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Abstract—This paper considers the problem of motivating the reduction of project duration.
The duration cuts of project works and the corresponding costs are given. A group incentive
scheme is used to compensate for the costs. In this scheme, all works are partitioned into groups
and a unified incentive scheme is applied for each group. Two types of unified incentive schemes
are studied for groups, namely, linear and jump ones. The problem is to partition all project
works into groups and choose an appropriate incentive scheme for each group by minimizing
the total incentive fund. Solution algorithms are proposed based on determining the shortest
path in the network. Special cases are also analyzed (partition with the minimum number of
groups and partition with the maximum number of groups).
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1. INTRODUCTION

Consider a project consisting of n works. For each work, the duration cut and the costs of this
cut are given. An incentive scheme is defined to compensate for the costs.

The design problems of optimal incentive schemes have been considered by many researchers;
for example, see the books [1–3] and references therein. As a rule, two types of such schemes
are considered, namely, individual incentive schemes and unified incentive schemes. In individual
incentive schemes, a particular scheme is defined for each group from a given class (linear, jump,
rank, etc [1]). In unified incentive schemes, the same scheme is defined for all agents. Compared
to unified incentive counterparts, the advantage of individual incentive schemes is an appreciably
smaller incentive fund (in several cases), and the drawbacks are disinterest in reducing costs and
rather high opportunities for manipulation (strategic behavior). The benefits of unified incentive
schemes are smaller opportunities for manipulation and significantly greater interest in reducing
costs, and the disadvantage is an appreciably larger incentive fund (in many cases). Group incentive
schemes occupy an intermediate position. In such schemes, the set of all agents is partitioned into
groups and a unified incentive scheme is applied for each group. Group incentive systems retain
to some extent the advantages of unified and individual incentive systems and, at the same time,
diminish their drawbacks.

In this paper, design problems are formulated for optimal group incentive schemes and methods
for solving them are considered.
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2. PROBLEM STATEMENT

Consider a project consisting of n works. There is a given plan for reducing project duration:
according to this plan, the duration cut of work i is specified by a value yi. The costs of project
contractors to reduce the duration, zi, i = 1, n, are also given.

To compensate for the costs, it is necessary to determine a group incentive scheme (GIS).
Consider a GIS in which all works are partitioned into 1 < m < n groups and a certain unified
incentive scheme (UIS) is defined for each group. Further analysis deals with two classes of UISs,
namely, linear incentive schemes (LISs) and jump incentive schemes (JISs). We denote by Rj the
set of works belonging to group j : ⋃

j

Rj = R, Ri ∩Rj = ∅ (1)

for all i and j, where R is the set of all works. If an LIS is chosen for group j, all contractors of
this group will be compensated for their costs using the minimum incentive fund

Sj = ajTj , (2)

where

aj = max
i∈Rj

ki, Tj =
∑
i∈Rj

yi, ki =
zi
yi
, i = 1, n.

If a JIS is chosen for group j, all contractors of this group will be compensated for their costs using
the minimum incentive fund

Sj = nj max
i∈Rj

zi, (3)

where nj stands for the number of works in group j.

Problem 1. Find a partition Rj, j = 1,m, and choose an appropriate incentive scheme for each
group by minimizing the incentive fund. This problem will be considered in three modifications as
follows: in the first, only LISs are used for all groups; in the second, only JISs; in the third, both
classes of the incentive schemes mentioned (further called mixed incentive schemes, MISs).

Now we describe the formal problem statement. Let xij = 1 if work i belongs to group j, and
xij = 0 otherwise. In the case of LISs, the incentive fund of group j is given by

S1j =

(∑
i

xijyi

)
max

i
kixij . (4)

In the case of JISs, the incentive fund of group j is given by

S2j =

(∑
i

xij

)
max

i
kiyixij . (5)

Finally, in the case of MISs, the incentive fund of group j is given by

S3j = min (S1j , S2j) . (6)

Consequently, the total incentive fund constitutes

Sk =
∑
j

Skj, k = 1, 3, (7)

depending on the chosen incentive scheme k.
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Problem constraints may have different forms. For example, given nj works in each group j, the
constraints are ∑

i

xij = nj, j = 1,m. (8)

If the number of works in a group must be within given bounds, the constraints take the form

l1 �
∑
i

xij � l2. (9)

Other constraints are possible as well.

Problem 2. Find (xij), i = 1, n, j = 1,m, to minimize (7) subject to the constraints (8), (9) or
others.

Methods for solving these problems are presented below.

3. LINEAR INCENTIVE SCHEMES WITH yi = y

In this section, we investigate the case yi = y, i = 1, n. Let all works be numbered in ascending
(nondescending) order of ki, i.e.,

k1 � k2 � . . . � kn.

This sequence will be called original.

Definition 1. A fragment of the original sequence is its part between some works i and j > i.

Theorem 1. The optimal partition of works into groups is the set of fragments of original se-
quences.

Proof. Assume first that all values ki differ. Let P be an optimal partition. Consider the group
with the maximum value kn. If this group is not a fragment, then there exists a maximum number s
of the original sequence such that the corresponding work is absent from the group with kn but
present in another group, where it has the maximum value ks. Let us swap work s with any work
from the group with kn that does not belong to the fragment. Obviously, the incentive costs in the
group with the maximum value kn will not change; at the same time, the incentive costs in the
group with is will decrease because the maximum value ki in the group with is is smaller than ks,
which contradicts the optimality of the partition P . Thus, the group with work n is a fragment.
The next group with the maximum value ki is considered by analogy, and the procedure continues
for all groups.

To proceed, we reject the assumption that all ki are different. In this case, there exist several
original sequences; for any optimal partition, however, it is possible to find an original sequence
such that the partition will form the set of fragments of this sequence. The proof of Theorem 1 is
complete.

Let all works be numbered in ascending (nondescending) order of ki, i.e.,

k1 � k2 � . . . � kn.

We construct a network of admissible partitions (NAP) of works into groups. This network consists
of an input, an output, and (m− 1) layers. Each vertex i of layer p shows the total number of
works Qip in the first p groups. Note that the minimum number of works is 2 and the maximum
number is n− 2 (m− p) since each group includes at least two works. Therefore, layer p contains

a = n− 2 (m− p)− 2p+ 1 = n− 2m+ 1

vertices, and this number is independent of p.
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Fig. 1.

We connect vertex i of layer p to vertex j of layer (p + 1) by an arc if

Qjp+1 −Qip � 2.

Also, we connect the network input 0 to each vertex of layer 1 and each vertex of layer (m− 1) to
the network output by an arc.

Theorem 2. A unique path in the NAP corresponds to each admissible partition of works into
groups and, conversely, a unique partition of works into groups corresponds to each path in the
NAP.

Proof. For each admissible partition (n1, . . . , nm) , there is a sequence of values Qip, p= 1,m−1,
such that the difference of the values of neighbor layers exceeds or equal 2. By the construction
of the NAP, an arc connects the corresponding vertices. Conversely, for each path in the NAP,
there is a sequence (n1, . . . , nm), where nk equals the difference (Qjk+1 −Qik) of the corresponding
adjacent vertices. This sequence defines a unique partition of works into groups. The proof of
Theorem 2 is complete.

Example 1. Consider a project of nine works and let m = 3. Then we have

q = 9− 6 + 1 = 4.

The corresponding network is demonstrated in Fig. 1. Table 1 provides the data of works. Assume
that yi = 1 for all i, i.e., zi = ki. The lengths of all arcs are specified in Fig. 1. The shortest path
(0,3,7,9) has a length of 86. The optimal partition into three groups is given by R1 = (1, 2, 3),
R2 = (4, 5, 6, 7), and R3 = (8, 9).

Table 1

i 1 2 3 4 5 6 7 8 9

ki 1 3 4 6 8 10 11 12 15

zi 1 15 12 12 8 40 33 24 15

Next, we solve the problem with the maximum number of groups m = [n/2] = 4. The corre-
sponding NAP is presented in Fig. 2 (q = 2).
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We calculate the vertices λip:

λin = 0, λ11 = 6, λ21 = 24,

λ12 = λ11 + 12 = 18,

λ22 = min [λ11 + 24, λ21 + 16] = 30,

λ13 = λ12 + 20 = 38,

λ23 = min [λ12 + 33, λ22 + 22] = 51,

λout = min [λ13 + 45, λ23 + 30] = 81.

The optimal partition is the one with four groups: (1, 2), (3, 4), (5, 6, 7), and (8, 9).

Finally, we solve the problem with the minimum number of groups m = 2, q = 6. The corre-
sponding NAP is presented in Fig. 3.

We calculate the vertices:

λin = 0, λ11 = 6, λ21 = 12,

λ31 = 24, λ41 = 40, λ51 = 60, λ61 = 77,

λout = min [λ11 + 105, λ21 + 90, λ31 + 75, λ41 + 60, λ51 + 45, λ61 + 30] = 99.

The optimal partition is given by (1, 2, 3, 4) and (5, 6, 7, 8, 9).

Note that incentive costs decrease as the number of groups grows, which is fairly obvious.
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4. AN HEURISTIC ALGORITHM

The algorithm described above can be applied to the general case of different values yi as a
heuristic. It can be justified as follows. If there exists a partition into groups such that the
coefficients ki are the same for each group, then this partition is optimal. Therefore, a reasonable
assumption is that the closer the coefficients ki in the groups are, the closer the partition will be
to the optimal one.

Example 2. Consider the problem with three groups and the data of Table 1. The corresponding
network with the arc lengths (5) is shown in Fig. 4. Its structure coincides with that of the network
in Fig. 1.

We calculate the vertices:

λin = 0, λ11 = 18, λ21 = 36, λ31 = 66, λ41 = 96,

λ12 = 48, λ22 = min [18 + 48, 36 + 24] = 60, λ32 = 106, λ42 = 146,

λout = min [48 + 165, 60 + 150, 106 + 90, 146 + 45] = 191.

The optimal partition is given by (1, 2, 3), (4, 5, 6, 7), and (8, 9).
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5. JUMP INCENTIVE SCHEMES

In this section, we study jump incentive schemes (JISs). For such schemes, an analog of Theo-
rem 1 holds. Let all works be numbered in ascending (nondescending) order of zi, i.e.,

z1 � z2 � . . . � zn.

This sequence will also be called the original sequence. The definition of its fragment is the same
as the one for linear incentive schemes. (In other words, a fragment is some part of the original
sequence.)

Theorem 3. The optimal partition is the set of fragments of the original sequence (one of them
if there are several original sequences).
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Proof. This result is established similarly to Theorem 1. In the optimal partition, we take the
group with the maximum value zn and show that it is a fragment. Assume on the contrary that it
is not. We find the work with the maximum value zs in a fragment that is absent from this group
but present in another group. Let us swap work s with any work from the group with work n that
does not belong to the fragment. Obviously, the incentive costs will decrease. Thus, the group with
work n is a fragment. Then we eliminate the works of this fragment and consider the next group
with the maximum value z. The procedure continues for all groups by analogy.

Example 3. Consider the data of Table 1. We renumber the works appropriately to obtain an
original sequence.

Table 2

i 1 2 3 4 5 6 7 8 9

Ki 1 8 4 6 15 3 12 11 10

yi 1 1 3 2 1 5 2 3 4

zi 1 8 12 12 15 15 24 33 40

Let us find the optimal GIS for three groups. Note that the corresponding network will have
the same structure as in Fig. 1 but with other arc lengths (see Fig. 5).

We calculate the vertices:

λin = 0, λ11 = 16, λ21 = 36, λ31 = 48, λ41 = 75,

λ12 = 40, λ22 = min [16 + 45, 36 + 30] = 61,

λ32 = min [48 + 30, 36 + 45, 16 + 60] = 76,

λ42 = min [75 + 48, 48 + 72, 36 + 96, 16 + 120] = 120,

λout = min [40 + 200, 61 + 160, 76 + 120, 120 + 80] = 196.

The optimal partition is given by (1, 2), (3, 4, 5, 6), and (7, 8, 9).

6. TWO-GROUP PARTITION FOR LINEAR INCENTIVE SCHEMES

This section is devoted to a special case of partitions into two groups. Let the maximum coeffi-
cient kj be given for the second group. The resulting problem is easy to solve. If kj <kn−1, then the
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first group includes all works with ki >kj whereas the second group all works with ki� kj . Indeed,
any transfer of work with ki � kj to the first group increases the incentive fund by (kn−1 − kj)yi > 0.
If kj = kn−1 < kn, we add a work to the first group for the number of works to exceed one. The
matter concerns the work with the minimum value y.

Example 4. Consider the data of Table 1. We perform the calculations:

1. kj = 12. We add work 1 with the minimal duration y1 = 1 in the first group. The incentive
fund is

Φ1 = 15× 2 + 12× 20 = 270.

2. kj = 11. The first group contains works 8 and 9.

Φ2 = 45 + 209 = 254.

3. kj = 10. The first group contains works 7, 8, and 9. The incentive fund is

Φ3 = 90 + 160 = 250.

4. kj = 8. The first group contains works 6, 7, 8, and 9. The incentive fund is

Φ4 = 150 + 96 = 246.

5. kj = 6. The first group contains works 5, 6, 7, 8, and 9. The incentive fund is

Φ5 = 165 + 66 = 231.

6. kj = 4. The first group contains works from 4 to 9. The incentive fund is

Φ6 = 195 + 36 = 231.

7. kj = 3. The first group contains works from 3 to 9. The incentive fund is

Φ4 = 240 + 18 = 258.

The optimal partition of works into groups is given by (1, 2, 3) and (4, 5, 6, 7, 8, 9).

7. CONCLUSIONS

This paper has considered the design of group incentive schemes for linear and jump incentive
schemes. Note that for the two-group partition with linear incentive schemes, the heuristic al-
gorithm yields an optimal solution in many cases. It seems interesting to justify this conclusion
rigorously. Another promising line is to consider other incentive schemes (basic and combined). As
for mixed incentive systems, we emphasize that any linear or jump incentive scheme can be turned
into a mixed one by recalculating the arc lengths of the corresponding network using formula (6).
However, generally speaking, the resulting solution will be nonoptimal. The problem of an optimal
mixed incentive scheme has not been solved yet. All these problems require further research.
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