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Abstract—For linear multivariable continuous stationary stable control systems with a simple
spectrum, presented in the form of a canonical diagonal form, controllability and observability
forms, a method was developed and analytical formulas for spectral decompositions of gramians
in the form of various Xiao matrices were obtained. A method and algorithm for calculating
generalized Xiao matrices in the form of the Hadamard product for multiply connected contin-
uous linear systems with many inputs and many outputs have been developed. This allows us
to calculate the elements of the corresponding controllability and observability gramians in the
form of products of the corresponding elements of the multiplier matrices and a matrix that
is the sum of all possible products of the numerator matrices of the matrix transfer function
of the system. New results are obtained in the form of spectral and singular decompositions
of the inverse gramians of controllability and observability. This makes it possible to obtain
invariant decompositions of energy functionals and formulate new criteria for the stability of
linear systems taking into account the nonlinear effects of mode interaction.
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1. INTRODUCTION

Monitoring the state of control objects and controlling the damping of dangerous vibrations are
important areas of research in various fields of industry (energy, mechanical engineering, aviation
and astronautics, robotics). New modeling technologies require the development of tools for ap-
proximating mathematical models of complex systems of various natures [1–3]. An important role
is played by the methods of calculating the Lyapunov and Sylvester matrix equations and the study
of the structural properties of solutions to these equations [4–11]. The fundamental properties of
linear dynamic systems associated with solutions to these equations are controllability, observability
and stability. Important results were obtained in the field of computing gramians for systems which
models are presented in the canonical forms of controllability and observability. In [12], methods for
calculating gramians based on the use of matrices of periodic structure were first proposed for linear
systems specified by equations in the forms of controllability and observability. A new approach was
developed in terms of use the properties of the impulse transition function and gramian matrices in
the form of the zero-plaid structure of the controllability gramian in [13, 14]. In [15], the approach
was developed to compute spectral decompositions of a more general class of linear time-invariant
(LTI) multiple-input multiple-output (MIMO) systems. Using this approach, a method for optimal
selection of locations for sensors and actuators on the graph of a distributed control system was
developed in [16]. The paper shows that for a diagonalized system the controllability gramian can
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1412 YADYKIN, GALYAEV

be represented as the Hadamard product of two positive semidefinite matrices. In [17], the problem
of optimizing the capacity of an urban transport network was solved based on minimizing the trace
of the gramian controllability matrix taking into account restrictions. Various problems related to
the usage of controllability, observability and cross-gramians for calculating system invariants and
energy stability indices can be found in [18, 19].

The goal of this work is to develop structural methods for solving matrix Lyapunov equations
and obtain spectral and singular decompositions of controllability and observability gramians, based
on reducing the equations of state of a linear stationary system to the following canonical forms:
diagonal, controllability and observability.

2. FORMULATION OF THE PROBLEM

We consider a stable continuous MIMO LTI dynamic system of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = 0, y(t) = Cx(t), (2.1)

where x(t)∈Rn, u(t)∈Rm, y(t)∈Rm.We will consider real matrices of corresponding sizes A,B,C.
Let us assume that the system (2.1) is completely controllable and observable and all eigenvalues
of matrix A are different. In this case, the implementation of (2.1) is minimal and there is the only
one transfer function W (s) in the form

W (s) =
n∑

i=1

Mis
iN−1 (s) ,

where N(s) is characteristic polynomial of matrix A, Mi is a matrix of the form

Mi =
n−1∑
i=0

AiB.

Above, Ai denotes the “i”th Faddeev matrix in the decomposition of the resolvent of matrix A
in the Faddeev–Le Verrier series [6, 7]. In accordance with [20], we write a general formula for
calculating the controllability gramian from the pair spectrum of the system (2.1)

P c = −
n∑

j=1

n∑
ρ=1

1

sj + sρ
Res
[
(Is−A)−1, sj

]
BB∗Res

[
(Is−A∗)−1, sρ

]
. (2.2)

We consider a continuous dynamic MISO LTI system of the form

ẋ (t) = Ax (t) + bγuγ (t) , x (0) = 0, (2.3)

y (t) = cx (t) ,

where x∈Rn, y ∈R1, uγ (t) ∈Rm, γ = 1, . . . m, bγ is column of matrix B.

We consider the transformation of the equation (2.1) of a general system to equations of state
in canonical forms: diagonal, controllability and observability.

If all eigenvalues sr of matrix A are different, then the linear system can be reduced to diagonal
form using a non-degenerate coordinate transformation

xd = Tx, ẋd = Adxd +Bdu, yd = Cdxd,

Ad = TAT−1, Bd = TB, Cd = CT−1, Qd = TBBTTT,
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or

A =
[
u1 u2 . . . un

] ⎡⎢⎢⎢⎣
s1 0 0 0
0 s2 0 0
. . . . . . . . . . . .
0 0 . . . sn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ν∗1
ν∗2
...
ν∗n

⎤⎥⎥⎥⎥⎦ = TΛT−1,

where matrix T is composed of right eigenvectors ui, and matrix T−1 is composed of left eigenvec-
tors ν∗i corresponding to the eigenvalue si. The gramian of the diagonalized linear part is a solution
to the Lyapunov equation, which is determined from the formula [15]

P c
d = −

n∑
j=1

n∑
ρ=1

1

sj + sρ
Res
[
(Is−Ad)

−1, sj
]
BdB

∗
dRes

[
(Is−Ad)

−1, sρ
]
.

The controllability gramian P c
d is related to the gramian P c by a relation of the form

P c = TP c
dT

T.

From (2.2) results the following separable spectral decomposition of the gramian controllability of
a system transformed into a diagonal canonical form [21]

P c
d =

n∑
j=1

n∑
ρ=1

−bjρ
sj + sρ

1jρ, bjρ = [BdB
∗
d ]jρ,

where the designation is introduced

1jρ =

⎡⎢⎣ 0 0 0
0 1jρ 0
0 0 0

⎤⎥⎦ .
Further we consider the channel “γ” of the MISO LTI system in the canonical form of controllability
[1, 21]

x(t) =
m∑

γ=1

RF
cγxcγ(t).

ẋc (t) = AF
c xcγ (t) + bFγ uγ (t) , xc (0) = 0, (2.4)

yFc (t) = cFγ xc (t) , γ = 0, 1 . . . ,m.

AF
c =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
0 0 0 . . . 1

−a0 −a1 −a2 . . . −an−1

⎤⎥⎥⎥⎥⎥⎦ , bFγ =
[
0 0 . . . 0 1

]T
,

a =
[
−a0 −a1 . . . −an−2 −an−1

]
, cFγ =

[
ξ0 ξ1 . . . ξn−2 ξn−1

]
.

If we use a non-degenerate transformation of variables with the matrix RF
c , we can consider the

MISO LTI system in the canonical form of controllability. The vector Bγ of the MISO system has
the form

Bγ =
[
0 . . . bγ . . . 0

]T
.
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The following relations are valid [14]:(
RF

cγ

)−1
ARF

cγ = AF
c ,
(
RF

cγ

)−1
Bγ = bFγ , CRF

cγ = cFγ ,

P c =
m∑

γ=1

RcF
γ P cF

γ (RcF
γ )T .

In relation to the systems (2.1) and (2.3) we will assume that various structural conditions of
stability, controllability, observability and properties of the spectrum of the dynamics matrix are
fulfilled. The following spectral decomposition of the controllability gramian was obtained in [15]:

P cF
γ =

n∑
k=1

n−1∑
η=0

n−1∑
j=0

sjk(−sk)
η

Ṅ (sk)N (−sk)
1j+1η+1.

Next, we consider the “γ” SIMO LTI channel of a linear system in the canonical form of observ-
ability [15]. In this case, the formulas are valid

xo(t) =
m∑

γ=1

RF
oγxoγ(t),

ẋoγ (t) = AF
c xoγ (t) + bFoγuγ (t) , xo (0) = 0,

yFoγ (t) = cFoγxoγ (t) , γ = 0, 1 . . . m.

AF
o =

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 −a0
1 0 . . . 0 −a−1

0 1 . . . . . . . . .
0 0 . . . 0 −an−2

0 0 . . . 1 −an−1

⎤⎥⎥⎥⎥⎥⎦ , bFoγ =
[
ξ0 ξ1 . . . ξn−2 ξn−1

]T
,

cFoγ =
[
0 0 . . . 0 1

]
.

We obtain following expressions in accordance with the principle of duality [14]

PF
oγ =

n∑
k=1

n−1∑
η=0

n−1∑
j=0

sjk(−sk)
η

Ṅ (sk)N (−sk)
1j+1η+1,

P o =
m∑

γ=1

RF
oγP

oF
γ (RF

oγ)
T .

Definition 1. We call the Xiao matrix (Zero plaid structure) a matrix of the form [12, 13]

Y =

⎡⎢⎢⎢⎢⎢⎣
y1 0 −y2 0 y3
0 y2 0 −y3 0

−y2 0 y3 0 . . .
0 −y3 0 . . . 0
y3 0 . . . 0 yn

⎤⎥⎥⎥⎥⎥⎦ .

The matrix elements are calculated using the formulas

yjη =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if j + η = 2k + 1, k= 1, . . . , n;

yn =
1

2Yn,1
,

yn−l =

−
m−1∑
i=1

(−1)iYn−l,i+1yn−l+i

Yn−l,1
, if j + η = 2k, k = 1, . . . , n, l = 1, n − 1,
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where Yi,j is the element of the Routh table for the system located at the intersection of i row
and j column.

3. MAIN RESULTS

3.1. Identities for One Class of Stable Polynomials
Which Roots are Different over the Field of Complex Numbers

We consider the spectral decomposition of the controllability gramian in simple and pair spec-
trum (2.2).

n∑
k=1

n∑
j=0

n∑
η=0

sjk(−sk)
η

Ṅ (sk)N (−sk)
≡

n∑
k=1

n∑
ρ=1

n−1∑
j=0

n−1∑
η=0

−1

sk + sρ

sjks
η
ρ

Ṅ (sk) Ṅ (sρ)
, sk + sρ �= 0. (3.1)

We introduce the notation

ω (n, sk, j, η) =
n∑

k=1

sjk(−sk)
η

Ṅ (sk)N (−sk)
,

ω (n, sk, sρ, j, η) =
n∑

k=1

n∑
ρ=1

−1

sk + sρ

sjks
η
ρ

Ṅ (sk) Ṅ (sρ)
.

Taking into account the introduced notation, the identity (3.1) takes the form

ω (n, sk, j, η) ≡ ω (n, sk, sρ, j, η) for ∀sk, sρ ∈C−, sk + sρ �= 0.

The proof follows from the decomposition of the fractional rational function
sj
k
(−sk)

η

Ṅ(sk)Ṅ(−sk)
by the

roots of the characteristic equation N (−sk) = 0.

Lemma 1. Consider the polynomial γ (n, sk,−sk) over the field of complex numbers of the fol-
lowing form:

γ (n, sk,−sk) =
n−1∑
i=0

n−1∑
μ=0

sik(−sk)
μ, ∀k = 1, . . . , n,

where sk are roots of the characteristic equation of the system (2.1), and −sk are roots of the
characteristic equation of its antistable conjugate system. We assume that all eigenvalues of the
systems are prime, non-zero complex numbers. Then the polynomial γ (n, sk,−sk) contains only
all even powers of the numbers sk and does not contain their odd powers.

γ (n, sk,−sk) = γ
(
n, s0k, s

2
k, . . . , s

2m
k

)
, n = 2m,

γ (n, sk,−sk) = γ
(
n, s1k, s

3
k, . . . , s

2m−1
k

)
≡ 0, n = 2m− 1.

Proof. It is easy to verify that the result of the lemma is valid for n = 1, 2, 3:

γ (1, sk,−sk) = 1,

γ (2, sk,−sk) = 1− s2k,

γ (3, sk,−sk) = s4k − s2k + 1.

Further, we apply the method of mathematical induction. We assume that the result of the lemma
is true for the polynomial γ (n, sk,−sk):

γ (n, sk,−sk) =

{
γ
(
2m, s0k, . . . , s

2m
k

)
for even n = 2m,

γ
(
2m− 1, s0k, . . . , s

2m
k

)
for odd n = 2m− 1.
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We show that it is also valid for the polynomial γ (n+ 1, sk,−sk) . As n increases by one, the
polynomial γ (n, sk,−sk) takes the form

γ (n+ 1, sk,−sk) =

{
γ (2m+ 1, sk,−sk) for even n = 2m,

γ (2m, sk,−sk) for odd n = 2m− 1.

We first consider the case of even n.

γ (n+ 1, sk,−sk) = γ
(
2m, s0k, . . . , s

2m
k

)
+ γ
(
2m, s0k, . . . , s

2m
k

)
s2m+1
k

− γ
(
2m, s0k, . . . , s

2m
k

)
s2m+1
k + s2m+1

k (−sk)
2m+1 = γ

(
2m, s0k, . . . , s

2m
k

)2 − s
2(2m+1)
k .

For the case of odd n, we similarly obtain

γ (n+ 1, sk,−sk) = γ
(
2m− 1, s0k, . . . , s

2m
k

)
+ γ
(
2m− 1, s0k, . . . , s

2m+1
k

)
s
2(2m+1)
k

− γ
(
2m− 1, s0k, . . . , s

2m+1
k

)
s
2(m+1)
k + s

2(2m+1)
k = γ

(
2m− 1, s0k, . . . , s

2m
k

)
+ s

2(2m+1)
k ,

where the first three terms contain even powers of sk by assumption.

Corollary 1. We consider the multiplier ω (n, sk, j, η) in the spectral decomposition of the con-
trollability gramian in the simple spectrum (2.2). The identities are valid:

ω (n, sk, j, η) ≡ 0, if j + η = 2m− 1, (3.2)

ω (n, sk, j, η) ≡
n∑

k=1

sjk(−sk)
η

Ṅ (sk)N (−sk)
, if j + η = 2m. (3.3)

Proof. We express the multiplier through a polynomial γ(n, sk,−sk)

ω (n, sk, j, η ) ≡
n∑

k=1

sjk(−sk)
η

Ṅ (sk)N (−sk)
=

n∑
k=1

γ (n, sk,−sk, j, η)

Ṅ (sk)N (−sk)

and apply the lemma.

Corollary 2. Let us consider the multiplier ω (n, sk, sρ, j, η) in the spectral decomposition of the
controllability gramian in the pair spectrum (2.2). The identities are valid:

ω (n, sk, sρ, j, η) ≡ 0, if j + η = 2m− 1, (3.4)

ω (n, sk, sρ, j, η) ≡
n∑

k=1

n∑
ρ=1

−1

sk + sρ

sjks
η
ρ

Ṅ (sk) Ṅ (sρ)
, if j + η = 2m. (3.5)

Proof. We express the multiplier through a polynomial γ (n, sk,−sk)

ω (n, sk, j, η) ≡ ω (n, sk, sρ, j, η) for ∀sk, sρ ∈C−, sk + sρ �= 0

and apply the lemma.

Corollaries 1 and 2 prove that for all continuous stable MIMO LTI systems with a simple spec-
trum, reduced to the canonical forms of controllability and observability, exist spectral decomposi-
tions in the form of Xiao matrices. For systems represented in the canonical forms of controllability
and observability, this allows to calculate only n diagonal elements using the formulas (3.2)–(3.5),
instead of calculating n2 matrix elements.
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Remark. The multiplier ω (n, sk, sρ, j, η) should be used with caution in the spectral decompo-
sition of the controllability gramian in the pair spectrum (2.2). For example, in the case of a MIMO
LTI system reduced to a diagonal canonical form, the spectral decomposition of the controllability
gramian has a simple form

P c
d =

n∑
j=1

n∑
ρ=1

−bjρ
sj + sρ

1jρ , bjρ = [BdB
∗
d ]jρ. (3.6)

On the other hand, we have

P c
d =

n−1∑
j=0

n−1∑
ρ=0

ω(n, sj, j, ρ)AjBdB
∗
dA

∗
ρ, ω (n, sk, j, ρ) =

n∑
k=1

sjk(−sk)
ρ

Ṅ (sk)N (−sk)
. (3.7)

We note that both formulas (3.6), (3.7) give the same numerical result, which corresponds to
different spectral decompositions. Let’s give an example.

Illustrative example 1

We consider the problem of controlling a two-zone furnace. The model of the control object of the
heating furnace can be described by equations of state of the form

Σ1:

⎧⎨⎩
dx

dt
= Ax (t) +Bu (t) , x (0) = 0,

y (t) = Cx (t) .

A =

[
−0.5 0
0 −1

]
, B =

[
1 0.5
0.5 2

]
, C =

[
1 0
0 1

]
.

In this case, you can evaluate the expressions

N (s) = s2 + 1.5s + 0.5, Ṅ (s) = 2s + 1.5,

(Is−A)−1 =

[
s+ 1 0
0 s+ 0.5

]
(s2 + 1.5s + 0.5)

−1
,

A1 =

[
1 0
0 1

]
, A0 =

[
1 0
0 0.5

]
, BBT =

[
1.25 1.5
1.5 4.25

]
.

The controllability gramian calculated using the formula (3.6), is equal to

P c =

[
1.25 0
0 0

]
+

[
0 1
0 0

]
+

[
0 0
1 0

]
+

[
0 0
0 2.125

]
.

The expression for the decomposition of the controllability gramian has the form

P c =
n−1∑
j=0

n−1∑
ρ=0

2∑
k=1

sjk(−sk)
ρ

Ṅ (sk)N (−sk)
AjBBTAT

ρ ,

P c =
n−1∑
j=0

n−1∑
ρ=0

2∑
k=1

sjk(−sk)
ρ

Ṅ (sk)N (−sk)

−bjρ
sj + sρ

1jρ,

where Aj is the Faddeev matrix, constructed for the matrix A using the Faddeev–Le Verrier algo-
rithm [6, 7]. Let’s calculate the matrices AjBBTAT

ρ :

A0BBTAT
0 =

[
1.25 0.75
0.75 1.0625

]
, A0BBTAT

1 =

[
1.25 0.75
1.5 2.125

]
,

A1BBTAT
0 =

[
1.25 1.5
0.75 2, 125

]
, A1BBTAT

1 =

[
1.25 1.5
1.25 4.25

]
.
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Substituting these expressions into (3.7), we obtain the spectral decomposition:

P c =

[
1.25 0.75
0.75 1.0625

]
2

3
+

[
1.25 1.5
1.25 4.25

]
1

3
=

[
1.25 1
1 2.125

]
.

Matrices of infinite sub-gramians are symmetric and positive definite, and so is their sum. We
verify that the calculated controllability gramian is a solution to the Lyapunov equation by direct
substitution. The separable spectral decomposition of the controllability gramian, calculated using
the formula (3.6), has the form

P c =

[
1.25 0
0 0

]
+

[
0 1
0 0

]
+

[
0 0
1 0

]
+

[
0 0
0 2.125

]
.

The matrices of infinite sub-gramians in this decomposition are not symmetric and positive definite,
although their sum is. The example shows that the same gramian can have several different spectral
decompositions.

3.2. Decomposition of Gramians in the Form of Hadamard Products [3]

We introduce the matrices of the gramian controllability multiplier of a continuous MIMO LTI
system in the form

Ωc = [ωc,jη]n×n

and its observability gramian in the form

Ωo = [ωo,jη]n×n,

where j is the row index, and η is the column index of the multiplier matrices.

We introduce matrices Ψc and Ψo in the form

Ψc =
n−1∑
i=0

n−1∑
μ=0

AiBBTAT
μ ,

Ψo =
n−1∑
i=0

n−1∑
μ=0

AT
i C

TCAμ.

We introduce an element-wise representation of these matrices in the form

ψc,jη = eTj Ψc eη ,

ψo,jη = eTj Ψo eη.

Theorem 1 [15]. We consider a stable continuous dynamic MIMO LTI system with a simple
spectrum

ẋ(t) = Ax(t) +Bu (t) , x (0) = 0,

y (t) = Cx (t) ,

where x (t) ∈Rn, u (t) ∈Rm, y(t)∈Rm.

Then the controllability subramian P c is a matrix of the form (2.2), and in accordance with [7]
formulas (2.1), (2.2) is defined as

P c =
n−1∑
j=0

n−1∑
η=0

P c
j,η, P c

j,η = ω(n, sk, sρ, j, η)AjBBTAT
η , (3.8)
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where

ω (n, sk, sρ, j, η) =

⎧⎪⎪⎨⎪⎪⎩
0, if index j + η is odd,

n∑
k=1

n∑
ρ=1

−1

sρ + sk

sjks
η
ρ

Ṅ (sk) Ṅ (sρ)
, if index j + η is even.

Proof of Theorem 1. As is known, the spectral decomposition of the controllability gramian
under the conditions of Theorem 1 has the form [7, 20]

P c =
n−1∑
j=0

n−1∑
η=0

n∑
k=1

n∑
ρ=1

−1

sρ + sk

sjks
η
ρ

Ṅ (sk) Ṅ (sρ)
AjBBTAT

η .

We substitute the newly introduced scalar function ω (n, sk, sρ, j, η) into this formula and obtain
the formula (3.8).

Theorem 2 [13]. We consider a continuous MIMO LTI system of the form (2.1). We assume
that the system is stable and all the roots of its characteristic equation are different. Then its
controllability and observability gramians have the form of the generalized Xiao matrices of the
following form:

P c = Ωc ◦Ψc =
[
pcjη

]
n×n

, j, η = 1, . . . , n. (3.9)

Ψc = [ψc,jη]n×n, j, η = 1, . . . , n. Ψc =
n−1∑
i=0

n−1∑
μ=0

Ψc,iμ, Ψc,iμ = MiM
∗
μ,

Mi = AiB, Ωc = [ωc(n, j, η)]n×n, j, η = 1, . . . , n.

pcjη = ωc(n, j, η) × ψc,jη.

Proof of Theorem 2. We use the spectral decomposition of the controllability gramian (2.2).
We introduce a representation of gramians in the form of Hadamard products

P c = Ωc ◦Ψc, (3.10)

P o = Ωo ◦Ψo. (3.11)

This representation allows us to write simple formulas for calculating the elements of the control-
lability and observability gramians of MIMO LTI systems P c and P o in the form [13]

pcjη = ωc(n, j, η) × ψc,jη, (3.12)

pojη = ωc(n, j, η) × ψo,jη. (3.13)

Next, we use identities for one class of stable polynomials whose roots are different over the field of
complex numbers (Lemma). Formulas (3.10)–(3.13) express algorithms for calculating elements of
generalized Xiao matrices in the form of products of elements of multiplier matrices and elements of
sums of all possible products of matrices AjBBTAT

η , written in the form of products of Hadamard
matrices

Ωc ◦Ψc.

Corollary 3. We consider an important special case of continuous linear SISO systems repre-
sented by equations of state in the canonical forms of controllability and observability. In this case,
the controllability and observability gramians are determined by the formulas [15]

P cF =
n∑

k=1

n−1∑
η=0

n−1∑
j=0

sjk(−sk)
η

Ṅ (sk)N (−sk)
1j+1η+1, (3.14)

P oF =
n∑

k=1

n−1∑
η=0

n−1∑
j=0

sjk(−sk)
η

Ṅ (sk)N (−sk)
1j+1η+1.
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The representation of gramians in Hadamard form according to (3.10)–(3.11) takes the form

P cF = ΩcF ◦Ψc, Ψc =
n−1∑
η=0

n−1∑
j=0

1j+1η+1,

P oF = ΩoF ◦Ψo, Ψo =
n−1∑
η=0

n−1∑
j=0

1j+1η+1.

This implies the identities

P cF ≡ ΩcF , (3.15)

P oF ≡ ΩoF . (3.16)

This means that the controllability gramian in the canonical form of controllability coincides with
the multiplier matrix for this gramian, which allows us to apply the formulas (3.15), (3.16) to
calculate all elements of the gramian and establishes that the gramian belongs to the class of Xiao
matrices. A similar result holds for the gramian observability in the canonical form of observability.

Multiplier matrices in different canonical forms have the form

ΩcF ≡ ΩoF = [ω (n, sk, sρ, j, η)]n×n = [ω (n, sk, j, η)]n×n.

3.3. Spectral and Singular Decompositions of Inverse Matrices of Gramians

General formulas for calculating inverse gramian matrices (hereinafter inverse gramians) for
continuous MIMO LTI systems have the form [1]

(P c)−1 =
−1

γ0

[
(P c)n−1 + γn−1(P

c)n−2 + · · · + γ2P
c + γ1I

]
;

(P o)−1 =
−1

γ0

[
(P o)n−1 + γn−1(P

o)n−2 + · · ·+ γ2P
o + γ1I

]
.

In the case of continuous SISO LTI systems, these formulas, in accordance with (3.15), (3.16), take
the form [

P cF (ω(n, sk, j, η))
]−1

=
−1

γ0

[
(ΩcF )

n−1 + γn−1(ΩcF )
n−2 + · · ·+ γ2ΩcF + γ1I

]
;[

P oF (ω(n, sk, j, η))
]−1

=
−1

γ0

[
(ΩoF )

n−1 + γn−1(ΩoF )
n−2 + · · ·+ γ2ΩoF + γ1I

]
.

The presence of powers of the multiplier matrices on the right side of the formulas leads to the
appearance of complex fractional rational functions of eigenvalues sk, which limits the scope of
application of the formulas for spectral decompositions of inverse gramians to systems of small
and medium dimensions. We return to stable continuous MIMO LTI systems with a simple spec-
trum and note that the controllability and observability gramians are symmetric complex-valued
matrices. In this case, there are their singular decompositions of the form [1]

P c = P c∗ = VcΛV
∗
c ,

P o = P o∗ = VoΛV
∗
o ,

where the matrix Vc is formed by the right singular vectors of the matrix P c, the matrix V ∗
c is

formed by the left singular vectors of the matrix P c, and the matrix Λ is a diagonal matrix of the
form

Λ = diag {|λ1| |λ2| . . . |λn|} .
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We define matrices S and U in the form

S = diag {sgnλ1 sgnλ2 . . . sgnλn } , Uc = VcS,

sgnλ =

{
+1, if λ � 0,
−1, if λ < 0.

Then

P c = UcΛV
∗
c ,

P o = UoΛV
∗
o ,

where the matrix Uc is formed by the left singular vectors of the matrix P c. Since Λ, Uc, Vc are
nonsingular matrices, then

(P c)−1 = (Uc)
−1Λ−1(V ∗

c )
−1 = V ∗

c Λ
−1Uc. (3.17)

In a similar way we get

(P o)−1 = (Uo)
−1Λ−1(V ∗

o )
−1 = V ∗

o Λ
−1Uo. (3.18)

Since the matrix Λ is diagonal, its inverse matrix can be written as

Λ−1 =
[
|λ1|−1

111 + |λ2|−1
122 + · · · + |λn|−1

1nn

]
. (3.19)

Substituting (3.19) into (3.17), (3.18), we obtain the following singular decompositions of the inverse
gramians of controllability and observability in terms of their singular spectrum:

(P c)−1 = V ∗
c

[
|λ1|−1

111 + |λ2|−1
122 + · · ·+ |λn|−1

1nn

]
Uc;

(P o)−1 = V ∗
o

[
|λ1|−1

111 + |λ2|−1
122 + · · ·+ |λn|−1

1nn

]
Uo.

Theorem 3. Consider a continuous stable and fully controllable dynamic MIMO LTI system of
the form (2.1).

The singular decompositions of its inverse controllability gramian in terms of the eigenvalues of
the gramian matrix have the following form.

For a simple spectrum of the gramian matrix

(P c)−1 =

∑n
λ=1

∑n−1
j=0 P

c
j σ

j
λ

Ṅc(σλ)

1

σλ
, (3.20)

where P c is the gramian controllability matrix, P c
j is the Faddeev matrix in the decomposition of

the gramian resolvent, σλ is the eigenvalue of the gramian matrix P c.

For the multiple spectrum of the gramian matrix

(P c)−1 = −
q∑

δ=1

mδ∑
ρ=1

Kδρ

(−σδ)
mδ−j+1 , (3.21)

Kδρ =
1

(ρ− 1)!

{
dρ−1

dσρ−1

[
(σ − σδ)

mδ
∑n−1

j=0 σ
jP c

j∏n
δ=1 (σ − σδ)

mδ

]}∣∣∣∣∣
s=sδ

, (3.22)

where P c is the gramian controllability matrix, P c
j is the Faddeev matrix in the decomposition of

the gramian resolvent, σδ is the eigenvalue of the gramian matrix P c multiplicity mδ, ρ is the
multiplicity index of the eigenvalue σδ.
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Proof of Theorem 3. We consider the decomposition of the resolvent of the gramian controlla-
bility matrix in the form of a segment of the Faddeev series [6]

(Iσ − P c)−1 =

∑n−1
j=0 P

c
j σ

j

Nc(σ)
. (3.23)

We denote: Nc (σ) = sn + ac,n−1σ
n−1 + . . . ac,1σ + ac,0, j = 1, . . . , n; Nc (σ) is characteristic poly-

nomial of the resolvent of the gramian matrix, P c
j is the Faddeev matrix in the decomposition of

the resolvent in the Faddeev series, j = 1, . . . , n.

We first consider the case when all singular values σλ of the gramian are different. In this case,
the decomposition (3.23) is transformed to the form

(Iσ − P c)−1 =

∑n
λ=1

∑n−1
j=0 P

c
j σ

j
λ

Ṅc(σλ)

1

σ − σλ
. (3.24)

Iterative algorithm for calculating Faddeev matrices and coefficients of the characteristic equation:

First step: ac,n−1 = 1, Rn = I,

Step “k”: ac,n−k = − 1
k tr (P

cRn−k+1) , Rn−k = ac,n−kI + P cRn−k+1, k = 1, . . . , n;

In accordance with the Faddeev–Le Verrier algorithm, the following matrix equalities are also
valid:

P c
0 = ac,1I + ac,2P

c + · · · + ac,n(P
c)n−1,

P c
1 = ac,2I + ac,3P

c + · · · + ac,n(P
c)n−2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P c
n−2 = ac,n−1I + ac,nP

c,

P c
n−1 = ac,nI.

The above system can be written in the form

P c
j =

n−1∑
j=0

ac,j+1(P
c)j , ∀j : j = 0, 1, . . . , n− 1.

We put σ = 0 in (3.24) and get the formula (3.20):

(P c)−1 =

∑n
λ=1

∑n−1
j=0 P

c
j σ

j
λ

Ṅc(σλ)

1

σλ
. (3.25)

Thus, (3.20)–(3.25) in the case of a simple spectrum, the gramian matrices determine the singular
decomposition of the inverse gramian of controllability. A similar approach can be applied to the
case of a multiple spectrum of the gramian matrix. We assume that the characteristic equation of
the gramian matrix can be represented in the form

Nc (σ) =
n∏

i=1

(σ − σi)
mi ,

n∑
i=1

mi = q, σi ∈C+.

For any square gramian matrix, its resolvent has the form of a matrix function (3.24). In accordance
with [22, 23], its decomposition into simple fractions has the form

(Iσ − P c)−1 =
q∑

δ=1

mδ∑
ρ=1

Kδρ

(σ − σδ)
mδ−j+1 , (3.26)

Kδρ =
1

(ρ− 1)!

{
dρ−1

dσρ−1

[
(σ − σδ)

mδ
∑n−1

j=0 σ
jP c

j∏n
δ=1 (σ − σδ)

mδ

]}∣∣∣∣∣
σ=σδ

.
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We set σ = 0 in (3.26) and obtain formulas (3.21)–(3.22) for the singular decomposition of the
inverse gramian of controllability for the case of a multiple spectrum of the gramian matrix.

Illustrative example 2

We consider the problem of controlling an asynchronous motor. The model of the control object
can be described by equations of state of the form

Σ1:

⎧⎨⎩
dx

dt
= Ax (t) +Bu (t) , x (0) = 0,

y (t) = Cx (t) .

A =

⎡⎢⎢⎢⎢⎣
−4.67 3 −1.33 2.33

−2.17 2.33 −3.83 5.17

1.5 −0.33 −1.5 0.17

2.17 −3.33 3.83 −6.17

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
3

−3

−7

−4

⎤⎥⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ .

We present the eigenvalues of the system dynamics matrix

λi = −4; −3; −2; −1.

To construct a singular decomposition of the inverse gramian of the controllability of the system
by the singular values of the gramian matrix, we calculate the gramian of controllability using the
formula (3.6)

P c =

⎡⎢⎢⎢⎢⎣
2.5 3 2.5 0.56

3 11.2 13.2 5.1

2.5 13.2 16.6 6.9

0.56 5.1 6.9 3

⎤⎥⎥⎥⎥⎦ .

We note that the formula (3.6) is valid not only for stable linear systems, but also for unstable
systems in which the condition sk + sp �= 0 is not violated. It is violated in the case of sk = 0 or
sk = +jω, sk+1 = −jω [21].

Then the singular numbers of this gramian take the form

σi = 30.7; 2.5; 0.17; 0.0002.

The controllability gramian of the system is represented by a symmetric matrix, therefore there is
its SVD decomposition [1]

P c =

⎡⎢⎢⎢⎢⎣
−0.13 0.86 −0.48 −0.009

−0.6 0.28 0.67 0.35

−0.73 −0.25 −0.25 −0.58

−0.3 −0.32 −0.51 0.74

⎤⎥⎥⎥⎥⎦×
⎡⎢⎢⎢⎢⎣
31 0 0 0

0 2.5 0 0

0 0 0.17 0

0 0 0 0.0002

⎤⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎣
−0.13 0.86 −0.48 −0.009

−0.6 0.28 0.67 0.35

−0.73 −0.25 −0.25 −0.58

−0.3 −0.32 −0.51 0.74

⎤⎥⎥⎥⎥⎦ .
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In accordance with the Faddeev–Le Verrier algorithm, we calculate the Faddeev matrices and the
coefficients of the characteristic equation for the inverse gramian

P c
0 =

⎡⎢⎢⎢⎣
−0.01 0.05 −0.07 0.08
0.05 −1.62 2.69 −3.4
−0.07 2.69 −4.5 5.6
0.08 −3.4 5.6 −7.2

⎤⎥⎥⎥⎦ , P c
1 =

⎡⎢⎢⎢⎣
21.8 −23.5 8.4 17
−23.5 44.6 −29.5 −5.5
8.4 −29.5 33 −25
17 −5.5 −25 65.7

⎤⎥⎥⎥⎦ ,

P c
2 =

⎡⎢⎢⎢⎣
−31 3 2.5 0.56
3 −22.1 13.2 5.1
2.5 13.2 −16.7 6.9
0.56 5.1 6.9 −30.3

⎤⎥⎥⎥⎦ , P c
3 =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ ,
ac,0 = 0.0031, ac,1 = −13.3, ac,2 = 82.6, ac,3 = −33.3, ac,4 = 1.

Then the inverse gramian can be calculated using the formula (3.20)

(P c)−1 =

⎡⎢⎢⎢⎣
1.97 −14.8 22.3 −26.2
−14.8 −517 −856 1083
22.3 −856 1422 −1803
−26.2 1083 −1803 2290

⎤⎥⎥⎥⎦ .

3.4. Spectral Decompositions of Energy Functionals and New Stability Criteria

Within the framework of the SISO LTI assumptions made above, we consider a system of the
form (2.4), the equations of state of which are reduced to the canonical form of controllability,
and calculate the energy functional J, which is the value of the square H2 is the norm of the
transfer functions of the system and gives an assessment of the risk of loss of stability [1, 19, 22].
To do this, we use (3.12) and (3.14) and, for definiteness, choose the spectral decomposition of the
controllability gramian in a simple spectrum

J = trCFΩc(C
F )

T

=

⎛⎜⎜⎝ ξ0
2

n∑
k=1

Ṅ (sk)N (−sk)
−

ξ1
2

n∑
k=1

s2k

n∑
k=1

Ṅ (sk)N (−sk)
+ · · ·+

(−1)n−1ξn−1
2

n∑
k=1

s2nk

n∑
k=1

Ṅ (sk)N (−sk)

⎞⎟⎟⎠ .
(3.27)

We obtained an invariant spectral decomposition of the energy functional over the simple spectrum
of the dynamics matrix. This simple formula shows the advantage of using spectral decompositions
in canonical form over the general decomposition (3.23). The decomposition does not depend on
the choice of a non-singular matrix of linear transformations of the system coordinates. Two main
factors influence the value of the buckling risk J:

1) the values of the diagonal terms of the Xiao matrix Ωc,

2) the squares of the elements of the reduced output vector.

The expression (3.27) can be simplified by simplifying the SISO LTI system. In [14] it is shown
that the Xiao matrix is the controllability gramian for a SISO LTI system with a transfer function

W (s) =
y(s)

u(s)
=

1

sn + an−1sn−1 + · · · + a1s+ a0
. (3.28)

The asymptotic stability of SISO LTI systems of the form (2.4) is equivalent to the asymptotic
stability of this system. Moreover, we will show that the asymptotic stability of MIMO LTI
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systems of the form (2.1) is equivalent to its asymptotic stability. The energy functional J for the
system (3.28) according to (3.27) is equal to

J =

(
1∑n

k=1 Ṅ(sk)N(−sk)
−

∑n
k=1 s

2
k∑n

k=1 Ṅ(sk)N(−sk)
+ . . .+

(−1)n−1∑n
k=1 s

2n
k∑n

k=1 Ṅ(sk)N(−sk)

)
. (3.29)

Theorem 4. We consider a continuous fully controllable dynamic MIMO LTI system with a
simple spectrum of the form (2.1), as well as a continuous dynamic SISO LTI system with the
same spectrum, the equations of state of which are reduced to the canonical form of controllability
of the form (2.4).

Then a sufficient condition for the asymptotic stability of the system (2.1) according to Lyapunov
is the boundedness of the energy functional (3.29) for a SISO LTI system with the same spectrum
and transfer function(3.28) is

J <+∞, (3.30)

for any sk belonging to C−, k = 1, . . . , n. (3.31)

Proof of Theorem 4. Let us recall that the MIMO LTI system (2.1) is completely controllable
and observable, all eigenvalues of matrix A are different, the implementation of the system (2.1) is
minimal and there is a single transfer function of the system. When the specified conditions are met,
the boundedness of the functional

√
J is a necessary and sufficient condition for the asymptotic

stability of the system (2.1) according to Lyapunov [1, Theorem 5.14]. Thus, the boundedness of
the functional J is a sufficient condition for the asymptotic stability of the system (3.27)

J < ∞.

But the functional J is a trace of the Xiao matrix SISO LTI system (2.4), the equations of state
of which are reduced to the canonical form of controllability. This leads to the conclusion that the
boundedness of the energy functional of a simple SISO LTI system (3.28) in the form of inequality
(3.30) guarantees the asymptotic stability of a complex MIMO LTI system of the form (2.1).
Verification of the condition (3.31) requires the use of asymptotic gramian models [22].

Thus, a new criterion for the stability of a complex stationary linear dynamic MIMO LTI system
is obtained in the form of a criterion for the boundedness of the trace of the Xiao matrix Ωc for
a simple SISO LTI system (3.21), the equations of which are reduced to the canonical form of
controllability. The new criterion does not contradict the well-known criterion that the eigenvalues
of the dynamics matrix of a linear system belong to the left half-plane of the plane of eigenvalues,
but refines it taking into account the nonlinear effects of mode interaction (multiple eigenvalues,
close aperiodic and vibrational modes) [22].

4. CONCLUSION

This article is dedicated to the development of spectral methods for solving the Lyapunov equa-
tion. The main results are obtained using structural methods in developing new methods and
tools that are closely related to the fundamental properties of linear dynamic systems: controlla-
bility, observability and stability. Among the solution methods, two should be mentioned first of
all: determining the structure of the solution matrix in the form of the Xiao matrix and spectral
decompositions of the solution in the form of Hadamard products. A method and algorithm for
calculating matrices in the form of the Hadamard product for multiply connected continuous linear
systems with many inputs and many outputs has been developed. This allows us to calculate the
elements of the corresponding controllability and observability gramians in the form of products of
the corresponding elements of the multiplier matrices and a matrix that is the sum of all possible
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products of the numerator matrices of the matrix transfer function of the system. When using the
canonical forms of controllability or observability, the Hadamard decomposition of the correspond-
ing gramians is reduced to a multiplier matrix, the trace of which is equal to the energy functional
of the SISO LTI system. New results are obtained in the form of spectral and singular decomposi-
tions of the inverse gramians of controllability and observability. This makes it possible to obtain
invariant decompositions of energy functionals and formulate new criteria for the stability of linear
systems taking into account the nonlinear effects of mode interaction [20].
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