulus, it is proved that the limit set of
0-controllability coincides with the entire phase space. For subsystems whose matrix has all eigen-
values strictly greater than one in absolute value, it is proved that the limit set of 0-controllability is
a convex, bounded, and open set. In this case, there has been developed a method for constructing
polyhedral estimates for the limit set of 0-controllability based on the apparatus of supporting half-
spaces and properties of convex sets. The reference half-spaces oriented along the direction of the
eigenvectors and associated vectors of the matrix of the system were constructed explicitly. Also,
for the case of a bounded limit set of 0-controllability, there has been developed a method for con-
structing its outer estimate based on the principle of contraction mappings with any predetermined
accuracy.

The obtained theoretical results were tested on examples.

APPENDIX

Proof of Lemma 1. Denote the initial states of the system (A1,U1) and (A2,U2) by x0,1 ∈ R
n1

and x0,2 ∈ R
n2 respectively. Then x0 =

(
x0,1
x0,2

)
is the initial state of the system (A,U).

By (1) it is true that for all N ∈ N

x(N) = ANx0 +AN−1u(0) +AN−2u(1) + . . .+ u(N − 1)

=

(
AN

1 O

O AN
2

)(
x0,1

x0,2

)
+

(
AN−1

1 O

O AN−1
2

)(
u1(0)

u2(0)

)
+ . . .+

(
u1(N − 1)

u2(N − 1)

)

=

(
AN

1 x0,1 +AN−1
1 u1(0) + . . . + u1(N − 1)

AN
2 x0,2 +AN−1

2 u2(0) + . . . + u2(N − 1)

)
=

(
x1(N)

x2(N)

)
.

Then x(N) = 0 if and only if there exist u1(0), . . . , u1(N − 1) ∈ U1 and u2(0), . . . , u2(N − 1) ∈ U2

such that x1(N) = 0, x2(N) = 0. The equality data is, by virtue of (2), equivalent to including
x0,1 ∈ X1(N), x0,2 ∈ X2(N). Hence,

X (N) = X1(N)× X2(N).

Let x0 ∈ X∞. Then according to (3) there exists Ñ ∈ N such that

x0 ∈ X (Ñ) = X1(Ñ)× X2(Ñ) ⊂
∞⋃

N=0

X1(N)×
∞⋃

N=0

X2(N) = X1,∞ × X2,∞.

Then X∞ ⊂ X1,∞ × X2,∞.
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Let x0 ∈ X1,∞ × X2,∞. Therefore, there are Ñ1, Ñ2 ∈ N such that x0 ∈ X1(Ñ1)× X2(Ñ2) ⊂
X1(Ñ)× X2(Ñ), where Ñ = max{Ñ1, Ñ2}. Then, by point 1 of the Lemma 1

x0 ∈ X (Ñ) ⊂
∞⋃

N=0

X (N) = X∞.

It follows that X1,∞ × X2,∞ ⊂ X∞.

Finally, we get that X∞ = X1,∞ × X2,∞. Lemma 1 is proved.

Proof of Lemma 2. Let {y(k)}Nk=0 be the trajectory of the system (S−1AS,S−1U), i.e. y(N)
according to (1) for the initial state y0 ∈ R

n admits the following representation:

y(N) = S−1ASy(N − 1) + v(N − 1) = . . . = S−1ANSy0 + S−1AN−1Sv(0) + . . .+ v(N − 1),

where v(0), . . . , v(N − 1) ∈ S−1U .
By virtue of (2) y0 ∈ Y(N) if and only if y(N) = 0, i.e.

S−1ANSy0 + S−1AN−1Sv(0) + . . .+ v(N − 1) = 0,

ANSy0 +AN−1Sv(0) + . . .+ Sv(N − 1) = 0,

which, by virtue of (2), is equivalent to including Sy0 ∈ X (N), since by construction Sv(0), . . . ,
Sv(N − 1) ∈ U . Whence follows the equality X (N) = SY(N).

Let x0 ∈ X∞. By (3), there exists Ñ ∈ N ∪ {0} such that x0 ∈ X (Ñ), which is equivalent to
including x0 ∈ SY(Ñ) according to point 1 of the Lemma 2. Hence S−1x0 ∈ Y(Ñ). Then S−1x0 ∈
∞⋃

N=0
Y(N) = Y∞, i.e. x0 ∈ SY∞. Then X∞ ⊂ SY∞.

Let x0 ∈ SY∞, then S−1x0 ∈ Y∞. By (3) there exists Ñ ∈ N ∪ {0} such that S−1x0 ∈ Y(Ñ ).
Then x0 ∈ SY(Ñ ), which is equivalent to including x0 ⊂ X (Ñ ) by point 1 of the Lemma 2. Ac-
cording to the (3) relations, the inclusion x0 ∈ X∞ is also true. Then SY∞ ⊂ X∞.

Finally, we get that SY∞ = X∞. Lemma 2 is proved.

Proof of Lemma 3. Let x0 ∈ R
n1 ×X2,∞. Then x0 =

(
x0,1
x0,2

)
, where x0,1 ∈ R

n1 , x0,2 ∈ X2,∞,

whence according to (3) there exists Ñ ∈ N ∪ {0} such that x0,2 ∈ X2(Ñ), which according to (2)
is equivalent to the existence of u∗2(0), . . . , u

∗
2(Ñ − 1) ∈ U2 such that x2(Ñ ) = 0. Then for the

system (A,U) there are u(0), . . . , u(Ñ − 1) ∈ U such that u(k) =

(
u1(k)
u∗2(k)

)
, k = 0, Ñ − 1. By (1),

x(Ñ ) has the representation

x(Ñ) =

(
AÑ

1 x0,1 +AÑ−1
1 u1(0) + . . .+ u1(Ñ − 1)

0

)
=

(
x̃1
0

)
.

According to the Lemma 1, it suffices to show that there exists U1 ⊂ R
n1 such that U1 × {0} ⊂ U

and X1,∞ = R
n1 , where X1,∞ is the limit set of 0-controllability of the system (A1,U1).

Denote by S ∈ R
n1×n1 the transition matrix to the normal Jordan basis of the matrix A1.

Since 0 ∈ int U , there exists umax > 0 such that S[−umax;umax]
n1 × {0} ⊂ U . Moreover, due to

the non-degeneracy of the matrix S and the Lemma 2, the equality X1,∞ = R
n1 is true for the

case U1 = S[−umax;umax]
n1 if and only if S−1X1,∞ = R

n1 , where S−1X1,∞ is the limit set of 0-
controllability of the system (S−1A1S, [−umax;umax]

n1) . Moreover, according to the normal Jordan
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form theorem [25], the equality

S−1A1S =




J1 0 0 . . .

0 J2 0 . . .
...

...
. . .

...
0 0 . . . Jñ1



,

where the Jordan cells Ji corresponding to the real eigenvalues λi ∈ R of the matrix A1 have the
form

Ji =




λi 1 0 . . . 0

0 λi 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . λi




∈ R
mi×mi , (A.1)

and the Jordan cells Ji corresponding to the complex eigenvalues λi ∈ C of the matrix A1 have the
form

Ji =




riAϕi
I 0 . . . 0

0 riAϕi
I . . . 0

...
...

. . .
...

0 0 . . . riAϕi
I

0 0 0 . . . riAϕi




∈ R
2mi×2mi , Aϕi

=

(
cosϕi sinϕi

− sinϕi cosϕi

)
, (A.2)

where ri = |λi|, ϕi = arg(λi).

Hence, by virtue of Lemma 1, it suffices to show that for |λi| 6 1, the limit sets of null-
controllability of the system are (Ji, [−umax;umax]

mi) for the case of (A.1) and the systems
(Ji, [−umax;umax]

2mi) for the case of (A.2) coincide with R
mi and R

2mi correspondingly, for all
i = 1, ñ1.

Let J ∈ R
m×m satisfy (A.1). Then for all N > m the following relations hold

JN =




λN NλN−1 C2
NλN−2 . . . Cm−1

N λN−m+1

0 λN NλN−1 . . . Cm−2
N λN−m+2

...
...

...
. . .

...
0 0 0 . . . λN



, (A.3)

where we denote the number of combinations of N choose m by Cm
N :

Cm
N =

N !

(N −m)!m!
.

Denote by {y(k), v(k−1), y0}Nk=1 the process of controlling the system (J, [−umax;umax]
m). Hence

y(N) = JNy0 +
N−1∑

k=0

Jkv(N − k − 1).

If we denote z0 = JNy0, then by (A.3) it is right for each ith coordinate of z0, that

z0,i =
m−i∑

j=0

λN−jC
j
Ny0,j+i, i = 1,m.
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Let us assume, that |λ| < 1. Then for all N > 2m the following relations hold

|z0,i| 6
m−i∑

j=0

|λN−jy0,j+iC
j
N | 6

m−1∑

j=0

|λN−j || max
i=1,m

y0,i||Cj
N |

6 m|λN−m+1| max
i=1,m

|y0,i|Cm−1
N 6 m max

i=1,m
|y0,i||λ|N−m+1N · (N − 1) · . . . · (N −m+ 2)

(m− 1)!

6 m max
i=1,m

|y0,i||λ|N−m+1 Nm−1

(m− 1)!
N→∞−→ 0.

Then there exists Ñ ∈ N such, that for all i = 1,m

−umax < z0,i < umax.

Let us take v(0) = . . . = v(Ñ − 2) = 0 and v(Ñ − 1) = −z0 ∈ [−umax;umax]
m. Then we obtain

y(Ñ ) = 0, i.e. y0 ∈ Y(Ñ ). Therefore, by choosing arbitrary y0 ∈ R
m and equation (3) we obtain

the result Y∞ = R
m.

Let us assume, that |λ| = 1. Then by (A.3) for some Nm ∈ N and mth coordinate of y(Nm) it
is right that

ym(Nm) = λNmym(0) +
Nm−1∑

k=0

λkvm(Nm − k − 1).

Here we choose Nm ∈ N, requiring |ym(0)| 6 Nmumax. Then we take v(0), . . . , v(Nm − 1) ∈
[−umax;umax]

m in accordance with the following condition:

vm(Nm − k − 1) = −λNmym(0)

λkNm
∈ [−umax;umax], k = 0, Nm − 1.

We obtain

ym(Nm) = λNmym(0) +
Nm−1∑

k=0

λk−λNmym(0)

λkNm
= 0.

Let us assume that for some N ∈ N and i = 1,m− 1 it is right that ym(N) = . . . =
ym−i+1(N) = 0. Then if vm(N +Nm−i − k − 1) = . . . = vm−i+1(N +Nm−i − k − 1) = 0, k =
0, Nm−i − 1 is right, then by (A.3) the following result is straightforward

ym−i(N +Nm−i) = λNm−iym−i(N) +

Nm−i−1∑

k=0

λkvm−i(N +Nm−i − k − 1),

where Nm−i ∈ N is chosen from the condition |ym−i(N)| 6 Nm−iumax. Then we determine
v(N), . . . , v(N +Nm−i − 1) ∈ [−umax;umax]

m in order that

vm−i(N +Nm−i − k − 1) =
−λNm−iym−i(N)

Nm−iλk
, k = 0, Nm−i − 1.

We obtain

ym−i(N +Nm−i) = λNm−iym−i(N) +

Nm−i−1∑

k=0

λk−λNm−iym−i(N)

Nm−iλk
= 0,

ym(N +Nm−i) = . . . = ym−i+1(N +Nm−i) = 0.
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Then there exists N ∈ N such, that y(N) = 0, i.e. y0 ∈ Y(N) by the method of mathematical in-
duction. Therefore, we obtain the result Y∞ = R

m by choosing arbitrary y0 ∈ R
m and equation (3).

Let J ∈ R
2m×2m satisfy the case (A.2). Then for all N > m the following relations hold

JN =




rNANϕ NrN−1A(N−1)ϕ . . . Cm−1
N rN−m+1A(N−m+1)ϕ

0 rNANϕ . . . Cm−2
N rN−m+2A(N−m+2)ϕ

...
...

. . .
...

0 0 . . . rNANϕ



. (A.4)

Denote the process of controlling the system (J, [−umax;umax]
2m) by {y(k), v(k − 1), y0}Nk=1.

Hence

y(N) = JNy0 +
N−1∑

k=0

Jkv(N − k − 1).

If we denote z0 = JNy0, then by (A.4) for each ith two-dimensional subvector z0 it is right, that

z0,i =
m−i∑

j=0

C
j
NrN−jA(N−j)ϕy0,j+i ∈ R

2, i = 1,m,

where z0 = (zT0,1, . . . , z
T
0,m)T, y0 = (yT0,1, . . . , y

T
0,m)T.

Let us assume, that r < 1. Then for all N > 2m the following relations hold

‖z0,i‖ 6

m−i∑

j=0

‖rN−jA(N−j)ϕy0,j+iC
j
N‖ 6

m−1∑

j=0

rN−j‖A(N−j)ϕy0,i‖Cj
N

6

m−1∑

j=0

rN−j max
i=1,m

‖y0,i‖Cj
N 6 mrN−m+1 max

i=1,m
‖y0,i‖

N(N − 1) · . . . · (N −m+ 2)

(m− 1)!

6 mrN−m+1 max
i=1,m

‖y0,i‖
Nm−1

(m− 1)!
N→∞−→ 0.

Then there exists Ñ ∈ N such, that for all i = 1,m it is right that

‖z0,i‖ < umax.

Let us determine v(0) = . . . = v(Ñ −2) = 0 and v(Ñ −1) = −z0 ∈ [−umax;umax]
2m. We obtain the

result y(Ñ) = 0, i.e. y0 ∈ Y(Ñ ). Therefore, we obtain the result Y∞ = R
2m by choosing arbitrary

y0 ∈ R
2m and equation (3).

Let us assume, that r = 1. Then by (A.4) for some Nm ∈ N and mth two-dimensional subvector
y(Nm) it is true, that

ym(Nm) = ANmϕym(0) +
Nm−1∑

k=0

Akϕvm(Nm − k − 1).

Let us take Nm ∈ N which hold the inequality ‖ym(0)‖ 6 Nmumax. Then we choose v(0), . . . ,
v(Nm − 1) ∈ [−umax;umax]

2m in accordance with the equality

vm(Nm − k − 1) = −
A(Nm−k)ϕym(0)

Nm
∈ [−umax;umax]

2m, k = 0, Nm − 1.
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We obtain

ym(Nm) = ANmϕym(0) +
Nm−1∑

k=0

−ANmϕym(0)

Nm
= 0.

Let us assume that for some N ∈ N and i = 1,m− 1 the relation ym(N) = . . . = ym−i+1(N) = 0
is correct. Then if vm(N +Nm−i− k− 1) = . . . = vm−i+1(N +Nm−i− k− 1) = 0, k = 0, Nm−i − 1,
then according to the (A.4)

ym−i(N +Nm−i) = ANm−iϕym−i(N) +

Nm−i−1∑

k=0

Akϕvm−i(N +Nm−i − k − 1),

where Nm−i ∈ N is selected from the condition ‖ym−i(N)‖ 6 Nm−iumax. Then we define v(N), . . . ,
v(N +Nm−i − 1) ∈ [−umax;umax]

2m in order that

vm−i(N +Nm−i − k − 1) =
−A(Nm−i−k)ϕym−i(N)

Nm−i
, k = 0, Nm−i − 1.

We obtain

ym−i(N +Nm−i) = ANm−iϕym−i(N) +

Nm−i−1∑

k=0

−ANm−iϕym−i(N)

Nm−i
= 0,

ym(N +Nm−i) = . . . = ym−i+1(N +Nm−i) = 0.

Then there exists N ∈ N such, that y(N) = 0, i.e. y0 ∈ Y(N) by the method of mathematical
induction. Therefore, we obtain the result Y∞ = R

2m by choosing arbitrary y0 ∈ R
2m and equa-

tion (3).

Hence the Lemma 3 is proved.

Proof of Theorem 1. Let x0 ∈ X∞, which by (3) is equivalent to the existence of N ∈ N ∪ {0}
such, that x0 ∈ X (N). By (2) there exist u(0), . . . , u(N − 1) ∈ U such, that x(N) = 0. Based
on (1), for all h ∈ ∂B1(0), ε > 0 the following relations hold

x̃(N) = AN (x0 + εh) +AN−1u(0) + . . .+ u(N − 1)

= ANx0 +AN−1u(0) + . . .+ u(N − 1) +ANhε = x(N) +ANhε = ANhε,

x̃(N + 1) = Ax̃(N) + u(N) = AN+1hε+ u(N),

where u(N) ∈ U . Considering 0 ∈ int U , there exists δ > 0 such, that Oδ(0) ⊂ U , and ε > 0 such,
that εAN+1B1(0) ⊂ Oδ(0). Let us take

u(N) = −AN+1hε ∈ εAN+1B1(0) ⊂ Oδ(0) ⊂ U .

Then x̃(N + 1) = 0, i.e. for all h ∈ B1(0) it is true that x0 + εh ∈ X (N + 1). As a result, Bε(x0) ⊂
X (N + 1) ⊂ X∞, i.e. x0 ∈ int X∞. Hence, X∞ is open.

Let x0,1, x0,2 ∈ X∞, α ∈ [0; 1]. Then there exists N ∈ N ∪ {0} such, that x0,1, x0,2 ∈ X (N),
i.e. there exist u1(0), u1(1), . . . , u1(N − 1), u2(0), u2(1), . . . , u2(N − 1) ∈ U such, that x1(N) = 0,

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 2 2023



ABOUT THE METHOD FOR CONSTRUCTING EXTERNAL ESTIMATES 113

x2(N) = 0. According to the (1) it is true that

0 = x1(N) = ANx0,1 +AN−1u1(0) +AN−2u1(1) + . . . + u1(N − 1),

0 = x2(N) = ANx0,2 +AN−1u2(0) +AN−2u2(1) + . . . + u2(N − 1),

0 = αx1(N) = αANx0,1 +
N−1∑

k=0

αAku1(N − k − 1),

0 = (1− α)x2(N) = (1− α)ANx0,2 +
N−1∑

k=0

(1− α)Aku2(N − k − 1),

0 = AN (αx0,1 + (1− α)x0,2) +
N−1∑

k=0

Ak(αu1(N − k − 1) + (1− α)u2(N − k − 1)).

According to the convexity of U the relatios v(N−k−1) = αu1(N−k−1)+(1−α)u2(N−k−1)∈U ,
k = 0, N − 1 are correct. Then αx0,1 + (1 − α)x0,2 ∈ X (N) ⊂ X∞, from which it follows that X∞
is convex.

The Theorem 1 is proved.

Proof of Lemma 4. Let x0 ∈ X∞. Then by (3) there exists N ∈ N ∪ {0} such, that x0 ∈ X (N).
According to the (2) there exist u(0), u(1), . . . , u(N − 1) ∈ U such, that x(N) = 0. Based on (1),
it is right that

0 = x(N) = ANx0 +
N−1∑

k=0

Aku(N − k − 1),

0 = x0 +A−N
N−1∑

k=0

Aku(N − k − 1),

x0 = −
N−1∑

k=0

A−N+ku(N − k − 1) = −
N∑

k=1

A−ku(k − 1).

Let p belong to R
n \ {0}. Then

(p, x0) =

(
p,−

N∑

k=1

A−ku(k − 1)

)
=

N∑

k=1

(
p,−A−ku(k − 1)

)

=
N∑

k=1

(
(−A−k)Tp, u(k − 1)

)
6

N∑

k=1

max
uk∈U

(
−(A−k)Tp, uk

)
.

Since 0 ∈ U , then for all k ∈ N

max
uk∈U

(
−(A−k)Tp, uk

)
> 0.

Then

(p, x0) 6
∞∑

k=1

max
uk∈U

(
−(A−k)T)p, uk

)
,

i.e. x0 ∈ Hp. It follows that X∞ ⊂ Hp.

Let us consider the following quantity for some p ∈ R
n \ {0}:

(p, x∗) =
∞∑

k=1

(p,−A−ku∗k) =
∞∑

k=1

(−(A−k)Tp, u∗k) =
∞∑

k=1

max
uk∈U

(
−(A−k)Tp, uk

)
.

Then x∗ ∈ ∂Hp.
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Since all eigenvalues of the matrix A are strictly greater than 1 in absolute value, then the series
∞∑
k=1

A−ku∗k converges. Then xN = −
N∑
k=1

A−ku∗k
N→∞−→ x∗. Demonstrate that xN ∈ X (N) ⊂ X∞. Let

us take u(k) = u∗k+1 ∈ U . Then

x(N) = ANxN +
N−1∑

k=0

Aku(N − k − 1) = −
N∑

k=1

AN−ku∗k +
N−1∑

k=0

Aku∗N−k−1 = 0.

Then xN ∈ X (N) ⊂ X∞ for all N ∈ N. It follows that x∗ = lim
N→∞

xN ∈ X∞.

The Lemma 4 is proved.

Corollary 2. Let all eigenvalues of the matrix A ∈ R
n×n be strictly greater than 1 in absolute

value, X∞ is defined by (3).

Then for all p ∈ R
n \ {0} it is right that:

1) X∞ ⊂ H−p =

{
x ∈ R

n : (p, x) >
∞∑

k=1

min
uk∈U

(−(A−k)Tp, uk)

}
;

2) x∗ = −
∞∑

k=1

A−ku∗k ∈ X∞ ∩ ∂H−p, where

u∗k = arg min
uk∈U

(
−(A−k)Tp, uk

)
.

Proof of Corollary 2. For proving that it is sufficient to consider the conditions of the Lemma 4
for the vector −p.

Proof of Lemma 5. Let p =
(
0 . . . 0 1 0 . . . 0

)T
∈ R

n, where 1 corresponds to the ith

coordinate of the vector p. Then for arbitrary k ∈ N

A−k =




λ−k (−1)kλ−k−1 (−1)2k(k+1)λ−k−2 1

2
. . . (−1)n−1 (k + n− 2)!

(n−1)!(k−1)!
λ−k−n+1

0 λ−k (−1)kλ−k−1 . . . (−1)n−2 (k + n− 3)!

(n−2)!(k−1)!
λ−k−n+2

...
...

...
. . .

...

0 0 0 . . . λ−k




,

−(A−k)Tp = −




0
...
0

λ−k

(−1)kλ−k−1

...

(−1)n−i (k + n− i− 1)!

(k − 1)!(n − i)!
λ−k−n+i




,

(−(A−k)Tp, u) = −(λ−kui − kλ−k−1ui+1 + . . .+ (−1)n−iλ−k−n+iCn−i
k+n−i−1un)

= −
n−i∑

j=0

λ−k−j(−1)juj+iC
j
k+j−1 =

n−i∑

j=0

λ−k−j(−1)j+1uj+iC
j
k+j−1.
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Let us consider the case λ > 1. Since ui ∈ [ui,min;ui,max], then for all k ∈ N the following in-
equalities hold

(−(A−k)Tp, u) 6
n−i∑

j=0

λ−k−jC
j
k+j−1max{(−1)j+1uj+i,min; (−1)j+1uj+i,max},

−(−(A−k)Tp, u) 6 −
n−i∑

j=0

λ−k−jC
j
k+j−1min{(−1)j+1uj+i,min; (−1)j+1uj+i,max}.

Additionally, the following equalities hold

∞∑

k=1

n−i∑

j=0

λ−k−jC
j
k+j−1 =

n−i∑

j=0

∞∑

k=1

λ−k−jC
j
k+j−1 =

n−i∑

j=0

1

(λ− 1)j+1
.

By Lemma 4 and Corollary 2, which implies, that for all x ∈ X∞ inequalities hold

n−i∑

j=0

min{(−1)j+1uj+i,min; (−1)j+1uj+i,max}
(λ− 1)j+1

6 (p, x)

6

n−i∑

j=0

max{(−1)j+1uj+i,min; (−1)j+1uj+i,max}
(λ− 1)j+1

.

Since X∞ is open according to the Theorem 1, these inequalities strictly hold, i.e.

X∞ ⊂
n⋂

i=1

{x ∈ R
n : xi ∈ (xi,min;xi,max)}.

Let us consider the case λ < −1. For all k ∈ N it is true that

(−(A−k)Tp, u) =
n−i∑

j=0

|λ|−k−j(−1)−k−j+j+1uj+iC
j
k+j−1 =

n−i∑

j=0

|λ|−k−j(−1)−k+1uj+iC
j
k+j−1.

Then

max
u∈U

(−(A−(2k−1))Tp, u) = max
u∈U




n−i∑

j=0

|λ|−(2k−1)−j(−1)−(2k−1)+1uj+iC
j
(2k−1)+j−1




=
n−i∑

j=0

|λ|−(2k−1)−jui+j,maxC
j
(2k−1)+j−1,

max
u∈U

(−(A−2k)Tp, u) = max
u∈U




n−i∑

j=0

|λ|−2k−j(−1)−2k+1uj+iC
j
2k+j−1




=
n−i∑

j=0

|λ|−2k−j(−ui+j,min)C
j
2k+j−1.

Then by Lemma 4 for all x ∈ X∞ it is right, that

(p, x) 6
∞∑

k=1

n−i∑

j=0

|λ|−(2k−1)−jui+j,maxC
j
(2k−1)+j−1 −

∞∑

k=1

n−i∑

j=0

|λ|−2k−jui+j,minC
j
2k+j−1

=
n−i∑

j=0

ui+j,max

(
1

2(|λ| + 1)j+1
+

1

2(|λ| − 1)j+1

)

−
n−i∑

j=0

ui+j,min

(
1

2(|λ| − 1)j+1
+

1

2(|λ|+ 1)j+1

)
= xi,max.
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Similarly

min
u∈U

(
−(A−(2k−1))Tp, u

)
= min

u∈U




n−i∑

j=0

|λ|−(2k−1)−j(−1)−(2k−1)+1uj+iC
j
(2k−1)+j−1




=
n−i∑

j=0

|λ|−(2k−1)−juj+i,minC
j
(2k−1)+j−1,

min
u∈U

(
−(A−2k)Tp, u

)
= min

u∈U




n−i∑

j=0

|λ|−2k−j(−1)−2k+1uj+iC
j
2k+j−1




=
n−i∑

j=0

|λ|−2k−j(−uj+i,max)C
j
2k+j−1.

Then by Corollary 2 for all x ∈ X∞ it is right that

(p, x) >
∞∑

k=1

n−i∑

j=0

|λ|−(2k−1)−jui+j,minC
j
(2k−1)+j−1 −

∞∑

k=1

n−i∑

j=0

|λ|−2k−jui+j,maxC
j
2k+j−1

=
n−i∑

j=0

ui+j,min

(
1

2(|λ|+ 1)j+1
+

1

2(|λ| − 1)j+1

)

−
n−i∑

j=0

ui+j,max

(
1

2(|λ| − 1)j+1
+

1

2(|λ|+ 1)j+1

)
= xi,min.

Since X∞ is open according to the 1, then

xi,min < (p, x) < xi,max,

X∞ ⊂
n⋂

i=1

{x ∈ R
n : xi ∈ (xi,min;xi,max)}.

The Lemma 5 is proved.

Proof of Lemma 6. Let p = (0 0 . . . p̃T . . . 0)T ∈ R
2n, p̃ = (p1 p2)

T ∈ R
2, p21 + p22 = 1, where

p̃ corresponds to the (2i − 1)th and 2ith coordinates of the vector p. Then for arbitrary k ∈ N it
is true that

A−k =




r−kA−kϕ −kr−k−1A(−k−1)ϕ . . . (−1)n−1Cn−1
n+k−2r

−k−n+1A(−k−n+1)ϕ

0 r−kA−kϕ . . . (−1)n−2Cn−2
n+k−3r

−k−n+2A(−k−n+2)ϕ
...

...
. . .

...
0 0 . . . r−kA−kϕ



,

−(A−k)Tp =




0
...
0

r−kA−kϕp̃

−kr−k−1A(−k−1)ϕp̃
...

(−1)n−iCn−i
k+n−i−1r

−k−n+iA(−k−n+i)ϕp̃




.
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Let ui ∈ R
2, i = 1, n, u = (u1

T
, . . . , unT)T ∈ R

2n. Then

(
−(A−k)Tp, u

)
= −

(
r−k(A−kϕp̃, u

i) + (−1)kr−k−1(A(−k−1)ϕp̃, u
i+1) + . . .

+ (−1)n−iCn−i
k+n−i−1r

−k−n+i(A(−k−n+i)ϕp̃, u
n)
)

= −
n−i∑

j=0

r−k−j(A(−k−j)ϕp̃, u
i+j)Cj

k+j−1 6

n−i∑

j=0

r−k−j‖(A(−k−j)ϕp̃‖‖ui+j‖Cj
k+j−1

=
n−i∑

j=0

r−k−j‖ui+j‖Cj
k+j−1 6

n−i∑

j=0

r−k−jri+j,maxC
j
k+j−1.

Then by Lemma 4 for arbitrary x ∈ X∞ it is right that

(p, x) 6
∞∑

k=1

n−i∑

j=0

r−k−jri+j,maxC
j
k+j−1 =

n−i∑

j=0

∞∑

k=1

r−k−jri+j,maxC
j
k+j−1 =

n−i∑

j=0

ri+j,max

(r − 1)j+1
.

Since X∞ according to the Theorem 1 is open, then

X∞ ⊂
n⋂

i=1

{
x ∈ R

2n : ‖(x2i−1x2i)
T‖R2 < Ri,max

}
.

The Lemma 6 is proved.

Proof of Theorem 2. Let us consider for some B ∈ R
n×n and C ∈ Kn the mapping

T̃ (X ) = BX + C.

Let us demonstrate, that if B : Rn → R
n is a contraction mapping with the compression ratio

β ∈ [0; 1), then T̃ : Kn → Kn is also a contraction mapping.

ρH(T̃ (X ), T̃ (Y)) = max



 sup

x∈T̃ (X )

inf
y∈T̃ (Y)

ρ(x, y); sup
y∈T̃ (Y)

inf
x∈T̃ (X )

ρ(x, y)





= max





sup
x∈X
c1∈C

inf
y∈Y
c2∈C

‖Bx+ c1 −By − c2‖; sup
y∈Y
c2∈C

inf
x∈X
c1∈C

‖Bx+ c1 −By − c2‖






6 max




sup
x∈X
c1∈C

inf
y∈Y
c2∈C

(‖B(x− y)‖+ ‖c1 − c2‖); sup
y∈Y
c2∈C

inf
x∈X
c1∈C

(‖B(x− y)‖+ ‖c1 − c2‖)





= max

{
sup
x∈X

inf
y∈Y

‖B(x− y)‖; sup
y∈Y

inf
x∈X

‖B(x− y)‖
}

6 max

{
sup
x∈X

inf
y∈Y

β‖x− y‖; sup
y∈Y

inf
x∈X

β‖x− y‖
}

= βρH(X ,Y).

Then T̃ is a contraction mapping with the compression ratio β.
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According to the (4) the following equality holds

TM (X ) = A−MX +
M∑

k=1

(−A−kU) = T̃ (X ),

where B = A−M , C =
M∑
k=1

(−A−kU).

Since all eigenvalues of the matrix A are strictly greater than 1 in absolute value, then all
eigenvalues of the matrix A−1 are strictly less than 1 in absolute value. Then according to the [24,

Theorem 5.6.12] ‖A−k‖ k→∞−→ 0. Then by definition of the limit for α ∈ [0; 1) there exists M ∈ N

such, that ‖A−M‖ < α. As the following inequality

‖A−M (x− y)‖ 6 ‖A−M‖ · ‖x− y‖ < α‖x− y‖,

is fair, then A−M is a contraction mapping with the compression ratio α ∈ [0; 1). Then TM : Kn −→
Kn is also a contraction mapping with the compression ratio α.

By virtue of Lemma 7 for all N ∈ N it is right, that X (N) ⊂ X (N + 1), in addition, X (N) is a
compact set. Then according to the [27, Corollary A.3.4]

ρH
(
X∞,X (N)

) N→∞−→ 0. (A.5)

In contrast, by virtue of [27, Theorem A.3.9] the metric space (Kn, ρH) is complete. Then the
contraction mapping T̃ has a unique fixed point X ∗ ∈ Kn, which can be computed by fixed point
iteration method:

X ∗ = lim
N→∞

(T̃ ◦ . . . ◦ T̃ )︸ ︷︷ ︸
N

(X ), (A.6)

where X ∈ Kn is arbitrary. Let us take X = {0}. Then by virtue of Lemma 7

(T̃ ◦ . . . ◦ T̃ )︸ ︷︷ ︸
N

({0}) = −
MN∑

k=1

A−kU = X (NM).

According to the uniqueness of the limit point and formulae (A.5) and (A.6)

X∞ =
∞⋃

N=0

X (N) = X ∗.

The error in the fixed point iteration method can be estimated by the following formula [28]:

ρH(X∞,X (NM)) 6
αN

1− α
ρH(X (M), {0}).

The Theorem 2 is proved.

Proof of Theorem 3. By virtue of the point 3 of the Theorem 2

ρH(X∞,X (NM)) 6
αN
p

1− αN
p

ρH(X (M), {0}) = Rp, p ∈ {1, 2,∞}.

Then according to the definition of the Hausdorff distance

X∞ ⊂ X∞ ⊂ X (NM) +BRp(0),
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where

BR1
(0) = conv




(0, . . . , 0︸ ︷︷ ︸

i

, r, 0, . . . , 0)T : r ∈ {−R1, R1}, i = 0, n − 1




,

BR2
(0) =




x ∈ R
n :

√√√√
n∑

i=1

|xi|2 6 R2




 ,

BR∞
(0) =

{
x ∈ R

n : max
i=1,n

|xi| 6 R∞

}
.

The Theorem 3 is proved.
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