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Abstract—This paper proposes a method for diagnosing linear dynamic systems described by
discrete-time models with exogenous disturbances based on interval observers. Formulas are
derived to construct an interval observer producing two values of the residual as follows: if zero
is between these values, then the system has no faults to be detected by the observer. The case
where zero does not belong to the interval between these values is qualified as the occurrence
of a fault. The theoretical results are illustrated by an example.
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1. INTRODUCTION AND PROBLEM STATEMENT

This paper further develops the works [1, 2], devoted to the design of interval observers for
systems described by linear models with exogenous disturbances. The corresponding problem has
been actively studied in recent years. Overviews of the current results can be found in [3, 4]; the
solutions for various classes of systems and related applications, in [5–10]. Characteristic features
of the cited research are as follows. First, the interval observer has a dimension coinciding with that
of the original system; second, the set of admissible values of the full state vector is estimated. At
the same time, it may be of theoretical and practical interest to obtain such an estimate only for a
given linear function of the state vector. The corresponding interval observer may be considerably
simpler than the full-dimensional observer and the resulting interval may have an appreciably
smaller width.

In [11–16], interval observers were used to perform functional diagnosis. The authors [11–13, 15]
designed the observer based on the original system, which led to cumbersome constructs and com-
plicated methods for minimizing the influence of exogenous disturbances on the diagnosis process.
The paper [14] considered the diagnosis problem in a family of coupled subsystems: for each subsys-
tem, a particular interval observer of full dimension was constructed. In [16], a practical problem
was solved based on a special-form interval observer.

As is known, an adaptive threshold is traditionally used to reduce the probabilities of false
alarms and fault omissions during diagnosis. This threshold sets lower and upper bounds for the
residual in the absence of faults. Although the concept of an adaptive threshold appeared more
than 30 years ago, it has been developed for various classes of systems up to the present time; for
example, see [17, 18]. In these works, the residual was generated by a diagnostic observer whereas
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AN INTERVAL OBSERVER-BASED METHOD 1479

the adaptive threshold was formed separately. Such an approach leads to rather complicated
diagnostic schemes.

In contrast, due to its specifics, an interval diagnostic observer produces only two values of
the residual, which significantly simplifies the scheme. In addition, the residuals are formed so
that in the absence of faults, the values of one residual are nonpositive and those of the other are
nonnegative. In other words, if zero lies between these values, then the system has no faults to be
detected by the observer. The case where zero does not belong to the interval between these values
is qualified as the occurrence of a fault. In addition, unlike traditional adaptive threshold schemes,
the values of residuals produced by the interval observer are independent of the control and output
signals of the diagnosed system. This property also simplifies the decision process based on the
diagnosis results.

In this paper, we construct minimal-dimension interval observers for discrete time-invariant
systems described by linear dynamic models operating under exogenous disturbances in order to
solve the problems of functional diagnosis (fault detection and isolation). In [1, 2], interval observers
were used to estimate the values of a given linear function of the state vector of the original system.
In contrast to [1, 2], in accordance with the diagnosis task, we change the observer structure and
also consider several related issues: methods to maximize sensitivity to faults and isolate them.

Consider a class of systems with the linear discrete-time model

x(t+ 1) = Fx(t) +Gu(t) +Dd(t) + Lρ(t),

y(t) = Hx(t),
(1.1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rl denote the state, control, and output vectors, respectively; F , G,
H, L, and D are given constant matrices; ρ(t) ∈ Rq is an unknown bounded time-varying function
describing exogenous disturbances of the system, i.e., ρ � ρ(t) � ρ with given values ρ and ρ. In
many cases, system faults occur due to unacceptable changes in system parameters. Therefore, we
assume that the variations of the function d(t) ∈ Rp within d � d(t) � d with given values d and d
are admissible, being not treated as a fault; leaving the interval [d, d] is qualified as a fault to be
detected. As in the paper [3], for arbitrary vectors x1, x2 and matrices A1, A2, the relations x1 � x2

and A1 � A2 are understood elementwise.

2. THE MAIN RESULT

The problem under consideration will be solved using the minimal-dimension model of sys-
tem (1.1). In the general case, this model is described by the equation

x∗(t+ 1) = F∗x∗(t) +G∗u(t) + J∗y(t) +D∗d(t) + L∗ρ(t),

y∗(t) = H∗x∗(t),
(2.1)

where x∗(t) ∈ Rk and k < n denotes the model dimension; y∗ ∈ R; F∗, G∗, J∗, H∗, D∗, and L∗ are
the matrices to be determined. By assumption, the relations x∗(t) = Φx(t) and y∗(t) = R∗y(t) with
some matrices Φ and R∗ hold in the absence of faults and exogenous disturbances. The rules for
building this model are presented in Section 3.

According to [1, 2], the model matrices satisfy the conditions

ΦF = F∗Φ+ J∗H, R∗H = H∗Φ,

ΦG = G∗, ΦD = D∗, ΦL = L∗.
(2.2)
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1480 ZHIRABOK, ZUEV

As was demonstrated in [1], the matrices F∗ and H∗ can be written in the canonical form

F∗ =

⎛⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . .
0 0 0 . . . 0

⎞⎟⎟⎟⎠ , H∗ = ( 1 0 0 . . . 0 ). (2.3)

From the standpoint of the problem solved, this form seems ideal since the matrix F∗ is stable for
discrete systems and nonnegative (a necessary property to construct an interval observer) and the
matrix H∗ is nonnegative (a property simplifying the observer’s form).

The desired interval observer is constructed based on model (2.1). By analogy with [12, 13], we
find it in the form

x∗(t+ 1) = F∗x∗(t) +G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ L+
∗ ρ− L−

∗ ρ,

x∗(t+ 1) = F∗x∗(t) +G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ L+
∗ ρ− L−

∗ ρ,

y∗(t) = H∗x∗(t),

y∗(t) = H∗x∗(t),
r(t) = R∗y(t)− y∗(t),
r(t) = R∗y(t)− y∗(t),

(2.4)

where A+ = max{0, A} and A− = A+ −A for an arbitrary matrix A. Obviously, A+ � 0 and
A− � 0.

Theorem 1. If x∗(0) � x∗(0) � x∗(0), then the relation 0 ∈ [r(t), r(t)] holds for all t � 0 in the
absence of faults. The case 0 �∈ [r(t), r(t)] for some t > 0 is qualified as the occurrence of a fault.

Proof. We introduce the errors e(t) = x∗(t)− x∗(t) and e(t) = x∗(t)− x∗(t). In view of the ex-
pressions (1.1), (2.1), and (2.2), the equation for the first error can be written and transformed as
follows:

e(t+ 1) = x∗(t+ 1)− x∗(t+ 1)

= F∗x∗(t) +G∗u(t) + J∗y(t) +D∗d(t) + L∗ρ(t)

− (F∗x∗(t) +G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ L+
∗ ρ− L−

∗ ρ)

= F∗(e(t) + x∗(t))− F∗x∗(t) +D∗d(t)− (D+
∗ d−D−

∗ d)
+ L∗ρ(t)− (L+

∗ ρ− L−
∗ ρ)

= F∗e(t) +D∗d(t)− (D+
∗ d−D−

∗ d) + L∗ρ(t)− (L+
∗ ρ− L−

∗ ρ).

(2.5)

Since D∗ = D+∗ −D−∗ ,

D∗d(t)− (D+
∗ d−D−

∗ d) = D+
∗ d(t)−D−

∗ d(t)− (D+
∗ d−D−

∗ d)

= D+
∗ (d(t) − d) +D−

∗ (d− d(t)).

In the absence of faults, we have d � d(t) � d and, in addition, D+∗ � 0 and D−∗ � 0. Consequently,

D∗d(t)− (D+
∗ d−D−

∗ d) � 0.

Similar considerations are adopted to show that

L∗ρ(t)− (L+
∗ ρ− L−

∗ ρ) � 0.
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Recall that, by assumption, e(0) = x∗(0) − x∗(0) � 0 and F∗ � 0. From (2.5) it therefore follows
that e(1) � 0. By induction we establish the inequality e(t) � 0 for all t � 0. The second inequality
e(t) � 0 is proved by analogy.

Considering (2.2) and H∗ � 0, formula (2.4) implies

r(t) = R∗y(t)− y∗(t) = R∗Hx(t)−H∗x∗(t)
= H∗Φx(t)−H∗(e(t) + x∗(t))
= H∗x∗(t)−H∗(e(t) + x∗(t))
= −H∗e(t) � 0

for all t � 0. Similar considerations yield r(t) = R∗y(t)− y∗(t) � 0. The last two inequalities are
equivalent to the required result, which can be written as the implication

d(t) ∈ [d, d] ⇒ 0 ∈ [r(t), r(t)]

for all t � 0. Then, under the condition 0 �∈ [r(t), r(t)] for some t > 0, applying the negation
operation to this implication gives

0 �∈ [r(t), r(t)] ⇒ d(t) �∈ [d, d],

which corresponds to the occurrence of a fault. The maximal sensitivity to faults is ensured by
choosing appropriate matrices of the observer; see Section 3. The proof of Theorem 1 is complete.

Remark 1. In principle, the condition x∗(0)� x∗(0)� x∗(0) can be omitted: due to observer’s
stability, the requirement 0 ∈ [r(t), r(t)] will hold for all t � t0 with some finite time instant t0.

Remark 2. Since the matrix F∗ is stable by construction, the observer (2.4) is stable as well. It
seems natural to assume that the original system is also stable and the control action u(t) is finite;
in this case, the variables y(t), y∗(t), y∗(t) and the residuals r(t) and r(t) will be finite as well.

Thus, the built observer produces the interval [r(t), r(t)]. If zero belongs to this interval, the
decision about no system faults is made (see Section 1); otherwise, the occurrence of a fault is
concluded. In view of the observer’s equations (2.4), the width of the interval [r(t), r(t)] depends
on exogenous disturbances and the admissible range of the variable d(t). The smaller this width is,
the more reliably the faults will be detected.

In terms of diagnosis quality, in particular, sensitivity to faults, the best interval observer is
the one with the minimal width [r(t), r(t)]. According to (2.4), the corresponding case is when
the model has insensitivity to the disturbance, i.e., L∗ = ΦL = 0. The method for building such a
model was developed in [1, 2]. We briefly describe it below.

3. MODEL BUILDING

3.1. Main Relations

Due to the canonical form (2.3), equations (2.2) can be written as

Φ1 = R∗H, ΦiF = Φi+1 + J∗iH, i = 1, . . . , k − 1, ΦkF = J∗kH, (3.1)

where Φi and J∗i indicate the ith rows of the matrices Φ and J∗, respectively, i = 1, . . . , k, and k
is the dimension of model (2.1). These equations are reduced [1, 2] into the single one

( R∗ −J∗1 −J∗2 . . . −J∗k )V (k) = 0, (3.2)
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1482 ZHIRABOK, ZUEV

where

V (k) =

⎛⎜⎜⎜⎝
HF k

HF k−1

. . .
H

⎞⎟⎟⎟⎠ .

The condition of insensitivity to disturbances (ΦL = 0) can be represented as

( R∗ −J∗1 −J∗2 . . . −J∗k )L(k) = 0, (3.3)

where

L(k) =

⎛⎜⎜⎜⎝
HL HFL HF 2L . . . HF k−1L
0 HL HFL . . . HF k−2L
. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎞⎟⎟⎟⎠ .

Since the row ( R∗ −J∗1 −J∗2 . . . −J∗k ) satisfies (3.2), from (3.2) and (3.3) we obtain

( R∗ −J∗1 −J∗2 . . . −J∗k )(V (k) L(k)) = 0. (3.4)

Equation (3.4) has a nontrivial solution if

rank (V (k) L(k)) < l(k + 1).

This condition serves to determine the minimal dimension k � 1 under which equation (3.4) is
solvable. Then, it is necessary to find the solution of (3.4), obtain the rows of the matrix Φ
from (3.1), and let G∗ := ΦG and D∗ := ΦD.

3.2. Maximizing Sensitivity to Faults

If equation (3.4) with the minimal dimension k has several solutions, it is possible to choose the
one with the maximal contribution of faults to the observer (consequently, the maximal sensitivity
to faults, estimated by the norm of the matrix D∗ = ΦD). This can be done more efficiently as
follows. By analogy with the analysis of the contribution made by exogenous disturbances, we
introduce the matrix

D(k) =

⎛⎜⎜⎜⎝
HD HFD HF 2D . . . HF k−1D
0 HD HFD . . . HF k−2D
. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎞⎟⎟⎟⎠ .

Due to (3.1), it can be demonstrated that

‖D∗‖ = ‖(R∗ − J1 − J2 . . . − Jk)D
(k)‖.

Then the contribution of faults is maximized by maximizing the norm

‖(R∗ − J1 − J2 . . . − Jk)D
(k)‖

subject to condition (3.4).

Here, the idea is to find the minimal dimension k under which equation (3.4) has at least two
linearly independent solutions of the form ( R∗ −J∗1 −J∗2 . . . −J∗k ). All these solutions are
combined in a matrix W so that each row represents some solution of equation (3.4). According to
the aforesaid, another solution is an arbitrary linear combination of the rows of this matrix with
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a weight vector w = (w1, . . . , wN ), where N specifies the number of rows in the matrix W . The
problem is to determine the vector w maximizing the norm ‖wWD(k)‖.
To solve this problem, we calculate the singular-value decomposition of the matrix productWD(k).

In other words, the matrix WD(k) is represented as

WD(k) = UDΣDVD,

where UD and VD are orthogonal matrices and the matrix ΣD has the form

ΣD = (diag(σ1, . . . , σs) 0) or ΣD =

(
diag(σ1, . . . , σs)

0

)

depending on the number of rows and columns of the matrix WD(k), where s = min(N, kp) and
0 � σ1 � . . . � σs denote the singular values of the matrix WD(k) [19, 20]. Choosing the ith trans-
posed column of the matrix UD as the weight vector w = (w1, . . . , wN ) yields ‖wWD(k)‖ = σi
[19, 20]. In view of the considerations above, the appropriate vector w = (w1, . . . , wN ) is the
transposed column of the matrix UD that corresponds to the maximal singular value and
(R − J∗1 − J∗2 . . . − J∗k) := wW . Finally, it is necessary to obtain the rows of the matrix Φ
from (3.1) and let G∗ := ΦG and D∗ := ΦD.

Note that this solution is optimal for the chosen dimension k; increasing the dimen-
sion further may give a better solution in terms of the maximum norm of the matrix
(R − J∗1 − J∗2 . . . − J∗k)D(k).

3.3. Minimizing the Contribution of Exogenous Disturbances

If for all k < n equation (3.4) is unsolvable, we cannot build the model insensitive to exogenous
disturbances. Then it is necessary to employ robust methods minimizing the contribution of exoge-
nous disturbances to the model [19]. Based on the analysis above, this problem obviously reduces
to minimizing the norm ‖(R∗ − J1 − J2 . . . − Jk)L

(k)‖ subject to condition (3.2).

By analogy with the considerations above, the idea is to find the minimal dimension k
under which equation (3.2) has at least two linearly independent solutions of the form
( R∗ −J∗1 −J∗2 . . . −J∗k ). All these M solutions, are combined in a matrix V so that each
row represents some solution of equation (3.2). The problem is to determine a weight vector
v = (v1, . . . , vM ) mimizing the norm ‖vV L(k)‖.

Next, we calculate the singular-value decomposition of the matrix product V L(k), i.e.,
V L(k) = ULΣLVL, and take the first transposed column of the matrix UL as the weight vec-
tor v = (v1, . . . , vM ). According to the aforesaid, the linear combination of the solutions corre-
sponding to the rows of the matrix V with the weights v1, . . . , vM gives the optimal solution
( R∗ −J∗1 −J∗2 . . . −J∗k ) = vV. Finally, it is necessary to obtain the rows of the matrix Φ
from (3.1) and let G∗ := ΦG and D∗ := ΦD. Thus, the robust model has been designed.

Other methods for building robust models, particularly the ones considering the contribution of
faults, were discussed in [19].

4. ISOLATING FAULTS

The observer constructed above allows detecting the set of faults defined by the condition
D∗ := ΦD �= 0. To isolate faults, i.e., determine where they occur, it is necessary to design a
bank of observers in which each observer will be sensitive to a particular set of faults and insensi-
tive to the others. Such a bank can be constructed as follows. Let the set of possible faults in (1.1)
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be defined by the sum
∑s

i=1Didi(t) instead of the term Dd(t). A model insensitive to the first fault
is built by solving the equation

( R∗ −J∗1 −J∗2 . . . −J∗k )(V (k) D
(k)
1 ) = 0, (4.1)

where

D
(k)
1 =

⎛⎜⎜⎜⎝
HD1 HFD1 HF 2D1 . . . HF k−1D1

0 HD1 HFD1 . . . HF k−2D1

. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎞⎟⎟⎟⎠ .

Its minimal dimension k is determined starting from k = 1. Next, the rows of the matrix Φ are
obtained, G∗ := ΦG is assigned, and an interval observer is constructed according to the above
rules. It will be insensitive to several other faults, particularly to those for which Dj = D1N with
some matrix N, and sensitive to the faults for which ΦDj �= 0. Choosing the first fault among them,
we build a model and an observer insensitive to it by analogy. The procedure continues until the
consideration of all faults.

The information about the sensitivity and insensitivity of each observer is reflected by the
syndrome matrix S, where the rows correspond to observers and the columns to faults. In this
matrix, S(i, j) = 0 if the ith observer is insensitive to the jth fault, and S(i, j) = 1 otherwise. The
syndrome matrix may have two or more identical columns, meaning that some system faults are
indistinguishable from each other by the described procedure. Therefore, it is necessary to apply
more sophisticated approaches.

For fault isolation, the most convenient matrices are

S1 =

⎛⎜⎜⎜⎝
1 0 0 . . . 0
0 1 0 . . . 0
. . . . . . . . . . . .
0 0 0 . . . 1

⎞⎟⎟⎟⎠ , S2 =

⎛⎜⎜⎜⎝
0 1 1 . . . 1
1 0 1 . . . 1
. . . . . . . . . . . .
1 1 1 . . . 0

⎞⎟⎟⎟⎠ .

The first matrix allows isolating faults of arbitrary multiplicity, but it is rarely implementable in
applications due to the very strict requirement of insensitivity to many faults. From this point of
view, the second matrix seems more practical, but it is not always implementable as well. The
matter is that the elements of the matrix S may have certain relations due to the peculiarities and
faults of system (1.1), which make their choice nonarbitrary.

5. A PRACTICAL EXAMPLE

Consider an electric drive whose open circuit is described by the following model with viscous
friction:

x1(t+ 1) = γ1x2(t) + x1(t),

x2(t+ 1) = γ2x2(t) + γ3x3(t) + ρ(t),

x3(t+ 1) = γ4x2(t) + γ5x3(t) + γ6u(t) + d(t),

y1(t) = x2(t), y2(t) = x3(t).

(5.1)

Here, x1 is the rotation angle of the gearbox output shaft, x2 is the angular velocity of the electric
motor shaft, and x3 is the electric motor current. The coefficients γ1–γ6 depend on the drive
parameters and the sampling interval; in particular, viscous friction is specified by the coefficient γ2.
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These coefficients are given by

γ1 =
Δt

ir
, γ2 = −Δtkb

J
+ 1, γ3 =

Δtkm
J

,

γ4 = −Δtkω
Lm

, γ5 = −ΔtRm

Lm
+ 1, γ6 =

Δtku
Lm

with the following notations: Δt is the sampling interval; ir is is the gear ratio; kb is the viscous
friction coefficient; km is the torque coefficient; J is the moment of inertia of the motor rotor and
rotating parts of the gearbox reduced to this rotor; kω is the counter-emf coefficient; Rm is the
rated active resistance of the armature circuit; Lm is the armature circuit inductance; ku is the
power amplifier gain; finally, u(t) is the drive input voltage.

The electric drive is described by the matrices

F =

⎛⎜⎝ 1 γ1 0
0 γ2 γ3
0 γ4 γ5

⎞⎟⎠, G=

⎛⎜⎝ 0
0
γ5

⎞⎟⎠, H =

(
1 0 0
0 0 1

)
, D=

⎛⎜⎝ 0
0
1

⎞⎟⎠, L=

⎛⎜⎝ 0
1
0

⎞⎟⎠.

We build a model insensitive to the disturbance. Letting k = 1, we calculate the matrices V (1)

and B(1) :

V (1) =

⎛⎜⎜⎜⎝
1 γ1 0
0 γ4 γ5
1 0 0
0 0 1

⎞⎟⎟⎟⎠ , B(1) =

⎛⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎠ .

Since rank (V (1), B(1)) = 3 < 2(1 + 1) = 4, equation (3.4) has a solution with the matrices

R∗ = (γ4 − γ1), J∗ = (γ4 − γ1γ5).

As a result, Φ = (γ4 0 − γ1), G∗ = −γ1γ6, and D∗ = −γ1; model (2.1) takes the form

x∗(t+ 1) = γ4y1(t)− γ1γ5y2(t)− γ1γ6u(t)− d(t),

y∗(t) = x∗(t),
(5.2)

where x∗ = γ4x1 − γ1x3. Obviously, D+∗ = 0 and D−∗ = γ1.

According to (2.4) and (5.2), the interval observer is described by the equations

x∗(t+ 1) = γ4y1(t)− γ1γ5y2(t)− γ1γ6u(t)− γ1d,

x∗(t+ 1) = γ4y1(t)− γ1γ5y2(t)− γ1γ6u(t)− γ1d,

y∗(t) = x∗(t), y∗(t) = x∗(t),

r(t) = γ4y1 − γ1y3 − y∗(t), r(t) = γ4y1 − γ1y3 − y∗(t).

For the sake of simplicity in simulation, we choose γ1 = γ3 = γ6 = 1, γ2 = γ4 = γ5 = −1, and
u(t) = 2 + sin(t); the disturbance ρ(t) is represented by a random variable with the uniform dis-
tribution on the interval [−0.2, 0.2]; finally, the admissible variations of the function d(t) belong to
the interval [d, d] = [−0.05, 0.05]. Figures 1 and 2 show the simulation results for the observer with
the initial conditions x1(0) = x2(0) = x3(0) = 0, x∗(0) = −0.2, and x∗(0) = 0.2.

In Fig. 1, d(t) = 0 for t < 40 s, and d(t) = 0.04 for t � 40 s. Since the value d(t) = 0.04 lies
within the admissible interval, we have 0 ∈ [d, d], which is qualified as no faults. In Fig. 2, the
function d(t) is represented by a random variable with the uniform distribution on the interval
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Fig. 1. The residuals r and r without faults.

Fig. 2. The residuals r and r under fault occurrence.

[−0.01, 0.01] for t < 40 s, and d(t) = 0.06 for t � 40 s. Now, 0 �∈ [r(t), r(t)] for t > 40 s, and the
occurrence of a fault is concluded.

According to Fig. 2, the random variable d(t) affects the behavior of the functions r(t) and r(t).
The disturbance ρ(t) is also represented by a random variable, but the functions r(t) and r(t) in
Fig. 1 are constant (except for a jump due to the change in the function d(t)). Therefore, the
disturbance has no impact on the result.

6. CONCLUSIONS

This paper has considered interval observer-based functional diagnosis for linear dynamic sys-
tems described by discrete-time models with exogenous disturbances. Formulas have been derived
to construct an interval observer that is insensitive to disturbances and sensitive to a limited extent.
Such an observer produces two values of the residual as follows: if zero is between these values,
then the system has no faults to be detected by the observer. The case where zero does not belong
to the interval between these values is qualified as the occurrence of a fault. The theoretical results
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have been illustrated by an example of observer design for a real technical system. The simulation
results of this example have confirmed the correctness of theoretical constructs related to fault
detection.
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