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Abstract—This paper considers the set of reversible mechanical systems with single-period
oscillations and individual phase shifts in them. The problem of aggregating a coupled system
with an attracting cycle is solved. The approach developed below is to choose a leader (control)
system that acts on the other (follower) systems through one-way coupling control: in an
aggregated system, there are no links between follower systems. Universal coupling controls are
used. Particular attention is paid to conservative systems. Possible scenarios for the operation
of the aggregated system are presented.

Keywords : reversible mechanical system, symmetric periodic motions, coupling controls, leader
system, follower system, attracting cycle, stabilization

DOI: 10.25728/arcRAS.2024.26.46.001

1. PRELIMINARIES

Models containing coupled subsystems are studied in various fields of knowledge. In mechanics,
A. Sommerfeld’s sympathetic pendulums have become such a (classical) model. Other examples
were given, e.g., in [1–5].

Aggregation consists in constructing a coupled system from a given set of systems so that the
resulting whole will possess a desired dynamic property. In oscillation stabilization, this property
is achieved, in particular, in an attracting cycle of the system. Aggregation occurs by finding
appropriate coupling controls between the systems.

In the paper [6], the aggregation problem was solved for a set of conservative systems. According
to [6, Lemma 1], there exists a cycle in the system only if all mechanical systems, possibly except
one system with a degenerate family of oscillations, contain nondegenerate families of oscillations.
Aggregation was carried out for systems containing nondegenerate families of oscillations that also
form a nondegenerate family in an uncoupled system as a whole. The case of phase-synchronized
oscillations in systems was considered. The universal control from [7] was applied.

At the same time, it is of definite interest to study oscillation modes in which, e.g., the phases
in system oscillations are equidistant from each other or neighbor systems oscillate in antiphase.
Therefore, a common problem is to find coupling controls for implementing an attracting cycle of
the coupled mechanical system with phase shifts in the oscillations of its constituent systems. Also,
it seems interesting to aggregate a coupled system containing one or more mechanical systems with
degenerate families of oscillations. Thus, we arrive at the following general problem statement:
aggregate a coupled system with an attracting cycle on a set of mechanical systems admitting
oscillations.
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Note that some approaches to aggregating a general-form autonomous system with an attracting
cycle were proposed in [8]; Lyapunov method-based procedures for aggregating a complex system
were described in [9].

2. PROBLEM STATEMENT

Consider the set Ξ of n smooth reversible mechanical systems with one degree of freedom

q̈s + fs(qs, q̇s) = 0, fs(qs,−q̇s) = fs(qs, q̇s), s = 1, . . . , n. (1)

The phase portrait of the sth system is symmetric with respect to the fixed setMs = {qs, q̇s : q̇s = 0},
where qs denotes the generalized coordinate. By assumption, each system of the set Ξ admits a
single-frequency oscillation. It will be symmetric with respect to the set Ms and represents a
symmetric periodic motion (SPM). The SPM is described by the formula

qs = ϕs(hs, t+ γs), s = 1, . . . , n,

where the period Ts(hs) depends on the parameter hs and the parameter γs specifies the time shift
of the initial point: for γs = 0, the initial point belongs to the fixed set Ms. In this case, the SPM
is described by a function even in the variable t. SPMs always form families. In a conservative
system, the function fs does not depend on the velocity q̇s.

Further considerations involve a definition from [6].

Definition 1. A family of SPMs in the parameter h is said to be nondegenerate if the derivative
of the period T (h) with respect to the variable h differs from zero on this family. An SPM of a
nondegenerate family is called nondegenerate as well.

The period T (h) on the family of nondegenerate SPMs can increase or decrease. For example,
the period of oscillations of a mathematical pendulum monotonically increases with the energy of
the pendulum, and the oscillations are nondegenerate. The solutions of the equation ẍ+ x3 = 0
belong to the family of SPMs with a decreasing period.

The oscillations of a linear oscillator are isochronous and form a degenerate family of SPMs. As a
rule, a degenerate SPM of a nonlinear system is on the boundary of the family of its nondegenerate
SPMs. In a conservative system, the parameter h is usually the constant of the energy integral.

The general problem statement involves the set Ξ of reversible mechanical systems containing
nondegenerate (and/or degenerate) families of SPMs with increasing (and/or decreasing) periods
on the family. In this case, if the set Ξ simultaneously includes a system with an increasing
period (dT1/dh1 > 0) and a system with a decreasing period (dT2/dh2 < 0), the period curves will
intersect at one point where T1(h

∗
1) = T2(h

∗
2) = T ∗. The phases of oscillations generally differ. If

the set Ξ also includes a system with a degenerate family, the period on it will equal T ∗ as well.
The set of three equations in Ξ leads in the coupled system to two arbitrary phases of oscillations
in the systems. Given an arbitrary number n of equations in Ξ, it is assumed that γs = γ1 + δs,
s = 2, . . . , n. Therefore, we pose the problem of aggregating a coupled system with an attracting
cycle for all possible vectors δ = (δ2, . . . , δn).

Further analysis focuses on an autonomous coupled mechanical system of the form

q̈s + fs(qs, q̇s) = εσsus(q, q̇), s = 1, . . . , n, (2)

where the coupling control
u(q, q̇) = (u1(q, q̇), . . . , un(q, q̇)) (3)

acts with a small gain ε: the switches σs are +1 or (−1). By assumption, for ε = 0, system (2),
treated as a whole, admits a T ∗-periodic SPM. The problem is to find the coupling control (3)
ensuring the existence of an attracting cycle with the period T ∗ in system (2).
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This problem covers the following special cases:

1) All reversible mechanical systems in the set Ξ admit a family of nondegenerate SPMs with
an increasing (decreasing) period.

2) The monotonicity of the period in the systems differs by character.

3) The set of mechanical systems contains nondegenerate and degenerate families of SPMs.

In [6], case 1) was investigated for conservative systems under the additional assumption that
the set of uncoupled systems as a whole admits a nondegenerate family of SPMs.

3. UNIVERSAL COUPLING CONTROLS UNDER δ �= 0

For the vector δ �= 0, we find universal coupling controls ensuring the existence and orbital
asymptotic stability of the cycle of system (2). Such coupling controls can be treated as a general-
ization of the couplings from [7].

The proposed coupling controls have the form

u1 = [1−K1(h1)q
2
1 ]q̇1,

uj = [1−Kj(hj , δj)q
2
1]q̇j , j = 2, . . . , n.

(4)

The functions K1(h1) and Kj(hj , δj) are calculated below.

By assumption, for ε = 0 system (2) admits a T ∗-periodic SPM and the corresponding values in
the subsystems are hs = h∗s, s = 1, . . . , n. According to formulas (4), the equations in (2) become
unequal: we construct a controlled coupled system in which the system with number s = 1 is the
leader and the other systems are followers. Another feature of the controls (4) is that the subsystems
with numbers s = 2, . . . , n have no direct influence on each other. Due to these remarks, we analyze
(n − 1) independent subsystems of the same type:

q̈1 + f1(q1, q̇1) = εσ1[1−K1(h
∗
1)q

2
1]q̇1,

q̈j + fj(qj , q̇j) = εσj[1−Kj(h
∗
j , δj)q

2
1 ]q̇j, j = 2, . . . , n.

(5)

For the subsystem with number j in (5), we solve the cycle problem under the condition ε �= 0.
Then, applying the obtained result to all subsystems with numbers j = 2, . . . , n, we come to the
solution of the cycle problem for the coupled system. In system (5), K1(h

∗
1) and Kj(h

∗
j ) denote

values. In addition, h∗1 and h∗j mean that the controls are chosen for the SPM with the period T ∗

and the corresponding values h1 = h∗1 and hj = h∗j . On the other hand, when solving the control
problem in (5) for another pair (h1, hj), a different pair of the coefficients (K1(h1),Kj(hj , δ)) is
chosen: in (6), the control is applied with some changed coefficients K1 and Kj. Hence, we design
an adaptive control system in (6).

Thus, for the adaptive control system (6), it is required to find the relationships K1(h1) and
Kj(hj , δ) (the second with the parameter δ) ensuring the existence of an attracting cycle.

For the subsystem with number j, we write the system of amplitude equations

I1(h1) ≡
T ∗∫
0

[1−K1(h
∗
1)ϕ

2
1(h1, t)]ϕ̇1(h1, t)ψ1(h1, t)dt = 0,

Ij(h1, hj , δj) ≡
T ∗∫
0

[1−Kj(h
∗
j , δj)ϕ

2
1(h1, t)]ϕ̇j(hj , t+ δj)ψj(hj , t+ δj)dt = 0.

(6)

These equations are used to find h1 = h∗1 and hj = h∗j that meet the necessary conditions for the
existence of a cycle with the period T ∗ in the controlled system (5). In (6), (ψ1(h1, t), ψj(hj , t+ δj))
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denotes the solution of the adjoint equation for q1 = ϕ1(h1, t) and qj = ϕj(hj , t+ δj). This solution
is calculated in the Appendix.

The first equation in system (6) is the same for all numbers j. It can be analyzed independently
of the second one.

We begin with the first equation of (5). The necessary conditions for the existence of a cycle
must hold for all values of the parameter h1 and the corresponding values of the period T1(h1).
Therefore,

T1(h1)∫
0

[1−K1(h1)ϕ
2
1(h1, t)]ϕ̇1(h1, t)ψ1(h1, t)dt ≡ 0, (7)

which gives

K1(h1) =

T1(h1)∫
0

ϕ̇1(h1, t)ψ1(h1, t)dt

T1(h1)∫
0

ϕ2
1(h1, t)ϕ̇1(h1, t)ψ1(h1, t)dt

.

The denominator of this expression does not vanish; for the case of a conservative system, see
Section 4. In the general case of a reversible mechanical system, this result follows from the
solution of the adjoint equation calculated in the Appendix.

In view of the odd function ϕ̇1(h1, t) and the equality T1(h
∗
1) = T ∗, we determine the derivative

of the function I1(h1) at the point h1 = h∗1 from identity (7):

dI1(h
∗
1)

dh1
= χ1ν1,

χ1 =
dK1(h

∗
1)

dh1
, ν1 =

T ∗∫
0

ϕ1(h
∗
1, t)

2ϕ̇1(h
∗
1, t)ψ1(h

∗
1, t)dt.

The equality I(h∗1) = 0 means that the necessary condition for the existence of a T ∗-periodic
solution holds in the first equation of system (5). Due to the inequality χ1ν1 �= 0, this solution is
a cycle, which becomes attracting under an appropriately chosen sign of σ1 (see [7]).

The second equation of system (6) is considered by analogy. We define the function

Kj(hj , δj) =

Tj(hj)∫
0

ϕ̇j(hj , t+ δj)ψj(hj , t+ δj)dt

Tj(hj)∫
0

ϕ2
1(h

∗
1, t)ϕ̇j(hj , t+ δj)ψj(hj , t+ δj)dt

and calculate the derivative

dIj(h
∗
1, h

∗
j , δj)

dhj
= χjνj ,

χj =
dKj(h

∗
j , δj)

dhj
, νj =

T ∗∫
0

ϕ1(h
∗
1, t)

2ϕ̇j(h
∗
j , t+ δj)ψj(h

∗
j , t+ δj)dt

for hj = h∗j (h1 = h∗1).
The conditions χ1ν1 �= 0 and χjνj �= 0 are now sufficient for the existence of a simple root (h∗1, h∗j )

of the system of amplitude equations (6) with a fixed number j. Then the simplicity of this root
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ensures the existence of a cycle in system (5) with a fixed number j. The cycle will be attracting
if the switches are chosen from the conditions σ1χ1ν1 < 0 and σjχjνj < 0.

Consider the systems of amplitude equations (6) for all numbers j = 2, . . . , n. Then, under the
inequalities χsνs �= 0, s = 1, . . . , n, a cycle is implemented in the coupled system (5). Given the
additional condition σsχsνs < 0, s = 1, . . . , n, the cycle becomes attracting.

Thus, the following result is true.

Theorem 1. Assume that the set of reversible mechanical systems with one degree of freedom
admits a T ∗-periodic motion. Then the coupled mechanical system (5), where j = 2, . . . , n, has a
unique cycle of the period T ∗ if χsνs �= 0, s = 1, . . . , n. Under the additional conditions σsχsνs < 0,
s = 1, . . . , n, the cycle becomes attracting.

Remark 1. The cycle of the coupled system (5) is determined within an arbitrary shift on the
trajectory. The cycle-generating oscillations have the phase shifts δ2, . . . , δn with respect to the
phase of the oscillation in the first equation of system (5).

Remark 2. In system (6), the integral

κj =

T ∗∫
0

ϕ̇j(h
∗
j , τ + δj)ψj(h

∗
j , τ + δj)dτ

does not depend on δj on the period. Therefore, for κj �= 0, we define the function

Kj(h
∗
j , δj) =

κj
T ∗∫
0
ϕ2
1(h

∗
1, τ − δj)ϕ̇j(h

∗
j , τ)ψj(h

∗
j , τ)dτ

, (8)

which will be T ∗-periodic in δj .

Remark 3. In formula (8), the nonzero denominator defines the admissible range of the phase
shift δj in the jth subsystem of system (5).

Remark 4. Theorem 1 designs the piecewise continuous system (5). Since the amplitude equa-
tions (6) are independent of σj, there exists a cycle in every smooth switchless system. The
attraction conditions (χsνs �= 0) must hold in the subsystem on the trajectories with both hs > h∗s
and hs < h∗s. Therefore, the signs of σs for these trajectories usually differ. An example of a switch
control law was provided in [10].

4. CONSERVATIVE SYSTEMS

For the set of conservative systems, the functions fs in (1) are independent of the velocities q̇s,
and each system admits an energy integral under ε = 0. The variational equations for SPMs contain
a symmetric matrix; therefore, the one-degree-of-freedom system under consideration satisfies the
equations

ψs(h
∗
s, τ + δs) = −ϕ̇s(h

∗
s, τ + δs), s = 1, . . . , n (δ1 = 0).

Consequently, νs > 0, κs < 0, s = 1, . . . , n.

The integrand in (8) is (T ∗/2)-periodic on δ and two points symmetric with respect to the fixed
set correspond to each value Kj(h

∗
j , δ

∗). In turn, these points implement one cycle.

Thus, we arrive at the following result.

Theorem 2. For the set of conservative systems with one degree of freedom that admits a T ∗-pe-
riodic SPM, the coupled system (5) has a unique attracting cycle under the conditions σsχs < 0,
s = 1, . . . , n.
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Example 1. In the coupled system

ẍ+ sinx = ε(1−Kx(hx)x
2)ẋ,

ÿ + y3/4 = σε(1 −Ky(hy , δ)x
2)ẏ

(9)

with ε = 0, the first equation describes a mathematical pendulum. Starting at 2π, the period Tx(hx)
grows monotonically with the pendulum energy hx on the family of oscillations, and the function
Kx(hx) is monotonically decreasing (see [11]). The solutions of the second equation form a family
of oscillations with the period Ty(hy) representing a decreasing function of the constant energy hy.

Indeed, the period Ty(hy) is given by

Ty(hy) = 2

y(0)∫
−y(0)

dy√
h− y4

,

where y(0) denotes the initial value of the variable y. Passing to the variable z = y/h
1/4
y yields

Ty(hy) =
2

h
1/4
y

−1∫
1

dz√
1− z4

=
a

h
1/4
y

, a = 4 ∗ 1.3 . . . ,

an explicit-form relationship between the period and the system energy.

According to the analysis above, for any h∗x and Tx(h
∗
x) > 2π, there exists a value h∗y such that

Tx(h
∗
x) = Ty(h

∗
y) (the equality of periods in (9)) with an increasing function f, i.e., h∗y = f(h∗x).

Hence, system (9) with ε = 0 admits a one-parameter family of SPMs with the parameter h∗x.
The function Kx(hx) is monotonically decreasing. Therefore, for hx = h∗x, the first equation

in (9) has an attracting cycle. By Theorem 2, the additional condition dKy(h
∗
y, δ)/dhy �= 0 leads

to an attracting cycle of the coupled system (9).

Thus, for any oscillation of the mathematical pendulum corresponding to the energy value h∗x,
there exists an energy value h∗y of the second equation in (9) such that an attracting cycle is
implemented in the coupled system. Moreover, the phases in the oscillations of the equations differ
by the desired value δ.

5. THE CASE OF A DEGENERATE FAMILY OF SPMS

Under identical phases in the oscillations of subsystems, a cycle in the coupled system exists only
if all mechanical systems, possibly except one system with a degenerate family of SPMs, contain
nondegenerate families of SPMs. This result was established in [6, Lemma 1]. In what follows, we
investigate in detail the case where one of the families is degenerate. Assume that the oscillations
in the systems are not phase-synchronized and n = 2 in system (5).

Consider the system

ẍ+ x = ε(1 −Kx(hx)x
2)ẋ,

ÿ + f(y) = εσ(1 −Ky(hy, δ)x
2)ẏ,

(10)

in which the first equation contains a degenerate family of oscillations under ε = 0 and the period
of oscillations in the second equation monotonically depends on the energy hy. The solution of the
uncoupled system is described by the formulas x = Ax cos t and y = ϕ(hy , t+ δ). On the generating
solution, we have Ax = 2/

√
Kx, and the period of oscillations 2π corresponds to the constant h∗y in

the second equation. Let us find the relationship between Ky(hy, δ) and Kx.
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For system (10), formula (8) is written as

Ky(h
∗
y, δ) = − κ

T ∗∫
0
A2

x cos
2 tϕ̇2(h∗y, t+ δ)dt

,

κ = −
T ∗∫
0

ϕ̇2(h∗y, t)dt, T ∗ = 2π.

(11)

The integral in the denominator can be transformed as follows:

1

2

T ∗∫
0

(1 + cos 2t)ϕ̇2(h∗y , t+ δ)dt =
1

2

T ∗+δ∫
δ

ϕ̇2(h∗y, τ)dτ

+
1

2

⎛⎝cos 2δ

T ∗+δ∫
δ

cos 2τϕ̇2(h∗y, τ)dτ + sin 2δ

T ∗+δ∫
δ

sin 2τϕ̇2(h∗y , τ)dτ

⎞⎠ .

Consider the bracketed expression above; here, the first integral of a 2π-periodic function does not
depend on δ on the period, and the second integral is taken for an odd function (and vanishes
accordingly). Hence, we obtain a linear function of cos 2ϕ, and Ky(h

∗
y, δ) is given by an even

π-periodic function of δ.

Due to the equality Kx = 4/A2
x, formula (11) reduces to

Ky(h
∗
y, δ) =

Kx

T ∗∫
0
ϕ̇2(h∗y, t)dt

2
T ∗∫
0
(1 + cos 2δ cos 2t)ϕ̇2(h∗y, t)dt

. (12)

The derivative of (12) is an odd π-periodic function of δ. On the interval δ ∈ (−π/2, π/2), this
derivative vanishes for δ = 0.

The cycle of the coupled system (2) can be constructed using Theorem (10). The characteristic
Ky(hy, δ) is calculated for a given function ϕ(hy, t). For a mathematical pendulum, the function
Ky(hy, δ) is monotonically decreasing under δ = 0 (see [11]).

Example 2. Consider system (10) in which the function Ky(hy, δ) in the second equation is
independent of δ and coincides with Kx. Let this system be applied in the mechatronic oscillation
stabilization scheme proposed in [12]. More precisely put, the amplitude Ax at the point δ = δ∗

is selected to adjust the mode of satisfying the equality Ky(h
∗
y, δ) = Kx = 4/A2

x. As a result, we
obtain a possible scenario for the birth of a cycle described in [10]. Note that the existence of
the scenario was proved by analyzing the second equation in (10) by substituting the generating
solution of the first equation. In the mechatronic stabilization scheme, the time shift δ∗ between
the oscillations of the van der Pol oscillator and the mechanical system is given by (12).

6. THE CASE OF TWO DEGENERATE FAMILIES

In system (10), the van der Pol oscillator is used to generate signals for a mechanical system
admitting a nondegenerate family of oscillations. The system is designed to stabilize mechanical
oscillations. For Ky = Kx, the shift δ in the solutions of the equations of system (10) is given by
formula (12); see Section 5.

It seems interesting to analyze how the amplitude and phase of oscillations in the leader and
follower systems are synchronized in the cycle of the coupled system. We consider this problem for
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equal systems in Ξ, on an example of two identical linear oscillators. Then the coupled system has
the form

ẍ+ x = ε(1−Kx(hx)x
2)ẋ,

ÿ + y = εσ(1−Ky(hy, δ)x
2)ẏ,

(13)

where the first equation describes the van der Pol oscillator and the second equation becomes the
follower for this oscillator.

Under ε = 0, system (13) oscillates in each coordinate with a frequency of 1: the oscillations are
isochronous. The generating oscillations are given by

x = Ax cos t, Ax = 2/
√
Kx, y = Ay cos(t+ δ).

For the second equation in (13), we calculate κ = −
2π∫
0
A2

y sin
2 tdt = −πA2

y.

In the coupled system, Ky = Ky(hy , δ); therefore, formula (8) yields

Ky(hy , δ) = − 4κ

A2
xA

2
yπ(2− cos 2δ)

=
4

A2
x(2− cos 2δ)

=
Kx

2− cos 2δ
.

Hence, in the cycle of the coupled system, the amplitudes of oscillations in the leader and follower
systems are synchronized (Ky = Kx) only under δ = 0; phase synchronization also occurs under
δ = 0.

According to the formula Ky(hy, δ) = 2/(hy(2− cos 2δ)), the conditions for the existence of a
cycle in the coupled system (10) hold everywhere in δ. The control law σ = 1 is chosen for the
attracting cycle.

Note that the amplitudes of oscillations in the systems of the coupled system (13) are close to
linear oscillations. Therefore, the oscillations of the systems will appear to be synchronized in δ in
the cycle (operating mode) of the coupled system (13) under consideration regardless of the shift δ.

7. CONCLUSIONS

This paper has proposed an approach to aggregating a coupled system with an attracting cycle
on a given set n of reversible mechanical systems with oscillations. Within the approach, a leader
(control) system is selected to act on the other (follower) systems through one-way coupling control:
in an aggregated system, there are no links between follower systems. The coupled system oscillates
as (n− 1) independent subsystems controlled by the leader system. In addition, the oscillation of
each system may have an individual phase shift with respect to the phase of the oscillation in the
leader system.

Different control scenarios are possible for the aggregated system. If the subsystems have no
phase shift, the simultaneous control scenario is implemented for (n− 1) mechanical systems; see [6].
The conveyor scenario is implemented in the controlled coupled system when specifying a shift
change law for (n− 1) mechanical systems: for example, the maximum amplitude of oscillations in
the follower systems is achieved at different time instants. For n = 2, the leader–follower scenario
is implemented, a common one described, e.g., in [12] for a mechatronic oscillation stabilization
scheme.

The aggregation approach has been presented on an example of reversible mechanical systems in
the plane. It remains valid for a set of mechanical systems of arbitrary dimension. The constructed
coupled system represents one level of the hierarchy of a multilevel aggregated system with an
attracting cycle (for details, see [8]).
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APPENDIX

The adjoint solution can be calculated using Lemma 1.

Consider a smooth reversible mechanical system of the second order:

u̇ = U(u, v), v̇ = V (u, v), U(u,−v) = −U(u, v), V (u,−v) = V (u, v).

Let this system admit an SPM described by the functions

u = ϕ(t), v = θ(t), ϕ(−t) = ϕ(t), θ(−t) = −θ(t).

The variational equations for the SPM have the form

ẋ = a−(t)x+ a+(t)y,

ẏ = b+(t)x+ b−(t)y,
(A.1)

where a±(t), b±(t) denote even (+) and odd (–) periodic functions. They have the solution x =
ϕ̇(t), y = θ̇(t).

Lemma 1. For a given SPM, the solution of the system adjoint to (A.1) is calculated by con-
structive formulas.

Proof. Let us apply the transformation

x = ξ+(t)x̃, y = η+(t)ỹ

with even periodic functions ξ+(t) and η+(t) with nonzero means. As a result,

ξ+(t) ˙̃x+ ξ̇+(t)x̃ = a−(t)ξ+(t)x̃+ a+(t)η+(t)ỹ,

η+(t) ˙̃y + η̇+(t)ỹ = b+(t)ξ+(t)x̃+ b−(t)η+(t)ỹ.

The functions ξ+(t) and η+(t) are appropriately chosen to satisfy the equalities

ξ̇+ = a−(t)ξ+, η̇+ = b−(t)η+.

Then the transformed system

˙̃x = ã+(t)ỹ, ˙̃y = b̃+(t)x̃ (A.2)

contains no odd functions of t.

The adjoint system of
x1 = ξ1+(t)x̃1, y1 = η1+(t)ỹ1

is transformed by analogy. We obtain

˙̃x1 = −b̃+(t)ỹ1, ˙̃y1 = −ã+(t)x̃1. (A.3)

In the variables x̃1 = −ỹ and ỹ1 = x̃, the resulting system (A.3) coincides with (A.2). Hence,
its solution is given by x̃1 = −ξ+(t)

−1θ̇(t), ỹ1 = η+(t)
−1ϕ̇(t). Therefore, the solution of the adjoint

system can be written as

x1 = −ξ1+(t)ξ+(t)
−1θ̇(t), y1 = η1+(t)η+(t)

−1ϕ̇(t).

The proof of Lemma 1 is complete.
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