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THEMATIC ISSUE

15th International Conference on Management

on Large-Scale System Development.

Opening Remarks of the Program Committee1

This special issue presents selected papers from the 15th International Conference on Manage-
ment of Large-Scale System Development (MLSD’2022), held on September 26–28, 2022.

MLSD is an annual event organized by the Trapeznikov Institute of Control Problems, the
Russian Academy of Sciences, starting from 2007. The conference program is intended for original
research on the theory and practice of computer control to manage the development of production,
transport, energy, financial, and social processes. Every year MLSD gathers over three hundred
participants from research institutes, universities, government, and commercial organizations.

Traditionally, several high-impact conference papers are selected and placed as full-text articles
in special issues of Automation and Remote Control . This issue of the journal includes eight best
research papers presented at MLSD’2022.

Controlled thermonuclear fusion for industrial purposes is of paramount importance for the na-
tional economy. This problem is considered by Yu.V. Mitrishkin, S.L. Ivanova, and K.S. Mukhtarov
in the paper “Adaptive Control Algorithm for Unstable Vertical Plasma Position in Tokamak.” The
authors develop and model an adaptive control algorithm for unstable vertical plasma positioning in
a vertically elongated tokamak. The topic is interesting and important: at each step of automatic-
mode operation, the system determines the parameters of the plant (identification) and designs
a new feedback controller based on them. This system belongs to the class of robust-adaptive
control systems. The parameters of the feedback controller are calculated using a given placement
of the poles of the closed loop control system in the left half-plane of the complex plane. A ro-
bust system synthesized using Quantitative Feedback Theory (QFT) is used as an initial model
of the control system. Note that the system was simulated on a real-time digital test bed; see
https://www.ipu.ru/plasma/about.

An important area of research in various industries (energy, mechanical engineering, aviation,
aerospace, and robotics) is the state monitoring of controlled objects and the controlled damping of
dangerous oscillations. I.B. Yadykin and I.A. Galyaev significantly contribute to the solution of this
problem in the paper “Structural Spectral Methods for Solving Continuous Lyapunov Equations.”
The authors develop spectral and singular decompositions for the inverse gramians of controllability
and observability. As a result, invariant decompositions of energy functionals are obtained, and
new stability criteria are formulated for linear systems with nonlinear mode interaction effects.

An urgent problem in developing new effective drugs and creating artificial proteins is predict-
ing the properties of protein molecules based on their amino acid composition data. At present,
molecular dynamic modeling is used to predict the properties of proteins and, in particular, their
stability in the process of conformational changes. This method requires high computational and
time costs. An effective approach to reduce the costs is to assess how the arrangement of amino
acid residues in a protein affects its stability. In the paper “Probabilistic Assessment of a Pentapep-
tide Composition Influence on Its Stability” (A.I. Mikhalskii, J.A. Novoseltseva, A.A. Anashkina,
and A.N. Nekrasov), this problem is solved using a cooperative game theory method. The authors

1 The papers on pp. 1399–1467 are from the thematic issue.
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calculate the Shapley value to estimate the probability of a positive or negative influence on the
stability of a protein or the absence of a particular amino acid in its primary structure. The pa-
per presents the practical implementation of the method to analyze the stability of short proteins
consisting of five amino acids (pentapeptides).

The contemporary theory of managing the development of large-scale systems requires new
models and methods for analyzing the attainability of goals. At present, this check is insuffi-
ciently formalized and performed mainly using the intuition and experience of decision-makers.
A.D. Tsvirkun, A.F. Rezchikov, V.A. Kushnikov, O.I. Dranko, A.S. Bogomolov, and A.D. Selutin
propose one approach to solving this problem; see their paper “Models and Methods for Checking
the Attainability of Goals and Feasibility of Plans in Large-Scale Systems Using the Example of
Goals and Plans for Elimination of the Consequences of Flood.” The authors describe an algorithm
for analyzing the attainability of goals and the feasibility of action plans implemented in the man-
agement of large-scale systems and consider flood management goals and plans as one example.
The check is carried out in four stages; the first and second stages involve relational algebra and
production models; the third stage, Markov process models and Kolmogorov–Chapman equations;
the fourth stage, the system-dynamic approach and regression equations. Also, they form an al-
gorithm for analyzing the attainability of goals and plans implemented during the development of
such systems. An example is provided to illustrate the main stages of checking the attainability of
goals and the feasibility of action plans.

The paper “Optimization of Group Incentive Schemes” (V.N. Burkov, I.V. Burkova, and A.R. Ka-
shenkov) is devoted to the problem of designing a group incentive scheme to compensate for the
costs of reducing the duration of project works. The theory of incentives generally considers two
types of such schemes, namely, individual (a particular incentive scheme for each work) and unified
(the same incentive scheme for all works). The group incentive scheme occupies an intermediate
position: all works are partitioned into groups, and a particular incentive scheme is selected for each
group. The problem is to partition the set of works into groups by minimizing the total incentive
fund. This scheme largely offsets the disadvantages of individual and unified incentive schemes.
The authors propose algorithms for solving the problem; they are based on determining shortest
paths in a graph.

In the paper “Comparison of Distribution Procedures in Blended Finance,” A.V. Shchepkin
analyzes the following situation: the contractors of a megaproject apply to the Principal (an or-
ganization interested in this project) for funds. The Principal distributes the megaproject budget
among the contractors only if they allocate their internal funds to project implementation. When
distributing available funds, the Principal considers the requests for funding and the internal funds
allocated by the contractors to their projects. This paper provides opportunities to improve busi-
ness results.

Chair of the Program Committee
of MLSD’2022 Conference

Academician of RAS S.N. Vassilyev
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Abstract—The problem considered includes the development and modeling of an adaptive
control algorithm for unstable vertical plasma positioning in a vertically elongated tokamak.
At each iteration, a new PID controller is automatically synthesized for the evolving plasma
model identified using the least squares method. The parameters of the feedback controller
were computed based on the desired placement of the poles of the closed-loop control system in
the left half-plane of the complex plane. The initial control system model utilized was a robust
system synthesized using Quantitative Feedback Theory (QFT). The system was simulated on
a real-time digital test bed (https://www.ipu.ru/plasma/about).

Keywords : tokamak, plasma, vertical plasma instability, QFT method, observation-based iden-
tification, adaptation, automatic synthesis, real-time digital test bed

DOI: 10.25728/arcRAS.2024.51.14.001

1. INTRODUCTION

In a vertically elongated tokamak, plasma exhibits vertical instability, necessitating the synthesis
and application of feedback control systems for managing the vertical position of the plasma. This
is a crucial problem in the field of plasma control in tokamaks.

The physics of vertically elongating plasma in a tokamak entails a process that significantly
increases plasma pressure under the same toroidal magnetic field. However, this vertical elongation
of the plasma induces its vertical instability.

This is explained by the creation of a radial magnetic field BR, directed towards the central
axis in the upper half-plane of the vertical cross-section of the tokamak and outward in the lower
half-plane, resulting in the elongation of the plasma in the vertical direction (see Fig. 1).

As a result, the magnetic field lines of the total magnetic field B are convex towards the central
axis Z of the tokamak. The Ampere force

F = [I ×B] (1)

is directed upward in the upper half-plane and downward in the lower half-plane. While the
current distribution and magnetic field are fully symmetric with respect to the central axis, the
total Ampére force is zero. However, if a disturbance occurs, such as plasma displacement upward
from the central axis, there will be a redistribution of currents and fields, resulting in a net force
directed upward. This imbalance causes the plasma to move upward, as the resultant force is
directed upward [1].
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F

Fig. 1. Illustration of the instability of vertically elongated plasma in the tokamak.

Fig. 2. Block diagram of the control system for the quantity Z without automatic tuning (PID controller with
constant parameters).

The problem of controlling the vertical position of the plasma is addressed using the example
of the T-15MD tokamak [2]. To suppress vertical plasma instability, the T-15MD tokamak design
incorporates the Horizontal Field Coil (HFC) (see Fig. 2) [1]. The HFC is situated between the
vacuum chamber and the toroidal field coil. In the design of the T-15MD tokamak, the HFC has
been relocated from its position between the PF coils to the location depicted in Fig. 2. This

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 12 2023
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relocation was prompted by the internal instability caused by the initial positioning of the HFC in
the control system for vertical plasma position feedback [3, 4]. In the feedback control system, the
HFC, in the event of a disturbance in the plasma column, generates magnetic field distributions
such that the net Ampere force acting on the plasma becomes zero (compensated), thus stabilizing
the vertical position of the plasma.

2. CONTROL PLANT MODEL

The plant model for the T-15MD tokamak includes a major plasma radius R0 = 1.48 m, a minor
radius a = 0.67 m, elongation k = 1.7–1.9, triangularity δ = 0.3–0.4, plasma current Ip = 2 MA,
pulse duration of 1 s, and toroidal magnetic field on the plasma axis up to B = 2 T [2]. When
designing the plasma vertical position control system in the T-15MD tokamak, the plasma model (2)
(the model justification history is provided in [5]) and the linear model of HFC (3) in state space
were utilized:

Tp
dZ

dt
− Z = Kp(I + d), (2)

L
dI

dt
+RI = U. (3)

To simplify the plant model for subsequent adaptive control problem solving, the current inverter
model from [6] was adopted as the actuator, which in the first approximation is modeled by a
constant gain coefficient

Then the transfer function of the plant model consists of the sequential connection of transfer
functions of the current inverter model Ki, the HFC model Kc

Tcs+1 , the plasma model Kp

Tps−1 with a

disturbance input d < 1 kA (see Fig. 2) [1]. When designing a robust controller, all coefficients in
this model have uncertainties. Here in (2), (3) U , I are the voltage and current of the HFC, Kp,
Tp, Ka, Ta are the gain coefficients and time constants of the plasma model and the multi-phase
thyristor rectifier model respectively, Z represents the vertical displacement of the plasma center.

The inductance L and the active resistance R of the HFC were calculated to be L = 0.0042 H,
R = 0.09 ohm based on the data from JSC D.V. Efremov Institute of Electrophysical Apparatus
(NIIEFA) [1]. Hence, the gain coefficient and time constant for the HFC model are respectively
Kc =

1
R = 11.11 ohm−1 and Tc =

L
R = 46.7 ms. The nonlinear plasma physics code DINA, presented

by employees of the Joint Stock Company “State Scientific Center of the Russian Federation Trinity
Institute of Innovative and Thermonuclear Research” (JSC “SSC RF TRINITY”) (Troitsk), as
referenced in [7], was identified in [8] with estimates of the time constant Tp = 20.8 ms and the
gain coefficient Kp = 1.78 cm/kA for the linearized DINA-L model at the selected point in the
parameter space of the T-15MD tokamak.

For the initial control system with the adaptation algorithm, a robust control system was utilized,
synthesized using the Quantitative Feedback Theory (QFT) [9].

3. THE SYNTHESIS OF THE ROBUST CONTROL SYSTEM
OF PLASMA VERTICAL POSITION Z USING THE QFT METHOD

AND TESTING IT ON A REAL-TIME DIGITAL TEST BED

The constant magnitude and constant phase lines of the closed-loop control system in the
amplitude—phase coordinates are plotted on the Nichols chart using the QFT theory (see Fig. 3a).
These characteristics are referred to as QFT—boundaries and are calculated for different system
parameters, thus encapsulating all the information about the uncertain model (see Fig. 3a).

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 12 2023
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Fig. 3. (a) — Open—loop frequency response and Nichols chart boundaries, (b) — transfer functions of the
feedback system for different parameters of the plant model when a setpoint input is applied, (c) — system
transient responses when an external disturbance is applied.

(a)

(b)

Fig. 4. (a) — structural diagram of the control system on the real-time digital platform in discrete form with
ADC and DAC; (b) — real—time digital platform for simulating control systems in tokamak plasma.
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(a) (b)

Fig. 5. a — Step response of the control system to a 5 cm step input in real—time; b — signals of voltage,
current, and power in the HFC, as well as signals from the ADC and DAC, to a 5 cm step input in real—time.

Using the specified boundaries and the Nichols chart (see Fig. 3a), a robust PID controller was
synthesized:

C(s) = P +
I

s
+D

N

1 + N
s

with parameters P = 39, I = 563, D = 1.38, N = 12291. The control system with this controller
has no steady-state error, a settling time of about 300 ms (see Fig. 3b), and suppresses external
disturbances within 300 ms (see Fig. 3c).

The obtained control system was discretized using the ZOH (zero-order hold) method with a
sample time of 100 μs and tested on the Speedgoat Performance real-time target machine on the
SimulinkRT operating system [10–12]. The real-time target machines, connected in a feedback
loop “plant model—controller”, facilitate the fastest transition from control system modeling in
the MATLAB/Simulink environment to real-time testing on the digital test bed (see Fig. 4a). The
digital controller and digital plant model on the test bed exchange analog signals with each other
using DAC and ADC (see Fig. 4b).

The real-time system’s performance is determined by the task execution time (TET). It consists
of the time required for calculating the models of tokamak components and control algorithms,
as well as the time for polling input—output modules. For the developed control system with the
robust controller, the TET was approximately 14.6 μs. For nominal real-time system operation, the
TET should not exceed the sample time in the numerical algorithm solving difference equations
(in this case, 100 μs). The graphs depicting the plasma position and the voltage, current, and
power changes in the HFC are shown in Figs. 5a and 5b.

4. ADAPTIVE PLASMA CONTROL DURING A SINGLE DISCHARGE

The problem involves identifying the changing plasma model and subsequently tuning the con-
troller within one plasma discharge, which lasts approximately 1 s.

The plasma model with two time-varying parameters K(t) and T (t) was adopted as the control
plant model:

T (t)
dZ(t)

dt
− Z(t) = K(t)I(t), (4)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 12 2023



1406 MITRISHKIN et al.

Fig. 6. The system with an adaptive control algorithm for the vertical position of the plasma during a
discharge.

connected in series with the linear model of the HFC with known constant parameters

L
dI(t)

dt
+RI(t) = U(t).

While simulating the evolution of the plasma model (4), the coefficients of the plasma model
change linearly from the lower bound to the upper bound during the algorithm’s operation —
coefficient K ∈ [1.78; 7.61] cm/kA, coefficient T ∈ [0.0208; 0.093] s. Simultaneously, plasma model
identification and synthesis of a new PID controller are performed. Figure 6 depicts the system
with the adaptive control algorithm for vertical plasma position throughout the discharge.

The parameter identification problem for the plasma model was solved using linear regression
and the method of least squares [13]. For thirty consecutive measurements at discrete points with
a quantization step of the input and output signals Z(k), I(k), an estimate T̂ of the parameter T
and an estimate K̂ of the parameter K are computed. These estimates are obtained by minimizing
the following functional:

Jk =
30∑
k=1

(
T
Z(k + 1)− Z(k)

� t
− Z(k)−KI(k)

)2
. (5)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 12 2023
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By taking partial derivatives with respect to the estimated parameters in the functional (5), we
can derive formulas for their estimation:

Jk = K̂2I(k)2 + 2K̂I(k)Z(k) − 2K̂I(k)T̂

(
Z(k + 1)− Z(k)

Δt

)
+ Z(k)2

− 2Z(k)T̂

(
Z(k + 1)− Z(k)

Δt

)
+ T̂ 2
(
Z(k + 1)− Z(k)

Δt

)2
→ min,

dJk

dK̂
= 2K̂I(k)2 + 2I(k)Z(k) − 2I(k)

̂
T
Z(k + 1)− Z(k)

Δt
= 0, (6)

dJk

dT̂
= 2T̂

(
Z(k + 1)− Z(k)

Δt

)2
− 2Z(k)

Z(k + 1)− Z(k)

Δt
− 2I(k)

̂
T
Z(k + 1)− Z(k)

Δt
= 0. (7)

Transform equations (6), (7):

T̂
Z(k + 1)− Z(k)

Δt
− Z(k)− K̂I(k)

Z(k + 1)− Z(k)

Δt
= 0, (8)

KI(k) + I(k)Z(k)− I(k)T
Z(k + 1)− Z(k)

Δt
= 0. (9)

Express the estimates for the coefficients K and T from (8) and (9):

T̂ =
Z(k)

Z(k+1)−Z(k)
Δt

,

K̂ =
T̂ Z(k+1)−Z(k)

Δt − Z(k)

I(k)
.

After measuring the signals I and Z and estimating the parameters T and K of the changing
plasma model, it is necessary to synthesize the controller. To solve this problem, a PID controller
was chosen, as described in [14], which automatically adjusts itself using the method of placing
the characteristic polynomial roots in the left half—plane of the complex plane at each iteration of
controller tuning (every 0.023 s). During the first iteration of the control system modeling, a PID
controller synthesized using the QFT method was employed.

Transform the transfer function of the PID controller with a filter (10)

C(s) = Kc

(
1 +

1

τIs
+

τDs

τfs+ 1

)
(10)

to a common denominator and introduce the following notations:

C(s) =
c2s

2 + c1s+ c0
s(s+ l0)

,

where

c2 =
Kc(τIτD + τIτf )

τIτf
, c1 =

Kc(τI + τf )

τIτf
, c0 =

Kc

τIτf
, l0 =

1

τf
.

For the PID controller, the unstable control plant model will take the form:

G(s) =
KpKcKa

(Tps− 1)(Tcs+ 1)
=

K

TpTcs2 + (Tp − Tc) s− 1
.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 12 2023
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Modeling

Signal measurement

3 ms

Calculation of plasma model parameters by LS method

Calculation of controller parameters by placement

of poles of closed-loop CS

20 ms

Fig. 7. The adaptive control algorithm for the unstable vertical position of the plasma.

The transfer function of the closed-loop control system is given by:

K(c2s
2 + c1s+ c0)

TpTcs4 + (Tp − Tc) s3 + (Kc2 + l0TpTc − 1) s2 + (l0Tp − l0Tc +KC1) s+ c0K − l0
.

Write down the characteristic equation and equate it to the polynomial with the given coefficients:

s4 +
Tp − Tc + l0TpTc

TpTc
s3 +

(
l0Tp − l0Tc +Kc1 − 1

TpTc

)
s2 +

c0K − l0
TpTc

s+
c0K

TpTc

= s4 + a3s
3 + a2s

2 + a1s+ a0.

By comparing the coefficients of both sides of the polynomial, we obtain four linear equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Tc
− 1

Tp
+ l0 = a3,

Kc2 − 1 + (Tp − Tc) l0 = a2,

K

TpTc
c1 − l0

TpTc
= a1,

K

TpTc
c0 = a0.

(11)

The parameters of the PID controller are found by solving the system of linear equations (11),
which can be expressed as

⎡⎢⎢⎢⎢⎣
l0

c2

c1

c0

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

Tp − Tc K 0 0

−1

TpTc
0

K

TpTc
0

0 0 0
K

TpTc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎣
a3 − Tp − Tc

TpTc

a2 + 1

a1

a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Figure 7 illustrates the adaptive control algorithm for the unstable vertical position of the
plasma, consisting of two stages: measuring and storage the input and output signals of the plasma
model, i.e., I and Z over 3 ms with a 100 μs sample time, and computing the parameters of the
plasma model and, based on them, the parameters of the PID controller over 0.02 s. Thus, in the
discrete system, there are two steps: the overall system operation step of 100 μs and the step of
identifying the parameters of the plant model and tuning the controller parameters, which is equal
to 0.023 s. Therefore, within one discharge, which lasts approximately 1 second, it is possible to
perform 43 iterations of controller tuning (see Fig. 7). The results of the adaptive control algorithm
in the closed-loop system are presented in Fig. 8.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 12 2023
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Fig. 8. Results of simulating the control system for the unstable vertical position of the plasma, performing
43 iterations of controller tuning under the changing plasma model.

5. CONCLUSION

During each iteration, the coefficients of the plasma model Tp ∈ [0.0208; 0.093] s and Kp ∈
[1.78; 7.61] cm/kA were linearly changed. The least squares method was used to estimate these
coefficients, and the PID controller was adjusted using the root locus method to ensure stability
of the closed-loop system in the left half-plane of the complex plane. The specified coefficients of
the characteristic equation a0 = −0.0004, a1 = 6e− 08, a2 = −4e− 12, a3 = 1e− 16 were chosen
for tuning the controller. The adaptation algorithm performs 43 controller adjustments within one
second, which is sufficient for a real control plant like the T15-MD tokamak.

Currently, robust [15], adaptive [16], and robust-adaptive [17] control systems continue to
evolve [18]. Robust-adaptive control systems with the application of neural networks [19] deserve
the most attention and can also be applied to plasma control in tokamaks in the near future.
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Abstract—For linear multivariable continuous stationary stable control systems with a simple
spectrum, presented in the form of a canonical diagonal form, controllability and observability
forms, a method was developed and analytical formulas for spectral decompositions of gramians
in the form of various Xiao matrices were obtained. A method and algorithm for calculating
generalized Xiao matrices in the form of the Hadamard product for multiply connected contin-
uous linear systems with many inputs and many outputs have been developed. This allows us
to calculate the elements of the corresponding controllability and observability gramians in the
form of products of the corresponding elements of the multiplier matrices and a matrix that
is the sum of all possible products of the numerator matrices of the matrix transfer function
of the system. New results are obtained in the form of spectral and singular decompositions
of the inverse gramians of controllability and observability. This makes it possible to obtain
invariant decompositions of energy functionals and formulate new criteria for the stability of
linear systems taking into account the nonlinear effects of mode interaction.

Keywords : : spectral decompositions of gramians, singular numbers, inverse gramian matrix,
stability that takes into account the interaction of modes, Xiao matrices, Lyapunov equation
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1. INTRODUCTION

Monitoring the state of control objects and controlling the damping of dangerous vibrations are
important areas of research in various fields of industry (energy, mechanical engineering, aviation
and astronautics, robotics). New modeling technologies require the development of tools for ap-
proximating mathematical models of complex systems of various natures [1–3]. An important role
is played by the methods of calculating the Lyapunov and Sylvester matrix equations and the study
of the structural properties of solutions to these equations [4–11]. The fundamental properties of
linear dynamic systems associated with solutions to these equations are controllability, observability
and stability. Important results were obtained in the field of computing gramians for systems which
models are presented in the canonical forms of controllability and observability. In [12], methods for
calculating gramians based on the use of matrices of periodic structure were first proposed for linear
systems specified by equations in the forms of controllability and observability. A new approach was
developed in terms of use the properties of the impulse transition function and gramian matrices in
the form of the zero-plaid structure of the controllability gramian in [13, 14]. In [15], the approach
was developed to compute spectral decompositions of a more general class of linear time-invariant
(LTI) multiple-input multiple-output (MIMO) systems. Using this approach, a method for optimal
selection of locations for sensors and actuators on the graph of a distributed control system was
developed in [16]. The paper shows that for a diagonalized system the controllability gramian can
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1412 YADYKIN, GALYAEV

be represented as the Hadamard product of two positive semidefinite matrices. In [17], the problem
of optimizing the capacity of an urban transport network was solved based on minimizing the trace
of the gramian controllability matrix taking into account restrictions. Various problems related to
the usage of controllability, observability and cross-gramians for calculating system invariants and
energy stability indices can be found in [18, 19].

The goal of this work is to develop structural methods for solving matrix Lyapunov equations
and obtain spectral and singular decompositions of controllability and observability gramians, based
on reducing the equations of state of a linear stationary system to the following canonical forms:
diagonal, controllability and observability.

2. FORMULATION OF THE PROBLEM

We consider a stable continuous MIMO LTI dynamic system of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = 0, y(t) = Cx(t), (2.1)

where x(t)∈Rn, u(t)∈Rm, y(t)∈Rm.We will consider real matrices of corresponding sizes A,B,C.
Let us assume that the system (2.1) is completely controllable and observable and all eigenvalues
of matrix A are different. In this case, the implementation of (2.1) is minimal and there is the only
one transfer function W (s) in the form

W (s) =
n∑

i=1

Mis
iN−1 (s) ,

where N(s) is characteristic polynomial of matrix A, Mi is a matrix of the form

Mi =
n−1∑
i=0

AiB.

Above, Ai denotes the “i”th Faddeev matrix in the decomposition of the resolvent of matrix A
in the Faddeev–Le Verrier series [6, 7]. In accordance with [20], we write a general formula for
calculating the controllability gramian from the pair spectrum of the system (2.1)

P c = −
n∑

j=1

n∑
ρ=1

1

sj + sρ
Res
[
(Is−A)−1, sj

]
BB∗Res

[
(Is−A∗)−1, sρ

]
. (2.2)

We consider a continuous dynamic MISO LTI system of the form

ẋ (t) = Ax (t) + bγuγ (t) , x (0) = 0, (2.3)

y (t) = cx (t) ,

where x∈Rn, y ∈R1, uγ (t) ∈Rm, γ = 1, . . . m, bγ is column of matrix B.

We consider the transformation of the equation (2.1) of a general system to equations of state
in canonical forms: diagonal, controllability and observability.

If all eigenvalues sr of matrix A are different, then the linear system can be reduced to diagonal
form using a non-degenerate coordinate transformation

xd = Tx, ẋd = Adxd +Bdu, yd = Cdxd,

Ad = TAT−1, Bd = TB, Cd = CT−1, Qd = TBBTTT,
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or

A =
[
u1 u2 . . . un

] ⎡⎢⎢⎢⎣
s1 0 0 0
0 s2 0 0
. . . . . . . . . . . .
0 0 . . . sn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ν∗1
ν∗2
...
ν∗n

⎤⎥⎥⎥⎥⎦ = TΛT−1,

where matrix T is composed of right eigenvectors ui, and matrix T−1 is composed of left eigenvec-
tors ν∗i corresponding to the eigenvalue si. The gramian of the diagonalized linear part is a solution
to the Lyapunov equation, which is determined from the formula [15]

P c
d = −

n∑
j=1

n∑
ρ=1

1

sj + sρ
Res
[
(Is−Ad)

−1, sj
]
BdB

∗
dRes

[
(Is−Ad)

−1, sρ
]
.

The controllability gramian P c
d is related to the gramian P c by a relation of the form

P c = TP c
dT

T.

From (2.2) results the following separable spectral decomposition of the gramian controllability of
a system transformed into a diagonal canonical form [21]

P c
d =

n∑
j=1

n∑
ρ=1

−bjρ
sj + sρ

1jρ, bjρ = [BdB
∗
d ]jρ,

where the designation is introduced

1jρ =

⎡⎢⎣ 0 0 0
0 1jρ 0
0 0 0

⎤⎥⎦ .
Further we consider the channel “γ” of the MISO LTI system in the canonical form of controllability
[1, 21]

x(t) =
m∑

γ=1

RF
cγxcγ(t).

ẋc (t) = AF
c xcγ (t) + bFγ uγ (t) , xc (0) = 0, (2.4)

yFc (t) = cFγ xc (t) , γ = 0, 1 . . . ,m.

AF
c =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
0 0 0 . . . 1

−a0 −a1 −a2 . . . −an−1

⎤⎥⎥⎥⎥⎥⎦ , bFγ =
[
0 0 . . . 0 1

]T
,

a =
[
−a0 −a1 . . . −an−2 −an−1

]
, cFγ =

[
ξ0 ξ1 . . . ξn−2 ξn−1

]
.

If we use a non-degenerate transformation of variables with the matrix RF
c , we can consider the

MISO LTI system in the canonical form of controllability. The vector Bγ of the MISO system has
the form

Bγ =
[
0 . . . bγ . . . 0

]T
.
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1414 YADYKIN, GALYAEV

The following relations are valid [14]:(
RF

cγ

)−1
ARF

cγ = AF
c ,
(
RF

cγ

)−1
Bγ = bFγ , CR

F
cγ = cFγ ,

P c =
m∑

γ=1

RcF
γ P cF

γ (RcF
γ )T .

In relation to the systems (2.1) and (2.3) we will assume that various structural conditions of
stability, controllability, observability and properties of the spectrum of the dynamics matrix are
fulfilled. The following spectral decomposition of the controllability gramian was obtained in [15]:

P cF
γ =

n∑
k=1

n−1∑
η=0

n−1∑
j=0

sjk(−sk)η
Ṅ (sk)N (−sk)

1j+1η+1.

Next, we consider the “γ” SIMO LTI channel of a linear system in the canonical form of observ-
ability [15]. In this case, the formulas are valid

xo(t) =
m∑

γ=1

RF
oγxoγ(t),

ẋoγ (t) = AF
c xoγ (t) + bFoγuγ (t) , xo (0) = 0,

yFoγ (t) = cFoγxoγ (t) , γ = 0, 1 . . . m.

AF
o =

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 −a0
1 0 . . . 0 −a−1

0 1 . . . . . . . . .
0 0 . . . 0 −an−2

0 0 . . . 1 −an−1

⎤⎥⎥⎥⎥⎥⎦ , bFoγ =
[
ξ0 ξ1 . . . ξn−2 ξn−1

]T
,

cFoγ =
[
0 0 . . . 0 1

]
.

We obtain following expressions in accordance with the principle of duality [14]

PF
oγ =

n∑
k=1

n−1∑
η=0

n−1∑
j=0

sjk(−sk)η
Ṅ (sk)N (−sk)

1j+1η+1,

P o =
m∑

γ=1

RF
oγP

oF
γ (RF

oγ)
T .

Definition 1. We call the Xiao matrix (Zero plaid structure) a matrix of the form [12, 13]

Y =

⎡⎢⎢⎢⎢⎢⎣
y1 0 −y2 0 y3
0 y2 0 −y3 0

−y2 0 y3 0 . . .
0 −y3 0 . . . 0
y3 0 . . . 0 yn

⎤⎥⎥⎥⎥⎥⎦ .

The matrix elements are calculated using the formulas

yjη =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if j + η = 2k + 1, k= 1, . . . , n;

yn =
1

2Yn,1
,

yn−l =

−
m−1∑
i=1

(−1)iYn−l,i+1yn−l+i

Yn−l,1
, if j + η = 2k, k = 1, . . . , n, l = 1, n − 1,
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where Yi,j is the element of the Routh table for the system located at the intersection of i row
and j column.

3. MAIN RESULTS

3.1. Identities for One Class of Stable Polynomials
Which Roots are Different over the Field of Complex Numbers

We consider the spectral decomposition of the controllability gramian in simple and pair spec-
trum (2.2).

n∑
k=1

n∑
j=0

n∑
η=0

sjk(−sk)η
Ṅ (sk)N (−sk)

≡
n∑

k=1

n∑
ρ=1

n−1∑
j=0

n−1∑
η=0

−1

sk + sρ

sjks
η
ρ

Ṅ (sk) Ṅ (sρ)
, sk + sρ �= 0. (3.1)

We introduce the notation

ω (n, sk, j, η) =
n∑

k=1

sjk(−sk)η
Ṅ (sk)N (−sk)

,

ω (n, sk, sρ, j, η) =
n∑

k=1

n∑
ρ=1

−1

sk + sρ

sjks
η
ρ

Ṅ (sk) Ṅ (sρ)
.

Taking into account the introduced notation, the identity (3.1) takes the form

ω (n, sk, j, η) ≡ ω (n, sk, sρ, j, η) for ∀sk, sρ ∈C−, sk + sρ �= 0.

The proof follows from the decomposition of the fractional rational function
sj
k
(−sk)

η

Ṅ(sk)Ṅ(−sk)
by the

roots of the characteristic equation N (−sk) = 0.

Lemma 1. Consider the polynomial γ (n, sk,−sk) over the field of complex numbers of the fol-
lowing form:

γ (n, sk,−sk) =
n−1∑
i=0

n−1∑
μ=0

sik(−sk)μ, ∀k = 1, . . . , n,

where sk are roots of the characteristic equation of the system (2.1), and −sk are roots of the
characteristic equation of its antistable conjugate system. We assume that all eigenvalues of the
systems are prime, non-zero complex numbers. Then the polynomial γ (n, sk,−sk) contains only
all even powers of the numbers sk and does not contain their odd powers.

γ (n, sk,−sk) = γ
(
n, s0k, s

2
k, . . . , s

2m
k

)
, n = 2m,

γ (n, sk,−sk) = γ
(
n, s1k, s

3
k, . . . , s

2m−1
k

)
≡ 0, n = 2m− 1.

Proof. It is easy to verify that the result of the lemma is valid for n = 1, 2, 3:

γ (1, sk,−sk) = 1,

γ (2, sk,−sk) = 1− s2k,

γ (3, sk,−sk) = s4k − s2k + 1.

Further, we apply the method of mathematical induction. We assume that the result of the lemma
is true for the polynomial γ (n, sk,−sk):

γ (n, sk,−sk) =
{

γ
(
2m, s0k, . . . , s

2m
k

)
for even n = 2m,

γ
(
2m− 1, s0k, . . . , s

2m
k

)
for odd n = 2m− 1.
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We show that it is also valid for the polynomial γ (n+ 1, sk,−sk) . As n increases by one, the
polynomial γ (n, sk,−sk) takes the form

γ (n+ 1, sk,−sk) =
{
γ (2m+ 1, sk,−sk) for even n = 2m,

γ (2m, sk,−sk) for odd n = 2m− 1.

We first consider the case of even n.

γ (n+ 1, sk,−sk) = γ
(
2m, s0k, . . . , s

2m
k

)
+ γ
(
2m, s0k, . . . , s

2m
k

)
s2m+1
k

− γ
(
2m, s0k, . . . , s

2m
k

)
s2m+1
k + s2m+1

k (−sk)2m+1 = γ
(
2m, s0k, . . . , s

2m
k

)2 − s
2(2m+1)
k .

For the case of odd n, we similarly obtain

γ (n+ 1, sk,−sk) = γ
(
2m− 1, s0k, . . . , s

2m
k

)
+ γ
(
2m− 1, s0k, . . . , s

2m+1
k

)
s
2(2m+1)
k

− γ
(
2m− 1, s0k, . . . , s

2m+1
k

)
s
2(m+1)
k + s

2(2m+1)
k = γ

(
2m− 1, s0k, . . . , s

2m
k

)
+ s

2(2m+1)
k ,

where the first three terms contain even powers of sk by assumption.

Corollary 1. We consider the multiplier ω (n, sk, j, η) in the spectral decomposition of the con-
trollability gramian in the simple spectrum (2.2). The identities are valid:

ω (n, sk, j, η) ≡ 0, if j + η = 2m− 1, (3.2)

ω (n, sk, j, η) ≡
n∑

k=1

sjk(−sk)η
Ṅ (sk)N (−sk)

, if j + η = 2m. (3.3)

Proof. We express the multiplier through a polynomial γ(n, sk,−sk)

ω (n, sk, j, η ) ≡
n∑

k=1

sjk(−sk)η
Ṅ (sk)N (−sk)

=
n∑

k=1

γ (n, sk,−sk, j, η)
Ṅ (sk)N (−sk)

and apply the lemma.

Corollary 2. Let us consider the multiplier ω (n, sk, sρ, j, η) in the spectral decomposition of the
controllability gramian in the pair spectrum (2.2). The identities are valid:

ω (n, sk, sρ, j, η) ≡ 0, if j + η = 2m− 1, (3.4)

ω (n, sk, sρ, j, η) ≡
n∑

k=1

n∑
ρ=1

−1

sk + sρ

sjks
η
ρ

Ṅ (sk) Ṅ (sρ)
, if j + η = 2m. (3.5)

Proof. We express the multiplier through a polynomial γ (n, sk,−sk)

ω (n, sk, j, η) ≡ ω (n, sk, sρ, j, η) for ∀sk, sρ ∈C−, sk + sρ �= 0

and apply the lemma.

Corollaries 1 and 2 prove that for all continuous stable MIMO LTI systems with a simple spec-
trum, reduced to the canonical forms of controllability and observability, exist spectral decomposi-
tions in the form of Xiao matrices. For systems represented in the canonical forms of controllability
and observability, this allows to calculate only n diagonal elements using the formulas (3.2)–(3.5),
instead of calculating n2 matrix elements.
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Remark. The multiplier ω (n, sk, sρ, j, η) should be used with caution in the spectral decompo-
sition of the controllability gramian in the pair spectrum (2.2). For example, in the case of a MIMO
LTI system reduced to a diagonal canonical form, the spectral decomposition of the controllability
gramian has a simple form

P c
d =

n∑
j=1

n∑
ρ=1

−bjρ
sj + sρ

1jρ , bjρ = [BdB
∗
d ]jρ. (3.6)

On the other hand, we have

P c
d =

n−1∑
j=0

n−1∑
ρ=0

ω(n, sj, j, ρ)AjBdB
∗
dA

∗
ρ, ω (n, sk, j, ρ) =

n∑
k=1

sjk(−sk)ρ
Ṅ (sk)N (−sk)

. (3.7)

We note that both formulas (3.6), (3.7) give the same numerical result, which corresponds to
different spectral decompositions. Let’s give an example.

Illustrative example 1

We consider the problem of controlling a two-zone furnace. The model of the control object of the
heating furnace can be described by equations of state of the form

Σ1:

⎧⎨⎩
dx

dt
= Ax (t) +Bu (t) , x (0) = 0,

y (t) = Cx (t) .

A =

[
−0.5 0
0 −1

]
, B =

[
1 0.5
0.5 2

]
, C =

[
1 0
0 1

]
.

In this case, you can evaluate the expressions

N (s) = s2 + 1.5s + 0.5, Ṅ (s) = 2s + 1.5,

(Is−A)−1 =

[
s+ 1 0
0 s+ 0.5

]
(s2 + 1.5s + 0.5)

−1
,

A1 =

[
1 0
0 1

]
, A0 =

[
1 0
0 0.5

]
, BBT =

[
1.25 1.5
1.5 4.25

]
.

The controllability gramian calculated using the formula (3.6), is equal to

P c =

[
1.25 0
0 0

]
+

[
0 1
0 0

]
+

[
0 0
1 0

]
+

[
0 0
0 2.125

]
.

The expression for the decomposition of the controllability gramian has the form

P c =
n−1∑
j=0

n−1∑
ρ=0

2∑
k=1

sjk(−sk)ρ
Ṅ (sk)N (−sk)

AjBB
TAT

ρ ,

P c =
n−1∑
j=0

n−1∑
ρ=0

2∑
k=1

sjk(−sk)ρ
Ṅ (sk)N (−sk)

−bjρ
sj + sρ

1jρ,

where Aj is the Faddeev matrix, constructed for the matrix A using the Faddeev–Le Verrier algo-
rithm [6, 7]. Let’s calculate the matrices AjBB

TAT
ρ :

A0BB
TAT

0 =

[
1.25 0.75
0.75 1.0625

]
, A0BB

TAT
1 =

[
1.25 0.75
1.5 2.125

]
,

A1BB
TAT

0 =

[
1.25 1.5
0.75 2, 125

]
, A1BB

TAT
1 =

[
1.25 1.5
1.25 4.25

]
.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 12 2023



1418 YADYKIN, GALYAEV

Substituting these expressions into (3.7), we obtain the spectral decomposition:

P c =

[
1.25 0.75
0.75 1.0625

]
2

3
+

[
1.25 1.5
1.25 4.25

]
1

3
=

[
1.25 1
1 2.125

]
.

Matrices of infinite sub-gramians are symmetric and positive definite, and so is their sum. We
verify that the calculated controllability gramian is a solution to the Lyapunov equation by direct
substitution. The separable spectral decomposition of the controllability gramian, calculated using
the formula (3.6), has the form

P c =

[
1.25 0
0 0

]
+

[
0 1
0 0

]
+

[
0 0
1 0

]
+

[
0 0
0 2.125

]
.

The matrices of infinite sub-gramians in this decomposition are not symmetric and positive definite,
although their sum is. The example shows that the same gramian can have several different spectral
decompositions.

3.2. Decomposition of Gramians in the Form of Hadamard Products [3]

We introduce the matrices of the gramian controllability multiplier of a continuous MIMO LTI
system in the form

Ωc = [ωc,jη]n×n

and its observability gramian in the form

Ωo = [ωo,jη]n×n,

where j is the row index, and η is the column index of the multiplier matrices.

We introduce matrices Ψc and Ψo in the form

Ψc =
n−1∑
i=0

n−1∑
μ=0

AiBB
TAT

μ ,

Ψo =
n−1∑
i=0

n−1∑
μ=0

AT
i C

TCAμ.

We introduce an element-wise representation of these matrices in the form

ψc,jη = eTj Ψc eη ,

ψo,jη = eTj Ψo eη.

Theorem 1 [15]. We consider a stable continuous dynamic MIMO LTI system with a simple
spectrum

ẋ(t) = Ax(t) +Bu (t) , x (0) = 0,

y (t) = Cx (t) ,

where x (t) ∈Rn, u (t) ∈Rm, y(t)∈Rm.

Then the controllability subramian P c is a matrix of the form (2.2), and in accordance with [7]
formulas (2.1), (2.2) is defined as

P c =
n−1∑
j=0

n−1∑
η=0

P c
j,η, P c

j,η = ω(n, sk, sρ, j, η)AjBB
TAT

η , (3.8)
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where

ω (n, sk, sρ, j, η) =

⎧⎪⎪⎨⎪⎪⎩
0, if index j + η is odd,

n∑
k=1

n∑
ρ=1

−1

sρ + sk

sjks
η
ρ

Ṅ (sk) Ṅ (sρ)
, if index j + η is even.

Proof of Theorem 1. As is known, the spectral decomposition of the controllability gramian
under the conditions of Theorem 1 has the form [7, 20]

P c =
n−1∑
j=0

n−1∑
η=0

n∑
k=1

n∑
ρ=1

−1

sρ + sk

sjks
η
ρ

Ṅ (sk) Ṅ (sρ)
AjBB

TAT
η .

We substitute the newly introduced scalar function ω (n, sk, sρ, j, η) into this formula and obtain
the formula (3.8).

Theorem 2 [13]. We consider a continuous MIMO LTI system of the form (2.1). We assume
that the system is stable and all the roots of its characteristic equation are different. Then its
controllability and observability gramians have the form of the generalized Xiao matrices of the
following form:

P c = Ωc ◦Ψc =
[
pcjη

]
n×n

, j, η = 1, . . . , n. (3.9)

Ψc = [ψc,jη]n×n, j, η = 1, . . . , n. Ψc =
n−1∑
i=0

n−1∑
μ=0

Ψc,iμ, Ψc,iμ =MiM
∗
μ,

Mi = AiB, Ωc = [ωc(n, j, η)]n×n, j, η = 1, . . . , n.

pcjη = ωc(n, j, η) × ψc,jη.

Proof of Theorem 2. We use the spectral decomposition of the controllability gramian (2.2).
We introduce a representation of gramians in the form of Hadamard products

P c = Ωc ◦Ψc, (3.10)

P o = Ωo ◦Ψo. (3.11)

This representation allows us to write simple formulas for calculating the elements of the control-
lability and observability gramians of MIMO LTI systems P c and P o in the form [13]

pcjη = ωc(n, j, η) × ψc,jη, (3.12)

pojη = ωc(n, j, η) × ψo,jη. (3.13)

Next, we use identities for one class of stable polynomials whose roots are different over the field of
complex numbers (Lemma). Formulas (3.10)–(3.13) express algorithms for calculating elements of
generalized Xiao matrices in the form of products of elements of multiplier matrices and elements of
sums of all possible products of matrices AjBB

TAT
η , written in the form of products of Hadamard

matrices
Ωc ◦Ψc.

Corollary 3. We consider an important special case of continuous linear SISO systems repre-
sented by equations of state in the canonical forms of controllability and observability. In this case,
the controllability and observability gramians are determined by the formulas [15]

P cF =
n∑

k=1

n−1∑
η=0

n−1∑
j=0

sjk(−sk)η
Ṅ (sk)N (−sk)

1j+1η+1, (3.14)

P oF =
n∑

k=1

n−1∑
η=0

n−1∑
j=0

sjk(−sk)η
Ṅ (sk)N (−sk)

1j+1η+1.
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The representation of gramians in Hadamard form according to (3.10)–(3.11) takes the form

P cF = ΩcF ◦Ψc, Ψc =
n−1∑
η=0

n−1∑
j=0

1j+1η+1,

P oF = ΩoF ◦Ψo, Ψo =
n−1∑
η=0

n−1∑
j=0

1j+1η+1.

This implies the identities

P cF ≡ ΩcF , (3.15)

P oF ≡ ΩoF . (3.16)

This means that the controllability gramian in the canonical form of controllability coincides with
the multiplier matrix for this gramian, which allows us to apply the formulas (3.15), (3.16) to
calculate all elements of the gramian and establishes that the gramian belongs to the class of Xiao
matrices. A similar result holds for the gramian observability in the canonical form of observability.

Multiplier matrices in different canonical forms have the form

ΩcF ≡ ΩoF = [ω (n, sk, sρ, j, η)]n×n = [ω (n, sk, j, η)]n×n.

3.3. Spectral and Singular Decompositions of Inverse Matrices of Gramians

General formulas for calculating inverse gramian matrices (hereinafter inverse gramians) for
continuous MIMO LTI systems have the form [1]

(P c)−1 =
−1

γ0

[
(P c)n−1 + γn−1(P

c)n−2 + · · · + γ2P
c + γ1I

]
;

(P o)−1 =
−1

γ0

[
(P o)n−1 + γn−1(P

o)n−2 + · · ·+ γ2P
o + γ1I

]
.

In the case of continuous SISO LTI systems, these formulas, in accordance with (3.15), (3.16), take
the form [

P cF (ω(n, sk, j, η))
]−1

=
−1

γ0

[
(ΩcF )

n−1 + γn−1(ΩcF )
n−2 + · · ·+ γ2ΩcF + γ1I

]
;[

P oF (ω(n, sk, j, η))
]−1

=
−1

γ0

[
(ΩoF )

n−1 + γn−1(ΩoF )
n−2 + · · ·+ γ2ΩoF + γ1I

]
.

The presence of powers of the multiplier matrices on the right side of the formulas leads to the
appearance of complex fractional rational functions of eigenvalues sk, which limits the scope of
application of the formulas for spectral decompositions of inverse gramians to systems of small
and medium dimensions. We return to stable continuous MIMO LTI systems with a simple spec-
trum and note that the controllability and observability gramians are symmetric complex-valued
matrices. In this case, there are their singular decompositions of the form [1]

P c = P c∗ = VcΛV
∗
c ,

P o = P o∗ = VoΛV
∗
o ,

where the matrix Vc is formed by the right singular vectors of the matrix P c, the matrix V ∗
c is

formed by the left singular vectors of the matrix P c, and the matrix Λ is a diagonal matrix of the
form

Λ = diag {|λ1| |λ2| . . . |λn|} .
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We define matrices S and U in the form

S = diag {sgnλ1 sgnλ2 . . . sgnλn } , Uc = VcS,

sgnλ =

{
+1, if λ � 0,
−1, if λ < 0.

Then

P c = UcΛV
∗
c ,

P o = UoΛV
∗
o ,

where the matrix Uc is formed by the left singular vectors of the matrix P c. Since Λ, Uc, Vc are
nonsingular matrices, then

(P c)−1 = (Uc)
−1Λ−1(V ∗

c )
−1 = V ∗

c Λ
−1Uc. (3.17)

In a similar way we get

(P o)−1 = (Uo)
−1Λ−1(V ∗

o )
−1 = V ∗

o Λ
−1Uo. (3.18)

Since the matrix Λ is diagonal, its inverse matrix can be written as

Λ−1 =
[
|λ1|−1

111 + |λ2|−1
122 + · · · + |λn|−1

1nn

]
. (3.19)

Substituting (3.19) into (3.17), (3.18), we obtain the following singular decompositions of the inverse
gramians of controllability and observability in terms of their singular spectrum:

(P c)−1 = V ∗
c

[
|λ1|−1

111 + |λ2|−1
122 + · · ·+ |λn|−1

1nn

]
Uc;

(P o)−1 = V ∗
o

[
|λ1|−1

111 + |λ2|−1
122 + · · ·+ |λn|−1

1nn

]
Uo.

Theorem 3. Consider a continuous stable and fully controllable dynamic MIMO LTI system of
the form (2.1).

The singular decompositions of its inverse controllability gramian in terms of the eigenvalues of
the gramian matrix have the following form.

For a simple spectrum of the gramian matrix

(P c)−1 =

∑n
λ=1

∑n−1
j=0 P

c
j σ

j
λ

Ṅc(σλ)

1

σλ
, (3.20)

where P c is the gramian controllability matrix, P c
j is the Faddeev matrix in the decomposition of

the gramian resolvent, σλ is the eigenvalue of the gramian matrix P c.

For the multiple spectrum of the gramian matrix

(P c)−1 = −
q∑

δ=1

mδ∑
ρ=1

Kδρ

(−σδ)mδ−j+1 , (3.21)

Kδρ =
1

(ρ− 1)!

{
dρ−1

dσρ−1

[
(σ − σδ)

mδ
∑n−1

j=0 σ
jP c

j∏n
δ=1 (σ − σδ)

mδ

]}∣∣∣∣∣
s=sδ

, (3.22)

where P c is the gramian controllability matrix, P c
j is the Faddeev matrix in the decomposition of

the gramian resolvent, σδ is the eigenvalue of the gramian matrix P c multiplicity mδ, ρ is the
multiplicity index of the eigenvalue σδ.
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Proof of Theorem 3. We consider the decomposition of the resolvent of the gramian controlla-
bility matrix in the form of a segment of the Faddeev series [6]

(Iσ − P c)−1 =

∑n−1
j=0 P

c
j σ

j

Nc(σ)
. (3.23)

We denote: Nc (σ) = sn + ac,n−1σ
n−1 + . . . ac,1σ + ac,0, j = 1, . . . , n; Nc (σ) is characteristic poly-

nomial of the resolvent of the gramian matrix, P c
j is the Faddeev matrix in the decomposition of

the resolvent in the Faddeev series, j = 1, . . . , n.

We first consider the case when all singular values σλ of the gramian are different. In this case,
the decomposition (3.23) is transformed to the form

(Iσ − P c)−1 =

∑n
λ=1

∑n−1
j=0 P

c
j σ

j
λ

Ṅc(σλ)

1

σ − σλ
. (3.24)

Iterative algorithm for calculating Faddeev matrices and coefficients of the characteristic equation:

First step: ac,n−1 = 1, Rn = I,

Step “k”: ac,n−k = − 1
k tr (P

cRn−k+1) , Rn−k = ac,n−kI + P cRn−k+1, k = 1, . . . , n;

In accordance with the Faddeev–Le Verrier algorithm, the following matrix equalities are also
valid:

P c
0 = ac,1I + ac,2P

c + · · · + ac,n(P
c)n−1,

P c
1 = ac,2I + ac,3P

c + · · · + ac,n(P
c)n−2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P c
n−2 = ac,n−1I + ac,nP

c,

P c
n−1 = ac,nI.

The above system can be written in the form

P c
j =

n−1∑
j=0

ac,j+1(P
c)j , ∀j : j = 0, 1, . . . , n− 1.

We put σ = 0 in (3.24) and get the formula (3.20):

(P c)−1 =

∑n
λ=1

∑n−1
j=0 P

c
j σ

j
λ

Ṅc(σλ)

1

σλ
. (3.25)

Thus, (3.20)–(3.25) in the case of a simple spectrum, the gramian matrices determine the singular
decomposition of the inverse gramian of controllability. A similar approach can be applied to the
case of a multiple spectrum of the gramian matrix. We assume that the characteristic equation of
the gramian matrix can be represented in the form

Nc (σ) =
n∏

i=1

(σ − σi)
mi ,

n∑
i=1

mi = q, σi ∈C+.

For any square gramian matrix, its resolvent has the form of a matrix function (3.24). In accordance
with [22, 23], its decomposition into simple fractions has the form

(Iσ − P c)−1 =
q∑

δ=1

mδ∑
ρ=1

Kδρ

(σ − σδ)
mδ−j+1 , (3.26)

Kδρ =
1

(ρ− 1)!

{
dρ−1

dσρ−1

[
(σ − σδ)

mδ
∑n−1

j=0 σ
jP c

j∏n
δ=1 (σ − σδ)

mδ

]}∣∣∣∣∣
σ=σδ

.
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We set σ = 0 in (3.26) and obtain formulas (3.21)–(3.22) for the singular decomposition of the
inverse gramian of controllability for the case of a multiple spectrum of the gramian matrix.

Illustrative example 2

We consider the problem of controlling an asynchronous motor. The model of the control object
can be described by equations of state of the form

Σ1:

⎧⎨⎩
dx

dt
= Ax (t) +Bu (t) , x (0) = 0,

y (t) = Cx (t) .

A =

⎡⎢⎢⎢⎢⎣
−4.67 3 −1.33 2.33

−2.17 2.33 −3.83 5.17

1.5 −0.33 −1.5 0.17

2.17 −3.33 3.83 −6.17

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
3

−3

−7

−4

⎤⎥⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ .

We present the eigenvalues of the system dynamics matrix

λi = −4; −3; −2; −1.

To construct a singular decomposition of the inverse gramian of the controllability of the system
by the singular values of the gramian matrix, we calculate the gramian of controllability using the
formula (3.6)

P c =

⎡⎢⎢⎢⎢⎣
2.5 3 2.5 0.56

3 11.2 13.2 5.1

2.5 13.2 16.6 6.9

0.56 5.1 6.9 3

⎤⎥⎥⎥⎥⎦ .

We note that the formula (3.6) is valid not only for stable linear systems, but also for unstable
systems in which the condition sk + sp �= 0 is not violated. It is violated in the case of sk = 0 or
sk = +jω, sk+1 = −jω [21].

Then the singular numbers of this gramian take the form

σi = 30.7; 2.5; 0.17; 0.0002.

The controllability gramian of the system is represented by a symmetric matrix, therefore there is
its SVD decomposition [1]

P c =

⎡⎢⎢⎢⎢⎣
−0.13 0.86 −0.48 −0.009

−0.6 0.28 0.67 0.35

−0.73 −0.25 −0.25 −0.58

−0.3 −0.32 −0.51 0.74

⎤⎥⎥⎥⎥⎦×
⎡⎢⎢⎢⎢⎣
31 0 0 0

0 2.5 0 0

0 0 0.17 0

0 0 0 0.0002

⎤⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎣
−0.13 0.86 −0.48 −0.009

−0.6 0.28 0.67 0.35

−0.73 −0.25 −0.25 −0.58

−0.3 −0.32 −0.51 0.74

⎤⎥⎥⎥⎥⎦ .
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In accordance with the Faddeev–Le Verrier algorithm, we calculate the Faddeev matrices and the
coefficients of the characteristic equation for the inverse gramian

P c
0 =

⎡⎢⎢⎢⎣
−0.01 0.05 −0.07 0.08
0.05 −1.62 2.69 −3.4
−0.07 2.69 −4.5 5.6
0.08 −3.4 5.6 −7.2

⎤⎥⎥⎥⎦ , P c
1 =

⎡⎢⎢⎢⎣
21.8 −23.5 8.4 17
−23.5 44.6 −29.5 −5.5
8.4 −29.5 33 −25
17 −5.5 −25 65.7

⎤⎥⎥⎥⎦ ,

P c
2 =

⎡⎢⎢⎢⎣
−31 3 2.5 0.56
3 −22.1 13.2 5.1
2.5 13.2 −16.7 6.9
0.56 5.1 6.9 −30.3

⎤⎥⎥⎥⎦ , P c
3 =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ ,
ac,0 = 0.0031, ac,1 = −13.3, ac,2 = 82.6, ac,3 = −33.3, ac,4 = 1.

Then the inverse gramian can be calculated using the formula (3.20)

(P c)−1 =

⎡⎢⎢⎢⎣
1.97 −14.8 22.3 −26.2
−14.8 −517 −856 1083
22.3 −856 1422 −1803
−26.2 1083 −1803 2290

⎤⎥⎥⎥⎦ .

3.4. Spectral Decompositions of Energy Functionals and New Stability Criteria

Within the framework of the SISO LTI assumptions made above, we consider a system of the
form (2.4), the equations of state of which are reduced to the canonical form of controllability,
and calculate the energy functional J, which is the value of the square H2 is the norm of the
transfer functions of the system and gives an assessment of the risk of loss of stability [1, 19, 22].
To do this, we use (3.12) and (3.14) and, for definiteness, choose the spectral decomposition of the
controllability gramian in a simple spectrum

J = trCFΩc(C
F )

T

=

⎛⎜⎜⎝ ξ0
2

n∑
k=1

Ṅ (sk)N (−sk)
−

ξ1
2

n∑
k=1

s2k

n∑
k=1

Ṅ (sk)N (−sk)
+ · · ·+

(−1)n−1ξn−1
2

n∑
k=1

s2nk

n∑
k=1

Ṅ (sk)N (−sk)

⎞⎟⎟⎠ . (3.27)

We obtained an invariant spectral decomposition of the energy functional over the simple spectrum
of the dynamics matrix. This simple formula shows the advantage of using spectral decompositions
in canonical form over the general decomposition (3.23). The decomposition does not depend on
the choice of a non-singular matrix of linear transformations of the system coordinates. Two main
factors influence the value of the buckling risk J:

1) the values of the diagonal terms of the Xiao matrix Ωc,

2) the squares of the elements of the reduced output vector.

The expression (3.27) can be simplified by simplifying the SISO LTI system. In [14] it is shown
that the Xiao matrix is the controllability gramian for a SISO LTI system with a transfer function

W (s) =
y(s)

u(s)
=

1

sn + an−1sn−1 + · · · + a1s+ a0
. (3.28)

The asymptotic stability of SISO LTI systems of the form (2.4) is equivalent to the asymptotic
stability of this system. Moreover, we will show that the asymptotic stability of MIMO LTI
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systems of the form (2.1) is equivalent to its asymptotic stability. The energy functional J for the
system (3.28) according to (3.27) is equal to

J =

(
1∑n

k=1 Ṅ(sk)N(−sk)
−

∑n
k=1 s

2
k∑n

k=1 Ṅ(sk)N(−sk)
+ . . .+

(−1)n−1∑n
k=1 s

2n
k∑n

k=1 Ṅ(sk)N(−sk)

)
. (3.29)

Theorem 4. We consider a continuous fully controllable dynamic MIMO LTI system with a
simple spectrum of the form (2.1), as well as a continuous dynamic SISO LTI system with the
same spectrum, the equations of state of which are reduced to the canonical form of controllability
of the form (2.4).

Then a sufficient condition for the asymptotic stability of the system (2.1) according to Lyapunov
is the boundedness of the energy functional (3.29) for a SISO LTI system with the same spectrum
and transfer function(3.28) is

J <+∞, (3.30)

for any sk belonging to C−, k = 1, . . . , n. (3.31)

Proof of Theorem 4. Let us recall that the MIMO LTI system (2.1) is completely controllable
and observable, all eigenvalues of matrix A are different, the implementation of the system (2.1) is
minimal and there is a single transfer function of the system. When the specified conditions are met,
the boundedness of the functional

√
J is a necessary and sufficient condition for the asymptotic

stability of the system (2.1) according to Lyapunov [1, Theorem 5.14]. Thus, the boundedness of
the functional J is a sufficient condition for the asymptotic stability of the system (3.27)

J <∞.

But the functional J is a trace of the Xiao matrix SISO LTI system (2.4), the equations of state
of which are reduced to the canonical form of controllability. This leads to the conclusion that the
boundedness of the energy functional of a simple SISO LTI system (3.28) in the form of inequality
(3.30) guarantees the asymptotic stability of a complex MIMO LTI system of the form (2.1).
Verification of the condition (3.31) requires the use of asymptotic gramian models [22].

Thus, a new criterion for the stability of a complex stationary linear dynamic MIMO LTI system
is obtained in the form of a criterion for the boundedness of the trace of the Xiao matrix Ωc for
a simple SISO LTI system (3.21), the equations of which are reduced to the canonical form of
controllability. The new criterion does not contradict the well-known criterion that the eigenvalues
of the dynamics matrix of a linear system belong to the left half-plane of the plane of eigenvalues,
but refines it taking into account the nonlinear effects of mode interaction (multiple eigenvalues,
close aperiodic and vibrational modes) [22].

4. CONCLUSION

This article is dedicated to the development of spectral methods for solving the Lyapunov equa-
tion. The main results are obtained using structural methods in developing new methods and
tools that are closely related to the fundamental properties of linear dynamic systems: controlla-
bility, observability and stability. Among the solution methods, two should be mentioned first of
all: determining the structure of the solution matrix in the form of the Xiao matrix and spectral
decompositions of the solution in the form of Hadamard products. A method and algorithm for
calculating matrices in the form of the Hadamard product for multiply connected continuous linear
systems with many inputs and many outputs has been developed. This allows us to calculate the
elements of the corresponding controllability and observability gramians in the form of products of
the corresponding elements of the multiplier matrices and a matrix that is the sum of all possible
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products of the numerator matrices of the matrix transfer function of the system. When using the
canonical forms of controllability or observability, the Hadamard decomposition of the correspond-
ing gramians is reduced to a multiplier matrix, the trace of which is equal to the energy functional
of the SISO LTI system. New results are obtained in the form of spectral and singular decomposi-
tions of the inverse gramians of controllability and observability. This makes it possible to obtain
invariant decompositions of energy functionals and formulate new criteria for the stability of linear
systems taking into account the nonlinear effects of mode interaction [20].
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Abstract—The influence of the arrangement of amino acid residues in a pentapeptide on its
stability is being studied. A forecast of pentapeptide stability is made using the gradient
boosting method, which allows one to evaluate the influence of each feature on the stability of
the pentapeptide. Combinations of amino acid arrangements in the pentapeptide have been
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of such combinations reduces the amount of data required to obtain a reliable prediction of
pentapeptide stability.
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1. INTRODUCTION

The problem of predicting the spatial structure of proteins is one of the priority tasks in the
field of mathematical and biological modeling, leading to practical application—the design of new
proteins with useful medical properties. Currently, there is a tool for predicting the tertiary struc-
ture of a protein from its amino acid sequence, AlphaFold [1], which has shown incredible accuracy
of structure prediction, comparable to the accuracy of X-ray diffraction analysis on CASP [2].
However, this tool is based on a deep neural network and the principles behind the styling remain
unexplored. Understanding which amino acids and in what combination contribute to increasing
the stability of a protein fragment will allow us to create a method for designing protein structure.
The goal of the work is to, based on experimental data, identify potential markers of pentapeptides
stability (combinations and positions of amino acids in the molecule).

The study of the entropy characteristics of fragments of protein sequences showed that for five se-
quentially located residues a reduced level of information entropy is observed and, therefore, blocks
of this particular size must be considered as elementary units of the sequence. This approximation
made it possible to develop a method that reveals the hierarchical structure in protein sequences —
the method of analyzing information structure (ANIS method) [3]. Analysis of the conformational
stability of pentapeptides by the molecular dynamics method showed that all pentapeptides can be
divided into three types [4]: conformationally stable (located in the predominant topology for more
than 80% of the simulation time), triggered (having two predominant topologies, in each of which
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the peptide was present for at least 40% of the simulation time) and labile. Molecular dynamics is
a technique in which the time evolution of a system of interacting atoms or particles is tracked by
integrating their equations of motion. Classical mechanics is used to describe atoms or particles
and their motion. The law of particle motion is found using analytical mechanics, and the forces
of interatomic interaction are represented in the form of classical potential forces (as the gradient
of the potential energy of the system).

2. DATA

The work used 44 860 pentapeptides, the sequences of which were created according to a certain
rule, and 4885 previously studied pentapeptides from real proteins, the stability of which was
determined by molecular dynamics modeling. In the resulting set of 49 745 pentapeptides, only
1705 pentapeptides turned out to be stable, which was about 3.43% of the total number.

During the study, all data were randomly divided into “training”, “control” and “validation”
samples in proportions of 0.66, 0.17, 0.17, maintaining the original balance of classes. The training
and control samples were used during the training phase. The training sample was also used at the
stage of interpretation of the results.

2.1. Data Encodings

In the original data set, each pentapeptide is encoded by a sequence of five letters representing
the amino acid residues included in the pentapeptide. The order of the letters corresponds to the
sequence of amino acid residues in the pentapeptide molecule. For formal numerical analysis of
the data, the five-letter representation was encoded using three different representations. Binary
encoding (One Hot Encoding), continuous string representation (n-gram), and discontinuous string
representation (broken n-gram) were considered. Each of the considered coding methods allows
one to evaluate contributions in its own way and make judgments about the influence of certain
combinations of amino acid residues on the stability of the pentapeptide.

2.2. Binary Encoding (OHE)

One hot encoding is an encoding in which the presence of each amino acid at its position is
determined by the position of one in the vector, the remaining coordinates of which are equal to
zero. The number of vector elements is 20 — the number of amino acid types. As a result, each
pentapeptide is encoded by a matrix of 20 rows and 5 columns. The column corresponds to the
amino acid position in the pentapeptide molecule, and the row corresponds to the amino acid. For
example, when classifying amino acids by the first letter of the name, the pentapeptide DKLNV
will be encoded by a matrix in which the first column in the third row is 1, the remaining elements
are equal to zero, the second column in the ninth row is 1, the remaining elements are equal to zero,
etc. In the calculations, each pentapeptide is represented as a vector in 100-dimensional space.

2.3. Continuous String Representation (n-gram)

An n-gram is a continuous string representation of the amino acid sequence in a pentapetide.
Depending on the number of letters included in the string, n-grams of order 1, 2 or more are
distinguished. For example, the peptide DKLNV is encoded by five n-grams of order 1 D, K, L,
N, V, four n-grams of order 2 DK, KL, LN, NV, three n-grams of order 3 DKL , KLN, LNV. In
the analysis carried out, n-grams from 1 to 3 were used. As with OHE encoding, the entire set of
n-grams encoding pentapeptides is represented in the form of a table consisting of zeros and ones.
In each column of the table, a certain row contains one, and the remaining elements are zeros.
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2.4. Discontinuous String Representation (Broken n-gram)

A broken n-gram is a generalization of a continuous n-gram and is a string representation of
the sequence of amino acids in a pentapeptide, in which there is a gap of one to three characters
between groups of amino acids. When forming a broken n-gram, the amino acids included in the
n-gram are indicated, the position of the first amino acid from the n-gram in the pentapeptide
molecule is indicated and the number of positions between each of the amino acids included in
the n-gram. For example, for the pentapeptide DKLNV there is a second-order broken n-gram
12DN, where 1 is the position of the first amino acid, 2 is the number of positions between amino
acids, DN is the list of amino acids included in the broken n-gram. For this pentapeptide there are
only six broken n-grams of order 2, namely 11DL, 21KN, 31LV, 12DN, 22KV, 13DV. The study
considered broken n-grams of order 2 only.

3. CLASSIFICATION ALGORITHM

To classify pentapeptides into stable and unstable, we used the gradient boosted decision trees
algorithm [5]. The algorithm is built on the principle that a relatively weak machine learning
algorithm can be strengthened by the same algorithm, which will “refine” the predictions of the
previous algorithm based on its errors. When applying this principle to random forest classification,
the first row of trees is trained on real data, predicting the class label for each object. The second
row of trees is trained on the same data, but giving more weight to objects where the first row of
trees made mistakes and correcting them. The trees of the third row are trained by correcting the
errors of the trees of the second row, etc. Currently, gradient boosting over decision trees is one
of the most popular machine learning algorithms, because at low training costs it provides high
accuracy and protection from overfitting due to the fact that a random forest of decision trees is
used. In this case, the features and subsample are mixed to construct a new tree. In addition, the
obtained result is easy to interpret.

Quality control of training was carried out using the metric F 1, specified by the formula

F1 = 2
precision ∗ recall
precision+ recall

.

In this case, one class is considered as a class of “positive objects”, for example, a class of stable
pentapeptides, and the other is a class of “negative objects”. The precision metric determines the
proportion of correctly identified positive objects among all objects classified as positive. The recall
metric determines the proportion of correctly identified positive objects among all positive objects.
Metric F1 used to assess the quality of classification in the case of data in which the classes are
significantly unbalanced.

The parameters of the classification algorithm were adjusted for each encoding method used
using the cross-validation procedure in a high-dimensional space [6] using the hyperopt package.
Table 1 shows the classification results achieved with the found settings.

Table 1. Results of classification of pentapeptide stability
for different encoding methods

Encoding
Metrics

precision recall F1

OHE 0.39 0.54 0.45

n-grams 0.39 0.41 0.40

broken n-grams 0.32 0.54 0.40
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The best quality in terms of F 1 metrics is achieved when using OHE encoding. For n-gram and
broken n-gram encodings, the quality is lower. This is explained by the small sample size and large
number of features when encoding using n-grams and broken n-grams.

4. PROBABILISTIC ASSESSMENT OF THE SIGNIFICANCE
OF AMINO ACID POSITIONS IN A PENTAPEPTIDE

In addition to assessing the quality of classification, it is of great interest to assess the importance
of individual features in the stability of pentapeptides. To construct such an estimate using gradient
boosting, the SHAP (SHapley Additive exPlanations) algorithm was used in this study [7], which
allows you to estimate the probabilistic contribution of each combination of amino acids to the
probability of classifying a pentapeptide as stable, taking into account the interaction of factors
(amino acids and their positions) with each other. This method calculates the importance of
a particular feature by comparing the results obtained with and without that feature. When
constructing a classification rule in the form of a tree, the result can be influenced by the order in
which the elements of the training set are used. To eliminate such an influence on the assessment
of the importance of a feature, elements of the training sample are received for training many times
in a random sequence.

The SHAP method was justified in the theory of cooperative games, when game participants
can unite in coalitions to achieve the best result. The payoff of each player is equal to his average
contribution to the total payoff over all coalitions under a random, equally probable ordering of
the participants. This value is called the Shapley index [7] and is calculated by summing over all
sets of features that do not include feature i , the weighted effect of using the excluded feature. In
this case, the effect of using feature i is understood as the difference in the classification accuracy
of a pentapeptide taking into account feature i and without taking it into account. The Shapley
index is calculated using the formula

Φi =
∑

S∈F\i

nS! (nF − nS − 1)!

nF !

(
fS
⋃

i − fS
)
,

here F denotes the set of all possible sets of features, F\i denotes the set of sets of features that
do not include the feature i, S – a set of features without feature i , S

⋃
i – set of features S with

the addition of feature i, fS and fS
⋃

i – classification accuracy when using feature sets S and S
⋃
i ,

respectively, nF and nS – number of feature sets in the sets F and S , respectively. The significance
of a feature is determined by the absolute value of the corresponding Shapley index.

5. INTERPRETATION OF RESULTS

Below are the results of interpretation using the SHAP method of the results of classifying the
stability of pentapeptides by the gradient boosting algorithm using three different encodings.

5.1. Binary Encoding (OHE)

Table 2 presents an example of assessing the influence of the position of amino acids in the
DRNAA pentapeptide on its stability. It is important to note that the stability of a pentapeptide
is affected not only by the presence of an amino acid at any position, but also by its absence.

In Table 2 rows are ordered in order of decreasing probabilistic contribution of amino acids and
their positions to the stability of the pentapeptide. Negative values indicate a negative impact on
stability. It follows from the table that the presence of amino acid D in the first position in the
fifth position increases the probability that the pentapeptide is stable, and the absence of amino
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Table 2. Probabilistic contribution of amino acids and their
positions on the stability of the DRNA pentapeptide

Amino acid
position Probabilistic contribution

presence absence

D 1 0.048

R 2 0.018

A 1 0.010

A 4 0.0040

A 5 –0.0083

N 3 –0.0096

acid A in the first position increases the probability that the pentapeptide is stable by only 1%.
The presence of amino acid A at the last position reduces the probability of pentapeptide stability
by 0.8%. It is assumed that the features influence the stability of the pentapeptide independently
of each other.

If a similar probabilistic analysis is carried out for a variety of pentapeptides, the overall result
can be presented in the form of a diagram of the probabilistic contributions of amino acids and
their positions to stability. Figure 1 shows a diagram for the most significant features. Due to the
great computational difficulties associated with the need to solve the classification problem for all
possible sets of features, calculations were carried out for 1000 randomly selected pentapeptides.
In the diagram, a single point corresponds to the result of an analysis of a single pentapeptide.
The presence of a feature (the presence of an amino acid at a specified location) is represented by
an open symbol, and its absence is represented by a closed symbol.

The figure shows that if the pentapeptide contains amino acid K at the fifth position, it has the
greatest positive effect on its stability. The opposite effect is that amino acid A in the first position
has a negative effect on stability.

2A

4A

5E

1R

1K

5A

1D

5D

1А

5K

0 0.05 0.10 0.15 0.20 0.25

SHAP index  

Fig. 1. Diagram of the probabilistic contributions of features to the stability of 1000 randomly selected
pentapeptides under OHE encoding, constructed using the SHAP algorithm.
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5.2. Continuous String Representation

When encoding using n-grams, the estimate of the probabilistic contribution to the stability of
an individual feature turns out to be less than when encoding OHE. This is a consequence of the
fact that when using n-grams up to the third order, the number of features is 256 times greater
than with ONE encoding. Table 3 shows examples of estimates of the probabilistic contribution to
the stability of the DRNAA peptide.

In Table 3 rows are ordered in order of decreasing probabilistic contribution of amino acids and
their positions to the stability of the pentapeptide. The table shows that when encoding using
n-grams, the joint contribution of amino acids D and R located in the first and second positions
to the stability of the pentapeptide is estimated at about 0.5%, whereas with OHE coding the
estimate is 6%.

Table 3. Examples of assessing the probabilistic contribution to the stability
of the DRNAA pentapeptide when encoded using n-grams

Combination of amino acids
position Probabilistic contribution

presence absence

D 1 0.0030

R 2 0.0022

K 2 –0.00004

EK 1 –0.00008

T 5 –0.000028

R 5 –0.000029

A 5 –0.0001

Figure 2 shows an example diagram of the probabilistic contributions of amino acids and their
positions to the stability of 1000 randomly selected pentapeptides. The figure shows that single
combinations of amino acids have the greatest significance; amino acid K in the fifth position has
the most powerful positive effect, and amino acid A in the first position has the most negative
effect.

4AD

1D

3D

1A

1E

2A

5E

1K

1R

5K

0 0.02�0.02�0.04 0.04

SHAP index

Fig. 2. Diagram of the probabilistic contributions of features to the stability of 1000 randomly selected
pentapeptides when encoded using n-grams, constructed using the SHAP algorithm.
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5.3. Discontinuous String Representation

Table 4 presents the result of estimating the probabilistic contribution to the stability of an
individual feature using the example of the DRNAA pentapeptide when encoded with a discontin-
uous n-gram. Figure 3 shows an example of a diagram of the probabilistic contributions of amino
acids and their positions to the stability of 1000 randomly selected pentapeptides with the same
encoding.

Table 4. Examples of assessing the probabilistic contribution to the stability
of the DRNAA pentapeptide when encoded with a broken n-grams

Combination of amino acids
position Probabilistic contribution

presence absence

R–A 2 0.0093

R–A 2 0.0041

A–A 1 0.0031

D–A 1 0.0020

A–A 1 0.0013

A–K 2 –0.0014

D–N 1 –0.0030

In Table 4 rows are ordered as the probabilistic contribution of the combination of amino acids
and their positions to the stability of the pentapeptide decreases. It follows from the table that the
greatest effect on the stability of the DRNAA pentapeptide is exerted by the combination of amino
acids R in the second position and A in the fourth or fifth position. The absence of amino acid A
in the first position and simultaneously in the fourth or fifth positions also increases the likelihood
of stability of the DRNAA pentapeptide, but to a lesser extent.

Figure 3 shows that combinations with amino acid A in the second and K in the fifth position
have the greatest significance for stability. The presence of two amino acids A in a pentapeptide
with two or three gaps between them, on the contrary, is a sign of its instability.

23AD

22AE

22AA

12RA

12AA

22AD

12DA

13AA

13AK

22AK

0 0.150.100.05 0.20

SHAP index

Fig. 3. Diagram of the probabilistic contributions of features to the stability of 1000 randomly selected
pentapeptides when encoded with a broken n-gram, constructed using the SHAP algorithm.
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6. CONCLUSION

The article discusses the result of using three different encodings of the pentapeptide structure
when predicting its stability through solving the classification problem. Binary encoding (One
Hot Encoding), continuous string representation (n-gram), and discontinuous string representa-
tion (broken n-gram) were considered. Each of the encodings generates feature spaces of different
dimensions: 100 when using the OHE binary encoding, 25 600 when encoding using n-grams no
higher than the third order, and 10 400 when using a discontinuous n-gram. This creates varying
degrees of data sparsity. The problem of classifying pentapeptides into stable and unstable was
solved by the gradient boosting method (LGBM). The study used a set of 49 745 pentapeptides, of
which 3.43% were stable. The data was randomly divided into “training”, “testing” and “valida-
tion” sets in proportions while maintaining the original class balance. After training, the results of
testing on the control sample for each of the encodings showed approximately the same value for
the quality metric F1, equal to 0.45 for binary encoding and 0.40 when using different n-grams.

Assessing the importance of features for predicting the stability of pentapeptides highlighted
the most important features. Each encoding method has its own characteristics. OHE coding
evaluates the importance of the location of a particular amino acid at a particular position. When
using n-grams, encoding allows one to evaluate the importance of the combination of amino acids
at adjacent positions, and when using broken n-grams, the importance of the arrangement of amino
acids at positions distant from each other is assessed. Encoding using broken n-grams makes it
possible to highlight the effect of the influence of a combination of amino acids located in different
positions of the pentapeptide molecule.

The question of the structural stability of pentapeptides was considered in [8]. In this work, a
problem dimensionality reduction method based on the calculation of mutual information between
the stability feature and the pentapeptide description was used in the binary OHE encoding.
It turned out that dimensionality reduction using mutual information allows one to use the “simple”
K-nearest neighbors classification method for stability prediction. At the same time, the quality
of the result in terms of the “accuracy” and “completeness” metrics practically coincides with the
result of using the “random forest” method, which requires significantly greater computational and
time costs. A probabilistic assessment of the effect of pentapeptide composition on its stability was
not performed in that study. In this work, the emphasis was placed on assessing the influence of the
pentapeptide composition and the results of such an assessment are presented for 1000 randomly
selected pentapeptides, which is associated with large requirements for the necessary computing
power.
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it is advisable to use control loops that check the achievability of set goals and the feasibility of
plans over a selected time interval. In the absence of this verification, the chosen trajectory of
development of a large-scale system at specific points in time may turn out to be unrealizable,
which will lead to disruption of the work being carried out, as well as to significant costs of the
human, financial, technical and other types of resources for the implementation of obviously
impracticable plans.

Keywords : autonomous goal setting, achievability of goals, feasibility of structurally complex
plans, system dynamics

DOI: 10.25728/arcRAS.2024.59.53.001

1. INTRODUCTION

Considerable attention is paid to the study of models and methods for forming and testing the
achievability of set goals when managing complex human-machine, social, economic, and biological
systems. Currently, checking the achievability of a set of goals carried out when planning, design-
ing, and managing large-scale systems needs to be formalized more and is carried out mainly using
the intuition and experience of decision-makers. Characteristics of targets at various levels of the
hierarchy, as well as indicators of their implementation, can change significantly over time intervals
for achieving goals, which complicates the activities of decision-makers in designing and managing
large-scale systems and planning the results of their activities. Issues of formalizing the goal-setting
procedure were discussed in the works of domestic and foreign researchers [1, p. 5]. The results
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obtained in this area of research, however, have not yet led to the creation of a holistic set of
models and methods that make it possible to verify the achievability of the goals of large-scale
systems. The lack of these developments, as well as specialized mathematical and information
software designed to verify the achievability of the goals of large-scale systems, as well as plans
for their creation and development, understood as a series of actions combined sequentially to
achieve a goal with possible deadlines, causes difficulties in the development and management of
human-machine, economic, social objects [2, p. 252].

The article is devoted to developing of new tasks, models, and methods for checking the achiev-
ability of goals and the feasibility of plans in large-scale systems.

2. MAIN AREAS OF RESEARCH

We develop the following models and methods for testing the achievability of goals and the
feasibility of plans in large-scale systems:

1. To develop a methodological basis for creating an intelligent system that allows anyone to
predict, identify, and prevent events that lead to the impracticability of action plans based on
the mathematical apparatus of system dynamics, probabilistic safety analysis, and the theory of
Bayesian networks [3, p. 168].

2. To formulate and justify a general approach to checking the feasibility of structurally complex
plans, which involves analyzing feasibility using the apparatus of Boolean functions, Bayesian
networks, and knowledge representation models of intelligent systems, as well as using the system
dynamic approach and system dynamics equations [4, p. 21].

3. To develop models and methods for an intelligent decision support system designed to analyze
the feasibility of structurally complex action plans using logical probabilistic models, Bayesian
networks, a system dynamic approach, the mathematical apparatus of probabilistic safety analysis,
and the theory of deep neural networks.

4. Develop methods that allow anyone to present the plan being tested in the form of a hierar-
chical cause-and-effect model and generate indicators of its feasibility.

5. To create models and methods for checking quickly the achievability of goals and the feasibility
of plans using the apparatus of dynamic graphs and knowledge representation models, characterized
by the ability to analyze plans over long time intervals in dynamics, which will allow timely changes
to plans for large-scale systems when their impracticability occurs.

6. To develop problem statements, models, and methods to test the feasibility of a structurally
complex action plan using a system dynamic approach. The action plan is presented as a cause-and-
effect network of events. The modeled variables are indicators characterizing the implementation of
individual plan activities. The arcs are the cause-and-effect relationships that exist between these
indicators. A system of differential equations is written, and the initial conditions corresponding
to the desired values of the indicated indicators are determined. A verifiable structurally complex
plan is feasible if the generated system of equations under the selected initial conditions has the
solution in a given range.

7. To propose and justify methods for conducting computational experiments that characterize
the possibilities of using the developed mathematical software when testing the feasibility of a
structurally complex action plan for domestic energy development.

8. To create and test a problem-oriented intelligent decision support system that implements
the main results of this research.
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3. FORMULATION OF THE PROBLEM

The formulation of the problem of checking the feasibility of plans for the functioning of industrial
enterprises and organizations in a substantive and formal form is given in [5–8]. In those papers,
this statement is extended to the goals of large-scale systems and plans for their implementation.

It has the following formulation: models and methods for checking the achievability of goals and
the feasibility of plans used in large-scale systems at various time intervals during their creation
and operation; identify possible reasons that impede the solution of this problem and suggest
ways to eliminate them. Solving this problem will make it possible to create a methodological
basis for the development of intelligent goal-setting systems, the use of which in managing large-
scale complexes will significantly increase the efficiency of their functioning. Some approaches to
managing development plans and programs are shown in [9–12].

4. GENERAL APPROACH TO THE SOLUTION

Imagine the plan being tested as the tree containing conjunctive and disjunctive vertices. The
possibility of such a transformation follows from its hierarchical structure (conjunctive vertices)
and the conditions for implementing individual activities Mi ∈ {M1, . . . ,Mn}. Each vertex of the
graph G lets us match the variable gi, i = 1, n, which takes the value 1 when the event is per-
formed Mi and the value is 0 if it is not executed. The developed solution method is based on the
following statements.

Statement 1. At the moment in time t0 ∈ [th, tk], plan P (x, u) ∈ {P (x, u)} is impossible if the
output is at least one chain of conjunctive and/or disjunctive vertices connecting any terminal
vertex connecting any terminal vertex of the tree G with its root vertex, so the relation is valid
gi = 0.

The description of this statement follows from the fact that if at least one plan event that is
part of the conjunctive chain is not completed, then the entire plan will not be completed since
otherwise, the vertex corresponding to this event must be excluded from the graph as not affecting
the execution plan. This statement is a necessary condition for satisfiability P (x, u) ∈ {P (x, u)},
asserting that for the plan to be feasible, each activity must be completed Mj ∈ {M1, . . . ,Mn},
without which the corresponding event Mj ∈ {M1, . . . ,Mn} is impossible.

Statement 2. Let us assume that at the moment of time t0 ∈ [th, tk] there are unfulfilled activ-
ities Mj ∈ {M1, . . . ,Mn}, included in tree chain composition G, connecting the root vertex to the
terminal ones. Then, the plan P (x, u) ∈ {P (x, u)} will not be feasible at a given time if there is at
least one tree section G, with the output of a conjunctive-disjunctive chain gi = 0.

In the design and management of large-scale systems, a goal or a plan developed to achieve it is
considered achieved if the requirements of the above statements are met. The problem with using
this approach to checking the feasibility of goals is that the boundaries of the numerical range are
determined by the decision maker, usually based on experience and intuition based on opportunistic
considerations using largely incomplete and subjective ideas about the system, time-varying cause-
and-effect relationships, existing between individual indicators, with insufficient consideration of the
influence of environmental disturbances, etc. All this leads to the fact that plan P (x, u) ∈ {P (x, u)}
may not be feasible at specific points in time, the occurrence of which is complicated to predict in
advance.

The hypothesis forms a sufficient condition for checking the plan when using a system of indi-
cators. It allows anyone to present the main stages of checking the achievability of goals and the
feasibility of plans in the diagram (Fig. 1).
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Fig. 1. Main stages of checking the achievability of goals and feasibility of plans.

Proposition 1. Plan P (x, u) ∈ {P (x, u)} will be achieved within a given time interval ΔT , if a
system of indicators of its achievability is known l1, . . . , lm, for which the following is performed:

∃ti ∈ ΔT : min li � li � max li, i = 1, . . . ,m, (1)

where min li, max li are the lower and upper limits of indicator changes li; m is a known constant.

Decision makers widely use this hypothesis when checking the achievability of goals at various
levels of the management hierarchy of large-scale systems. This circumstance confirms the possi-
bility of its use in the development of a computer system for verifying the achievability of goals
and the feasibility of plans.

In the first stage, the fulfillment of statement (1) is checked; if in the conjunctive chains con-
necting the terminal vertices with the terminal one, at least one event has not been completed,
then the goal or plan is impossible and requires correction. In the second stage, the requirements
for goals are checked and plans, excluding the possibility of approving a plan that is not feasible
due to an unfavorable combination of events (Statement 1). In the third stage of verification, it
is determined whether all indicator values t0 ∈ [th, tk] are within the acceptable range for all peri-
ods all l1(t0), . . . , lm(t0). When checking this condition, the apparatus of system dynamics is used
since the indicators are influenced by a large number of linear and nonlinear feedbacks, as well
as time-varying environmental disturbances. In the fourth stage, mathematical tools are used to
check plans’ achievability and goals’ feasibility.
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5. FEASIBILITY CHECKING ALGORITHM OF THE ACTION PLAN

Algorithm 1.

1. The beginning of the algorithm.

2. Set the vertex u∗ on the graph G∗(U,E), having zero half-degree of approach. This vertex
corresponds to the vertices M1 or Z1, characterizing the implementation of the action plan or the
achievement of the general goal, respectively.

3. Set all vertices um0 , uk0 , . . . , ul0 ∈ U on the graph G∗(U,E) with incidental u∗. Add the first
condition into the emerging product model F : PlanM or goal Z1 will be carried out when carrying
out activities or goals corresponding to the vertices um0 , uk0 , . . . , ul0 .

4. Continue step 2 until the vertices reach G∗(U,E) with zero half-degree of outcome. Thus,
build the production model F ultimately.

5. Match the production system with a logical function f(u1k, . . . , uvk), which takes the value 0
if the plan has not been completed, or 1 otherwise.

6. Construct a digital discrete device circuit DU , to determine the values f(u1k, . . . , uvk), and
the function indicators find(C,C1), which characterize the degree of implementation of the action
plan or achievement of the general goal.

7. Submit at the entrance DU binary signals characterizing the fulfillment or non-fulfillment
of individual activities of the plan under review or the goals of the analyzed target structure.
At find(C,C1) = 1 the plan is feasible or the goal is achievable; if find(C,C1) = 0, then it is necessary
to correct them.

8. Moving along the branches of propagation of zero signals of the device DU , determine the
reasons for the plan’s impracticability or the goal’s unattainability and report them to the decision
maker.

9. Determine whether the conditions for using the Kolmogorov–Chapman equations are met to
calculate the probability of failure to complete the action plan or the unattainability of the goal.
If not, then go to step 10.

10. Determine the minimum sections Li, i = 1, . . . ,m, characterizing failure to implement a plan
or achieve a goal due to a combination of unfavorable circumstances. Each of the minimum sections
characterizes one of the combinations of relatively unimportant events, which in their totality lead
to the goal’s unattainability and the plan’s impracticability.

11. Solving the system of linear homogeneous Kolmogorov–Chapman equations for each minimal
section, determine the probability of an unfavorable combination of circumstances occurring Pi, i =
1, . . . ,m.

12. If Pi � ε, i = 1, . . . ,m, then issue a message about the high probability of unattainabil-
ity of the goal and impracticability of the plan due to an unfavorable combination of event Li,
i = 1, . . . ,m, issue recommendations to the decision maker, change the goal or plan being checked
and proceed to step 7.

13. Select an indicator system Ii, i = 1, . . . , h, which characterizes the feasibility of the plan
being tested or the achievability of the goal. Identify relevant relationships between indicators,
which can be linear or nonlinear. Determine environmental disturbances affecting the indicators.

14. Determine the limit values of indicators I∗i , i = 1, . . . , h, the achievement of which means
the feasibility of the plan being verified or the feasibility of the set goal.

15. Create a system of nonlinear differential equations in the normal Cauchy form, characterizing
the change in the system of indicators over time, considering their mutual influence and the impact
of environmental disturbances.
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16. Solve a system of equations using one of the numerical methods under given initial conditions.
If the solutions obtained go beyond the area limited I∗i , i = 1, . . . , h, then issue a message to the
decision maker, recommend actions to eliminate the discrepancy, and proceed to step 10.

17. Message the decision maker that the check did not reveal the goal’s unattainability or the
plan’s impracticability.

18. End of the algorithm.

6. GOAL ACHIEVABILITY CHECKING AND THE ACTION PLAN FEASIBILITY

Let us consider the features of implementing individual stages of checking the achievability of
goals and the feasibility of plans for a large-scale system using a plan to eliminate the consequences
of floods and floods [13–16]. The problem statement has the following formulation:

Task 1. Develop formal models and algorithms that allow, on a time interval t ∈ [t0; tN ] deter-
mine whether goal attainability indicators are missing Xi(t, a(t), p(t)), i = 1, . . . , n beyond specified
limits: Xi(t, a(t), p(t)) � Xmin

i , i = 1, . . . , n. If this condition is not satisfied for at least one indi-
cator, then the plan is considered unfeasible due to the inability to achieve the required value of
this indicator.

The indicator values are determined by solving a system of nonlinear differential equations
dXi(t,p(t),a(t))

dt = f(t, a(t),X1(t, p(t)), . . . ,Xn(t, p(t))), i = 1, . . . , n at t > 0, 0 < Xi(t, a(t), p(t)) �
MXi

max, i = 1, . . . , n, where X∗
i are recommended values for characteristics of flood consequences,

Xi(t, a(t), p(t)), i = 1, . . . , n are characteristics of the consequences of flooding, affecting the amount
of damage, γi are the weight coefficient of the characteristic, a(t) is the vector of environmental
parameters.

6.1. Mathematical Model

The following system of first-order nonlinear differential equations describes the mathematical
model.

dXi(t, a(t), p(t))

dt
= f+i (F1, . . . , Fm)− f−i (F1, . . . , Fm), i = 1, . . . , n, (2)

where f+i , f−i , i = 1, . . . , n – rates, continuous or piecewise continuous functions that determine the
positive and negative rate of change in the value of a system variable Xi(t, a(t), p(t)), i = 1, . . . , n.
Functions f+i , f−i , i = 1, . . . , n are functions of factors Fj , j = 1, . . . ,m, wherein Fj may be system
variables or environmental parameters.

The directed cause-and-effect graph shows the relationships between model variables (Fig. 2).

The functions on the right side of (3) have the form

f
+/−
i (F1, . . . , Fn) =

n∑
l=1

k
+/−
i,l

n∏
j=1

f
Fj

i,l (Fj),

where coefficients k
+/−
i,l , i = 1, . . . , 12 are determined at the stage of adapting the model to the ob-

ject of study. Let us also assume that the coefficients ki,l = 0, l = 1, . . . ,m− 1, ki,l �= 0,

l = m, ki,l = 0, l = m+ 1, . . . , n. Then this expression will take the form f
+/−
i (F1, . . . , Fn) =

k
+/−
i

n∏
j=1

f
Fj

i (Fj).
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Fig. 2. Cause-and-effect relationships between model variables.

The developed mathematical model will have a general form based on the analysis of the graph
of cause-and-effect relationships:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1(t)

dt
= k+1 f

S
1 (S(t))f

X8
1 (X8(t)),

dX2(t)

dt
= k+2 F (t)G(t)tf

S
2 (S(t))f

X8
2 (X8(t)) − k−2 f

X1
2 (X1(t))f

X7
2 (X7(t)),

dX3(t)

dt
= k+3 f

X8
3 (X8(t))f

X1
3 (X1(t))f

X7
3 (X7(t)),

dX4(t)

dt
= k+4 F (t)G(t)T (t)f

X8
4 (X8(t))f

X7
4 (X7(t))f

X1
4 (X1(t)),X1(t)),

dX5(t)

dt
= k+5 A(t)f

S
5 (S(t)) − k−5 f

X1
5 (X1(t))f

X7
5 (X7(t)),

dX6(t)

dt
= k+6 f

S
6 (S(t))f

X8
6 (X8(t)),

dX7(t)

dt
= k+7 f

X1
7 (X1(t)),

dX8(t)

dt
= k+8 D(t)fS8 (S(t))− k−8 f

X4
8 (X4),

dX9(t)

dt
= k+9 I(t)f

S
9 (S(t)) − k−9 f

X1
9 (X1(t))f

X7
9 (X7(t)),

dX10(t)

dt
= k+10F (t)G(t)T (t)f

S
10(S(t))f

X1
10 (X1(t))f

X7
10 (X7(t)),

dX11(t)

dt
= k+11PCF (t)G(t)D(t)fS11(S(t))f

X6
11 (X6(t)),

dX12(t)

dt
= k+12f

X11
12 (X11(t)),

(3)
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where fXi
j – functional dependence of the system variable on Xj(t) from Xi, and f

S
j – dependence

of the Xj from S(t), i, j = 1, . . . , 12. If such dependencies are unknown, they can be determined
based on statistical data by experts or software developers.

The mathematical model will take the following form, taking into account the polynomials of
auxiliary dependencies:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1(t)

dt
=

1

Xmax
1

(k+1 (0.001S
3(t)− 0.04S2(t) + 0.6S(t) − 2.1)

×(54X4
8 (t)− 137X3

8 (t) + 103.4X2
8 (t)− 20.7X8(t) + 1.2)),

dX2(t)

dt
=

1

Xmax
2

(kt(−0.02S3(t) + 0.64S2(t)− 6.4S(t) + 21)

×(−14.5X2
8 (t) + 22.5X8(t)− 3.3) − k−2 (0.57X2

1 (t) + 0.276X1(t) + 0.05)

×(−3.3X2
7 (t) + 5.6X7(t)− 0.13)),

dX3(t)

dt
=

1

Xmax
3

(k+3 (3.28X
2
8 (t)− 23.31X8(t) + 12.3)

×(−1.26X2
1 (t) + 10.1X1(t)− 17.8)(−0.33X2

7 + 2.2X7 − 0.26)),

dX4(t)

dt
=

1

Xmax
4

(k+4 F (t)G(t)T (t)(−1.3X4
8 (t) + 1.92X3

8 (t)− 0.95X2
8 (t)

+0.3X8(t) + 0.7)(−0.42X4
7 (t)− 7.19X3

7 (t) + 19.34X2
7 (t)− 15.1X7(t) + 4.435)

×(X3
1 (t)−X2

1 (t) + 1.5X1(t) + 0.02)),

dX5(t)

dt
=

1

Xmax
5

(k+5 A(t)(0.01S
2(t)− 0.1S(t) + 0.5)− k−5 (0.217X2

1 (t)

−0.505X1(t) + 0.3(−0.304X2
7 (t) + 1.1X7(t) + 0.26)),

dX6(t)

dt
=

1

Xmax
6

(k+6 (0.002S
2(t) + 0.056S(t) + 0.48)(−0.05X3

8 (t)

+0.9X2
8 (t)− 0.02X8(t) + 0.23)),

dX7(t)

dt
=

1

Xmax
7

(k+7 (3.5X
3
1 (t)− 5.3X2

1 (t) + 3.27X1(t) + 0.0003)),

dX8(t)

dt
=

1

Xmax
8

(k+8 D(t)(0.18S3(t)− 0.06S2(t) + 0.77S(t) − 1.77)

−k−8 (2.17X2
4 (t)− 0.0024X4(t) + 0.16)),

dX9(t)

dt
=

1

Xmax
9

(k+9 I(t)(0.002S
2(t) + 0.07S(t) + 0.5) − k−9 (0.43X

3
1 (t)− 2.3X2

1 (t)

+3.2X1(t)− 0.07)(1.15X3
7 (t)− 1.78X2

7 (t) + 0.93X7(t)− 0.024)),

dX10(t)

dt
=

1

Xmax
10

(k+10F (t)G(t)T (t)(−0.0007S4(t) + 0.03S3(t)− 0.46S2(t)

+2S(t)− 0.4)(0.25X3
1 (t)− 1.24X2

1 (t) + 2.04X1(t)− 0.049)

×(10.9X3
7 (t)− 26.57X2

7 (t) + 16.7X7(t)− 0.515)),

dX11(t)

dt
=

1

Xmax
11

(k+11PCF (t)G(t)D(t)(−0.0005S3(t) + 0.02S2(t)− 0.01S(t) + 0.4)

×(−3.5X3
6 (t) + 7.8X2

6 (t)− 2.7X6(t) + 0.25)),

dX12(t)

dt
=

1

Xmax
12

(k+12(−45.3X4
11(t) + 111.95X3

11(t)− 84.07X2
11(t) + 20.04)),

(4)

where t0 = 1, Xi(t0) = Xi0, i = 1, . . . , 12.
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The system of differential equations (4) is a Cauchy problem; it can be solved by one of the
numerical methods. The simulated characteristics of the system were normalized relative to the
maximum values for the convenience of presenting the obtained results.

In particular, auxiliary dependencies fXi
j and fSj take the following form for the case of the flood

in the Primorsky region in 2001.

On Figs. 3 and 4 the constructed polynomials are presented fS1 = 0.001S3(t)− 0.04S2(t)+
0.6S(t) − 2.1 and fX8

1 = 54X4
8 (t)− 137X3

8 (t) + 103.4X2
8 (t)− 20.7X8(t) + 1.9 for functional depen-

dencies fS1 and fX
8

1 .

The developed mathematical models make it possible to solve problem (1), as shown in the
description of the model example.

7. MODEL EXAMPLE

Let us check the constructed model to check the plan’s feasibility for eliminating the consequences
of floods and floods.

The plan has been developed to reduce losses from their occurrence in various regions of Russia,
the upper level of which is shown in Fig. 5.
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Fig. 5. Flood consequences liquidation plan.
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Fig. 6. Feasibility of the action plan at various points in computer time.

To achieve greater clarity, we assume that the plan feasibility check is carried out over a
computer time interval [0; 1], normalized values of model variables were selected as indicators of
feasibility Xi(t), i = 1, . . . , 13. Results of solving a system of equations under initial conditions
Xi(t0) = 0.5; i = 1, . . . , 13 are shown in Fig. 6. They show that the action plan turns out to be
impracticable at the moment of computer time t = 0.56. For the rest of the interval, the tested
plan is feasible. The minimum values of the indicators at which the plan will be feasible are shown
in Fig. 6 in gray lines, and the current values of the indicators are shown in black lines.
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Fig. 7. Checking the feasibility of flood mitigation plans.

Figure 7 shows the results of a feasibility test of three alternative flood response plans. The first
indicates the points in time when these plans are feasible, the second when there is a risk of failure,
and the third when they are not feasible.

The feasibility of various flood mitigation plans shows it is necessary to check for the feasibility
of the plan that implements the most preferred management strategy when solving problems of
managing large-scale systems. Solving control problems for large-scale systems shows that the
plan implementing the most preferred control strategy must be checked for feasibility. This plan
must be feasible at any point in the time interval under consideration. Suppose the plan is not
feasible, at least at one point. In that case, preference should be given to a control strategy whose
implementation plan will be feasible over the entire control time interval.

8. CONCLUSIONS

Models and methods for checking the achievability of goals and the feasibility of plans imple-
mented when managing large-scale systems in their development are considered. An algorithm for
analyzing the achievability of a set of goals and plans implemented when managing these systems
is proposed and justified. Statements and hypotheses that make it possible to machine-check the
feasibility of plans have been generated.

A model example is given that confirms the possibility of checking the feasibility of plans for
eliminating the consequences of a flood using the developed models and methods. In managing
large-scale systems development, it is advisable to use control loops that check the achievability of
set goals and the feasibility of plans over a selected time interval. In the absence of this verification,
the chosen trajectory of development of a large-scale system at specific points in time may turn out
to be unrealizable, which will lead to disruption of the work being carried out, as well as to significant
costs of the human, financial, technical and other types of resources for the implementation of
obviously impracticable plans.
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Abstract—This paper considers the problem of motivating the reduction of project duration.
The duration cuts of project works and the corresponding costs are given. A group incentive
scheme is used to compensate for the costs. In this scheme, all works are partitioned into groups
and a unified incentive scheme is applied for each group. Two types of unified incentive schemes
are studied for groups, namely, linear and jump ones. The problem is to partition all project
works into groups and choose an appropriate incentive scheme for each group by minimizing
the total incentive fund. Solution algorithms are proposed based on determining the shortest
path in the network. Special cases are also analyzed (partition with the minimum number of
groups and partition with the maximum number of groups).

Keywords : group incentive scheme, linear unified incentive scheme, jump unified incentive
scheme, shortest path in the network
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1. INTRODUCTION

Consider a project consisting of n works. For each work, the duration cut and the costs of this
cut are given. An incentive scheme is defined to compensate for the costs.

The design problems of optimal incentive schemes have been considered by many researchers;
for example, see the books [1–3] and references therein. As a rule, two types of such schemes
are considered, namely, individual incentive schemes and unified incentive schemes. In individual
incentive schemes, a particular scheme is defined for each group from a given class (linear, jump,
rank, etc [1]). In unified incentive schemes, the same scheme is defined for all agents. Compared
to unified incentive counterparts, the advantage of individual incentive schemes is an appreciably
smaller incentive fund (in several cases), and the drawbacks are disinterest in reducing costs and
rather high opportunities for manipulation (strategic behavior). The benefits of unified incentive
schemes are smaller opportunities for manipulation and significantly greater interest in reducing
costs, and the disadvantage is an appreciably larger incentive fund (in many cases). Group incentive
schemes occupy an intermediate position. In such schemes, the set of all agents is partitioned into
groups and a unified incentive scheme is applied for each group. Group incentive systems retain
to some extent the advantages of unified and individual incentive systems and, at the same time,
diminish their drawbacks.

In this paper, design problems are formulated for optimal group incentive schemes and methods
for solving them are considered.
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2. PROBLEM STATEMENT

Consider a project consisting of n works. There is a given plan for reducing project duration:
according to this plan, the duration cut of work i is specified by a value yi. The costs of project
contractors to reduce the duration, zi, i = 1, n, are also given.

To compensate for the costs, it is necessary to determine a group incentive scheme (GIS).
Consider a GIS in which all works are partitioned into 1 < m < n groups and a certain unified
incentive scheme (UIS) is defined for each group. Further analysis deals with two classes of UISs,
namely, linear incentive schemes (LISs) and jump incentive schemes (JISs). We denote by Rj the
set of works belonging to group j : ⋃

j

Rj = R, Ri ∩Rj = ∅ (1)

for all i and j, where R is the set of all works. If an LIS is chosen for group j, all contractors of
this group will be compensated for their costs using the minimum incentive fund

Sj = ajTj , (2)

where

aj = max
i∈Rj

ki, Tj =
∑
i∈Rj

yi, ki =
zi
yi
, i = 1, n.

If a JIS is chosen for group j, all contractors of this group will be compensated for their costs using
the minimum incentive fund

Sj = nj max
i∈Rj

zi, (3)

where nj stands for the number of works in group j.

Problem 1. Find a partition Rj, j = 1,m, and choose an appropriate incentive scheme for each
group by minimizing the incentive fund. This problem will be considered in three modifications as
follows: in the first, only LISs are used for all groups; in the second, only JISs; in the third, both
classes of the incentive schemes mentioned (further called mixed incentive schemes, MISs).

Now we describe the formal problem statement. Let xij = 1 if work i belongs to group j, and
xij = 0 otherwise. In the case of LISs, the incentive fund of group j is given by

S1j =

(∑
i

xijyi

)
max

i
kixij . (4)

In the case of JISs, the incentive fund of group j is given by

S2j =

(∑
i

xij

)
max

i
kiyixij . (5)

Finally, in the case of MISs, the incentive fund of group j is given by

S3j = min (S1j , S2j) . (6)

Consequently, the total incentive fund constitutes

Sk =
∑
j

Skj, k = 1, 3, (7)

depending on the chosen incentive scheme k.
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Problem constraints may have different forms. For example, given nj works in each group j, the
constraints are ∑

i

xij = nj, j = 1,m. (8)

If the number of works in a group must be within given bounds, the constraints take the form

l1 �
∑
i

xij � l2. (9)

Other constraints are possible as well.

Problem 2. Find (xij), i = 1, n, j = 1,m, to minimize (7) subject to the constraints (8), (9) or
others.

Methods for solving these problems are presented below.

3. LINEAR INCENTIVE SCHEMES WITH yi = y

In this section, we investigate the case yi = y, i = 1, n. Let all works be numbered in ascending
(nondescending) order of ki, i.e.,

k1 � k2 � . . . � kn.

This sequence will be called original.

Definition 1. A fragment of the original sequence is its part between some works i and j > i.

Theorem 1. The optimal partition of works into groups is the set of fragments of original se-
quences.

Proof. Assume first that all values ki differ. Let P be an optimal partition. Consider the group
with the maximum value kn. If this group is not a fragment, then there exists a maximum number s
of the original sequence such that the corresponding work is absent from the group with kn but
present in another group, where it has the maximum value ks. Let us swap work s with any work
from the group with kn that does not belong to the fragment. Obviously, the incentive costs in the
group with the maximum value kn will not change; at the same time, the incentive costs in the
group with is will decrease because the maximum value ki in the group with is is smaller than ks,
which contradicts the optimality of the partition P . Thus, the group with work n is a fragment.
The next group with the maximum value ki is considered by analogy, and the procedure continues
for all groups.

To proceed, we reject the assumption that all ki are different. In this case, there exist several
original sequences; for any optimal partition, however, it is possible to find an original sequence
such that the partition will form the set of fragments of this sequence. The proof of Theorem 1 is
complete.

Let all works be numbered in ascending (nondescending) order of ki, i.e.,

k1 � k2 � . . . � kn.

We construct a network of admissible partitions (NAP) of works into groups. This network consists
of an input, an output, and (m− 1) layers. Each vertex i of layer p shows the total number of
works Qip in the first p groups. Note that the minimum number of works is 2 and the maximum
number is n− 2 (m− p) since each group includes at least two works. Therefore, layer p contains

a = n− 2 (m− p)− 2p+ 1 = n− 2m+ 1

vertices, and this number is independent of p.
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We connect vertex i of layer p to vertex j of layer (p + 1) by an arc if

Qjp+1 −Qip � 2.

Also, we connect the network input 0 to each vertex of layer 1 and each vertex of layer (m− 1) to
the network output by an arc.

Theorem 2. A unique path in the NAP corresponds to each admissible partition of works into
groups and, conversely, a unique partition of works into groups corresponds to each path in the
NAP.

Proof. For each admissible partition (n1, . . . , nm) , there is a sequence of values Qip, p= 1,m−1,
such that the difference of the values of neighbor layers exceeds or equal 2. By the construction
of the NAP, an arc connects the corresponding vertices. Conversely, for each path in the NAP,
there is a sequence (n1, . . . , nm), where nk equals the difference (Qjk+1 −Qik) of the corresponding
adjacent vertices. This sequence defines a unique partition of works into groups. The proof of
Theorem 2 is complete.

Example 1. Consider a project of nine works and let m = 3. Then we have

q = 9− 6 + 1 = 4.

The corresponding network is demonstrated in Fig. 1. Table 1 provides the data of works. Assume
that yi = 1 for all i, i.e., zi = ki. The lengths of all arcs are specified in Fig. 1. The shortest path
(0,3,7,9) has a length of 86. The optimal partition into three groups is given by R1 = (1, 2, 3),
R2 = (4, 5, 6, 7), and R3 = (8, 9).

Table 1

i 1 2 3 4 5 6 7 8 9

ki 1 3 4 6 8 10 11 12 15

zi 1 15 12 12 8 40 33 24 15

Next, we solve the problem with the maximum number of groups m = [n/2] = 4. The corre-
sponding NAP is presented in Fig. 2 (q = 2).
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We calculate the vertices λip:

λin = 0, λ11 = 6, λ21 = 24,

λ12 = λ11 + 12 = 18,

λ22 = min [λ11 + 24, λ21 + 16] = 30,

λ13 = λ12 + 20 = 38,

λ23 = min [λ12 + 33, λ22 + 22] = 51,

λout = min [λ13 + 45, λ23 + 30] = 81.

The optimal partition is the one with four groups: (1, 2), (3, 4), (5, 6, 7), and (8, 9).

Finally, we solve the problem with the minimum number of groups m = 2, q = 6. The corre-
sponding NAP is presented in Fig. 3.

We calculate the vertices:

λin = 0, λ11 = 6, λ21 = 12,

λ31 = 24, λ41 = 40, λ51 = 60, λ61 = 77,

λout = min [λ11 + 105, λ21 + 90, λ31 + 75, λ41 + 60, λ51 + 45, λ61 + 30] = 99.

The optimal partition is given by (1, 2, 3, 4) and (5, 6, 7, 8, 9).

Note that incentive costs decrease as the number of groups grows, which is fairly obvious.
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4. AN HEURISTIC ALGORITHM

The algorithm described above can be applied to the general case of different values yi as a
heuristic. It can be justified as follows. If there exists a partition into groups such that the
coefficients ki are the same for each group, then this partition is optimal. Therefore, a reasonable
assumption is that the closer the coefficients ki in the groups are, the closer the partition will be
to the optimal one.

Example 2. Consider the problem with three groups and the data of Table 1. The corresponding
network with the arc lengths (5) is shown in Fig. 4. Its structure coincides with that of the network
in Fig. 1.

We calculate the vertices:

λin = 0, λ11 = 18, λ21 = 36, λ31 = 66, λ41 = 96,

λ12 = 48, λ22 = min [18 + 48, 36 + 24] = 60, λ32 = 106, λ42 = 146,

λout = min [48 + 165, 60 + 150, 106 + 90, 146 + 45] = 191.

The optimal partition is given by (1, 2, 3), (4, 5, 6, 7), and (8, 9).
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5. JUMP INCENTIVE SCHEMES

In this section, we study jump incentive schemes (JISs). For such schemes, an analog of Theo-
rem 1 holds. Let all works be numbered in ascending (nondescending) order of zi, i.e.,

z1 � z2 � . . . � zn.

This sequence will also be called the original sequence. The definition of its fragment is the same
as the one for linear incentive schemes. (In other words, a fragment is some part of the original
sequence.)

Theorem 3. The optimal partition is the set of fragments of the original sequence (one of them
if there are several original sequences).
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Proof. This result is established similarly to Theorem 1. In the optimal partition, we take the
group with the maximum value zn and show that it is a fragment. Assume on the contrary that it
is not. We find the work with the maximum value zs in a fragment that is absent from this group
but present in another group. Let us swap work s with any work from the group with work n that
does not belong to the fragment. Obviously, the incentive costs will decrease. Thus, the group with
work n is a fragment. Then we eliminate the works of this fragment and consider the next group
with the maximum value z. The procedure continues for all groups by analogy.

Example 3. Consider the data of Table 1. We renumber the works appropriately to obtain an
original sequence.

Table 2

i 1 2 3 4 5 6 7 8 9

Ki 1 8 4 6 15 3 12 11 10

yi 1 1 3 2 1 5 2 3 4

zi 1 8 12 12 15 15 24 33 40

Let us find the optimal GIS for three groups. Note that the corresponding network will have
the same structure as in Fig. 1 but with other arc lengths (see Fig. 5).

We calculate the vertices:

λin = 0, λ11 = 16, λ21 = 36, λ31 = 48, λ41 = 75,

λ12 = 40, λ22 = min [16 + 45, 36 + 30] = 61,

λ32 = min [48 + 30, 36 + 45, 16 + 60] = 76,

λ42 = min [75 + 48, 48 + 72, 36 + 96, 16 + 120] = 120,

λout = min [40 + 200, 61 + 160, 76 + 120, 120 + 80] = 196.

The optimal partition is given by (1, 2), (3, 4, 5, 6), and (7, 8, 9).

6. TWO-GROUP PARTITION FOR LINEAR INCENTIVE SCHEMES

This section is devoted to a special case of partitions into two groups. Let the maximum coeffi-
cient kj be given for the second group. The resulting problem is easy to solve. If kj <kn−1, then the
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first group includes all works with ki>kj whereas the second group all works with ki� kj . Indeed,
any transfer of work with ki � kj to the first group increases the incentive fund by (kn−1 − kj)yi> 0.
If kj = kn−1 < kn, we add a work to the first group for the number of works to exceed one. The
matter concerns the work with the minimum value y.

Example 4. Consider the data of Table 1. We perform the calculations:

1. kj = 12. We add work 1 with the minimal duration y1 = 1 in the first group. The incentive
fund is

Φ1 = 15× 2 + 12× 20 = 270.

2. kj = 11. The first group contains works 8 and 9.

Φ2 = 45 + 209 = 254.

3. kj = 10. The first group contains works 7, 8, and 9. The incentive fund is

Φ3 = 90 + 160 = 250.

4. kj = 8. The first group contains works 6, 7, 8, and 9. The incentive fund is

Φ4 = 150 + 96 = 246.

5. kj = 6. The first group contains works 5, 6, 7, 8, and 9. The incentive fund is

Φ5 = 165 + 66 = 231.

6. kj = 4. The first group contains works from 4 to 9. The incentive fund is

Φ6 = 195 + 36 = 231.

7. kj = 3. The first group contains works from 3 to 9. The incentive fund is

Φ4 = 240 + 18 = 258.

The optimal partition of works into groups is given by (1, 2, 3) and (4, 5, 6, 7, 8, 9).

7. CONCLUSIONS

This paper has considered the design of group incentive schemes for linear and jump incentive
schemes. Note that for the two-group partition with linear incentive schemes, the heuristic al-
gorithm yields an optimal solution in many cases. It seems interesting to justify this conclusion
rigorously. Another promising line is to consider other incentive schemes (basic and combined). As
for mixed incentive systems, we emphasize that any linear or jump incentive scheme can be turned
into a mixed one by recalculating the arc lengths of the corresponding network using formula (6).
However, generally speaking, the resulting solution will be nonoptimal. The problem of an optimal
mixed incentive scheme has not been solved yet. All these problems require further research.
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Abstract—This paper is devoted to the blended (joint) finance mechanism of a megaproject
consisting of several projects. One part of the megaproject budget comes from the megapro-
ject manager and the other part from project contractors. When distributing this budget,
the megaproject manager considers information about the amount of the contractor’s internal
funds allocated to project implementation. Project contractors seek to get more funds from
the megaproject manager; in turn, the megaproject manager is interested in attracting more
funds from project contractors. To achieve this goal, the megaproject manager applies different
procedures to distribute the budget. Project contractors use the information reported to the
megaproject manager to increase the funds allocated to them. Straight and reverse priority dis-
tribution procedures in the blended finance mechanism are analyzed. A distribution procedure
is determined that stimulates project contractors to allocate more of their internal funds to the
project in a Nash equilibrium.
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1. INTRODUCTION

Megaprojects are often financed by several sources jointly. In this case, a typical situation is
that one source is the megaproject manager and the other is the contractors of the individual
projects making up the megaproject. In other words, the blended finance mechanism is imple-
mented; see [1–3]. (Such a mechanism is also called joint finance.) As a rule, the budget of the
entire megaproject is limited and turns out to be insufficient to implement the required projects.
According to [4], the idea of blended finance is that funds from the megaproject budget are allo-
cated on the condition that the contractor of each project commits to allocate its internal funds to
its project.

Blended finance implies that it is profitable for project contractors to invest their internal funds.
However, the megaproject manager faces the problem of distributing the budget among project
contractors. Traditionally, in the theory of active systems [5, 6], the megaproject manager requests
information about the necessary funds from project contractors to implement the corresponding
distribution mechanisms. The amount of funds received by the project contractors significantly
depends on the information reported, the megaproject budget, and its distribution procedure.
At the same time, the amount of funds for each contractor depends on its information and the
information of all project contractors.

In the studies of foreign researchers, the consideration of blended finance mechanisms is associ-
ated with the evaluation of specific instruments, such as equity capital, guarantees, loans, etc. [7, 8].
Blended finance is treated as the use of capital from public or philanthropic sources to augment
private-sector investment [9]. Special attention is paid to the issues of investment under which
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1458 SHCHEPKIN

blended finance increases the potential return on investments or reduces risk factors, making them
more attractive to investors [10, 11].

In this paper, we analyze straight and reverse priority distribution procedures applied by the
megaproject manager in the blended finance mechanism. We determine a distribution procedure
that stimulates project contractors to allocate more of their internal funds to the project in a Nash
equilibrium [5].

2. AGENTS FUNDING UNDER PRINCIPAL’S COMPLETE AWARENESS

Consider a two-level system consisting of a Principal (the megaproject manager, the upper level),
which distributes a budget for project implementation, and agents (project contractors, the lower
level). The megaproject consists of n projects and is implemented by n contractors (agents). Each
agent knows the factual costs zi of implementing project i, where i = 1, . . . , n. The Principal has
funds in an amount R, which are distributed among project contractors. The Principal’s complete
awareness implies that the Principal knows the factual costs of each project.

The game-theoretic statement of the problem is as follows.

1. Each agent reports to the Principal the value w, which is some part of the factual project
implementation costs allocated by the agent from its internal funds. For agent i, the planned

amount u
(p)
i of its internal funds for project implementation is therefore given by

u
(p)
i = wizi, i = 1, . . . , n.

It follows that the finance request of agent i is given by

si = (1− wi)zi, i = 1, . . . , n.

2. The Principal determines the amount of funds ci, i = 1, . . . , n, for all projects based on the

information received. If ci < si, the factual amount u
(f)
i , i = 1, . . . , n, of agent’s internal funds for

project implementation is given by

u
(f)
i = zi − ci, i = 1, . . . , n.

3. The agents and the Principal determine their payoffs. The agent’s payoff is its profit. The
Principal’s payoff function may have different forms. It does not matter here: this paper aims to
establish conditions ensuring the allocation of more agents’ internal funds to the project.

Let agent i gain an effect Ei from the project implemented. Assume also that the project will

be implemented (and the agent will gain the effect) only if ci + u
(f)
i � zi. In this case, the profit of

agent i can be written as

fi = Ei + ci − u
(f)
i , i = 1, . . . , n. (1)

We begin with the case when the Principal can distribute the requested funds in full to all
agents. Then, obviously, ci = si, i = 1, . . . , n, and

fi = Ei + (1− 2wi)zi, i = 1, . . . , n. (2)

According to (2), to increase their profits, agents are interested in reducing their internal funds
for project implementation and maximizing their finance requests. To eliminate this interest, the
Principal introduces an additional condition. For receiving funds from the Principal, agents should
allocate their internal funds in an amount not less than dzi, where d is the share of factual costs
set by the Principal. In this case, the request of agent i is given by

si = (1− d)zi, i = 1, . . . , n.
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Consequently, the profit of agent i is given by

fi = Ei + (1− 2d)zi � 0, i = 1, . . . , n.

Due to the latter expression, the agent can affect the amount of profit only when setting wi > d.
However, see the discussion above, agents are interested in reducing their internal funds for project
implementation; this corresponds to wi = d.

If the Principal’s funds are limited, priority distribution procedures [6] are used to determine
the amount of funds ci for project i, i = 1, . . . , n. These procedures have the following form:

c
(sp)
i = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩si;
Aisi

n∑
q=1

Aqsq

R

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , i = 1, . . . , n

(straight priorities) and

c
(rp)
i = min

⎧⎪⎨⎪⎩si; Ai

si
∑
q∈N

Aq/sq
R

⎫⎪⎬⎪⎭ , i = 1, . . . , n (3)

(reverse priorities). Here, Ai denotes the project priority set by the Principal for agent i.

First, we study the straight priority procedure. Since the agents are financed under the Princi-
pal’s complete awareness, the amount of funds allocated to project i is given by

c
(sp)
i =

Ai(1− wi)zi
n∑

q=1
Aq(1−wq)zq

R, i = 1, . . . , n. (4)

The condition c
(sp)
i + u

(f)
i � zi must hold for agent i to gain the effect Ei. Hence,

n∑
q=1

u(f)q �
n∑

q=1

zq −R. (5)

This conclusion seems obvious enough. If the implementation of all projects requires the amount

of funds
n∑

q=1
zq, and the Principal allocates the amount of funds R, then the expression (5) exactly

determines the amount of agent’s internal funds.

Given (4), the goal function (1) of agent i takes the form

fi = Ei +
2Ai(1− wi)zi
n∑

q=1
Aq(1− wq)zq

R− zi, i = 1, . . . , n.

Obviously,

∂fi
∂wi

= −2Aizi

n∑
q=1

Aq(1− wq)zq −Aizi(1− wi)(
n∑

q=1
Aq(1− wq)zq

)2 R < 0.

Therefore, the agents have an interest in reducing their internal funds for project implementation
and maximizing their finance requests.
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On the other hand, the Principal seeks to attract more of the agents’ internal funds for project
implementation. Accordingly, the Principal sets the priority of agent i so that it increases with the
growing amount of the agent’s internal funds allocated to the project. For example, the priority
can be defined as

Ai =
ai

1− wi
. (6)

This priority has a peculiarity as follows. The more internal funds the agent allocates to the
project, the higher its priority will be.

In this case, formula (4) can be written as

c
(sp)
i =

aizi
n∑

q=1
aqzq

R, i = 1, . . . , n. (7)

Accordingly, agent i, i = 1, . . . , n, allocates the following factual amount of its internal funds
for project implementation:

u
(f,dp)
i = zi − c

(sp)
i , i = 1, . . . , n.

Let all projects being implemented satisfy the following requirement.

Condition 1. All projects are divided into two groups. The projects of the first group, those with
the numbers i = 1, . . . ,m, have the high priorities ai = b3 > 1. The projects of the second group,
those with the numbers i = m+ 1, . . . , n, have the low priorities ai = 1.

In this case, formula (7) can be written as

c
(sp)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b3zi

b3
m∑
q=1

zq +
n∑

q=m+1
zq

R, i = 1, . . . ,m,

zi

b3
m∑
q=1

zq +
n∑

q=m+1
zq

R, i = m+ 1, . . . , n.

(8)

Let z1 = zn, i.e., the costs of project 1 with the high priority coincide with those of project n
with the low priority. In this case, due to (8), the agent whose project has the low priority receives
fewer funds from the Principal and, accordingly, allocates more of its internal funds to the project.

In addition, according to (7), the amount of agents’ funds is independent of the information
reported by the agents.

Now, we analyze the reverse priority procedure. The procedure (3) can be represented as

c
(rp)
i = min

⎧⎪⎪⎨⎪⎪⎩(1− wi)zi;
Ai

(1− wi)zi
∑
q∈N

Aq

/
[(1− wq)zq]

R

⎫⎪⎪⎬⎪⎪⎭ , i = 1, . . . , n.

The agent receives the maximum amount of funds under the condition

(1− wi)zi =
Ai

(1− wi)zi
∑
q∈N

Aq

/
[(1− wq)zq]

R, i = 1, . . . , n.

After straightforward calculations, we obtain

(1− wi)zi =

√
Ai∑

q∈N

√
Aq
R, i = 1, . . . , n. (9)
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If the Principal sets the priorities (6), then the relation (9) can be written as

c
(rp)
i = (1− wi)zi =

3
√
aizi∑

q∈N
3
√
aqzq

R, i = 1, . . . , n, (10)

and, accordingly,

u
(f,rp)
i = zi − c

(rp)
i , i = 1, . . . , n.

Under Condition 1, formula (10) reduces to

c
(rp)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b 3
√
zi

b
m∑
q=1

3
√
zq +

n∑
q=m+1

3
√
zq

R, i = 1, . . . ,m,

3
√
zi

b
m∑
q=1

3
√
zq +

n∑
q=m+1

3
√
zq

R, i = m+ 1, . . . , n.

(11)

Assuming z1 = zn and considering (11), we obtain u
(f,rp)
1 = z1 − c

(f,rp)
1 and u

(f,rp)
n = zn − c

(rp)
n .

Direct comparison of u
(f,rp)
1 and u

(f,rp)
n gives a result similar to the one established for the straight

priority principle.

3. AGENTS FUNDING UNDER PRINCIPAL’S INCOMPLETE AWARENESS

Under incomplete awareness, the Principal does not know the factual costs zi, i = 1, . . . , n, of
each project and receives information about the planned costs Zi, i = 1, . . . , n, of projects from the
agents.

In this case, each agent reports to the Principal the planned costs Zi, i = 1, . . . , n, and the
value wi, which is some part of the planned costs covered by the agent from its internal funds.
Hence,

ui = wiZi, i = 1, . . . , n.

Accordingly, the finance request of agent i is given by

si = (1− wi)Zi, i = 1, . . . , n. (12)

The factual profit of agent i is given by

f
(f)
i = Ei + ci − zi, i = 1, . . . , n, (13)

and its planned profit can be written as

f
(p)
i = Ei + ci − Zi, i = 1, . . . , n.

Let us represent (13) in the form

f
(f)
i = Ei + ci − zi = Ei + ci − (zi − Zi + Zi) = f

(p)
i + Zi − zi, i = 1, . . . , n.

The factual costs zi are known to the agents, and the agent cannot receive more funds from the
Principal than it plans to spend. Therefore, by a natural assumption, the planned costs Zi exceed
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the factual ones. In this case, the difference (Zi − zi) > 0 can be treated as the excess planned

profit f
(ep)
i = Zi − zi. In the sequel, the factual profit of agent i is calculated as

f
(f)
i = f

(p)
i + qf

(ep)
i = Ei + ci − Zi + q(Zi − zi)

= Ei + ci − (1− q)Zi − qzi, i = 1, . . . , n,
(14)

where q � 1. If q ∈ (0, 1], the Principal leaves some of the excess profit at the agent’s disposal. Ac-
cordingly, q is the norm determining the amount of excess profit left to the agent. If q � 0, then q is
the penalty coefficient for manipulating the agent’s information about the project implementation
costs; see [12].

As before, we begin with the case where the Principal can distribute the requested funds to all
agents in full. Then, obviously, ci = si, i = 1, . . . , n, and

f
(f)
i = Ei + si − (1− q)Zi − qzi, i = 1, . . . , n. (15)

In view of (12), the expression (15) can be written as

f
(f)
i = Ei + (1− wi + q)Zi − qzi, i = 1, . . . , n. (16)

According to (16), the agents always benefit by overestimating their planned costs: for q ∈ (0, 1],

1− wi + q > 0.

If the Principal’s funds are limited, then (similar to the case of complete information) the
Principal uses priority distribution procedures [6] to determine the amount of funds ci for project i,
i = 1, . . . , n, and the agent’s goal function has the form (14).

First, we consider the straight priority procedure. The amount of funds allocated by the Principal
for implementing project i is given by

c
(sp)
i =

Ai(1− wi)Zi
n∑

q=1
Aq(1− wq)Zq

R, i = 1, . . . , n.

If the Principal sets the priorities (6), then

c
(sp)
i =

aiZi
n∑

q=1
aqZq

R, i = 1, . . . , n.

In this case, the goal function (14) takes the form

f
(f)
i = Ei +

aiZi
n∑

q=1
aqZq

R− (1− q)Zi − qzi, i = 1, . . . , n.

To find the planned costs Z∗
i in a Nash equilibrium, we solve the system of equations

∂f
(f)
i

∂Zi
= ai

n∑
q=1

aqZq − aiZi(
n∑

q=1
aqZq

)2 R− (1− q) = 0, i = 1, . . . , n. (17)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 12 2023



COMPARISON OF DISTRIBUTION PROCEDURES IN BLENDED FINANCE 1463

The solution of (17) is

Z∗
i =

n− 1

(1− q)ai
n∑

q=1

1

aq

R

⎛⎜⎜⎜⎝1− n− 1

ai
n∑

q=1

1

aq

⎞⎟⎟⎟⎠ , i = 1, . . . , n. (18)

In the Nash equilibrium, agent i receives the amount of funds

c
∗(sp)
i =

⎛⎜⎜⎜⎝1− n− 1

ai
n∑

q=1

1

aq

⎞⎟⎟⎟⎠R, i = 1, . . . , n. (19)

Accordingly, u
∗(sp)
i = zi − c

∗(sp)
i , i = 1, . . . , n.

Under Condition 1, the expression (18) can be written as

Z
∗(sp)
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(n− 1)[(b3 − 1)(n −m) + 1]

(1− q)[m+ b3(n−m)]2
R, i = 1, . . . ,m,

(n− 1)b3[b3 −m(b3 − 1)]

(1− q)[m+ b3(n−m)]2
R, i = m+ 1, . . . , n.

(20)

In this Nash equilibrium, agent i receives the amount of funds

c
∗(sp)
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(b3 − 1)(n −m) + 1

m+ b3(n−m)
R, i = 1, . . . ,m,

b3 −m(b3 − 1)

m+ b3(n−m)
R, i = m+ 1, . . . , n.

The positivity requirement of project funding leads to the inequality

b3 − (b3 − 1)m > 0. (21)

From (21) we arrive at

m <
b3

b3 − 1
. (22)

Due to (22), the greater ratio of the maximum priority to the minimum one is, the smaller the
number of projects with the maximum priority should be.

In the case m = n (all projects are equally important for the Principal), the expressions (18)
and (19) reduce to ⎧⎪⎨⎪⎩

Ẑ∗
i =

n− 1

(1− q)n2
R

ĉ
∗(sp)
i = R/n,

i = 1, . . . , n. (23)

Using (23), we can express the amount of agents’ internal funds allocated to projects in the

Nash equilibrium: û
∗(sp)
i = zi − ĉ

∗(sp)
i , i = 1, . . . , n.

Under the assumption z1 = zn, direct comparison of û
∗(sp)
1 and û

∗(sp)
n indicates the following:

the agent whose project has the low priority allocates more of its internal funds to project imple-
mentation.
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Indeed, this result is immediate from the inequality

zn − b3 −m(b3 − 1)

m+ b3(n−m)
R > z1 − (b3 − 1)(n −m) + 1

m+ b3(n−m)
R.

Now, we take the reverse priority procedure. In this case, the Principal distributes to the
implementation of project i the amount of funds

c
(rp)
i = min

⎧⎪⎪⎨⎪⎪⎩(1− wi)Zi;
Ai

(1− wi)Zi
∑
q∈N

Aq

/
[(1− wq)Zq]

R

⎫⎪⎪⎬⎪⎪⎭ , i = 1, . . . , n.

The agent receives the maximum amount under the condition

(1− wi)Zi =
Ai

(1− wi)Zi
∑
q∈N

Aq

/
[(1− wq)Zq]

R, i = 1, . . . , n.

Hence, it follows that

c
(rp)
i =

3
√
aiZi∑

q∈N
3
√
aqZq

R, i = 1, . . . , n. (24)

Let Condition 1 be valid; then (24) can be written as

c
(rp)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b 3
√
Zi

b
m∑
q=1

3
√
Zq +

n∑
q=m+1

3
√
Zq

R, i = 1, . . . ,m,

3
√
Zi

b
m∑
q=1

3
√
Zq +

n∑
q=m+1

3
√
Zq

R, i = m+ 1, . . . , n.

(25)

In this case, the goal function (14) takes the form

f
(f)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ei +
b 3
√
Zi

b
m∑
q=1

3
√
Zq +

n∑
q=m+1

3
√
Zq

R− (1− q)Zi − qzi, i = 1, . . . ,m,

Ei +
3
√
Zi

b
m∑
q=1

3
√
Zq +

n∑
q=m+1

3
√
Zq

R(1− q)Zi − qzi, i = m+ 1, . . . , n.

Under the weak contagion condition [5]

∂

∂Zi

1

b
m∑
q=1

3
√
Zq +

n∑
q=m+1

3
√
Zq

= 0,
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the planned costs Z∗
i in a Nash equilibrium are found by solving the system of equations

∂f
(f)
i

∂Zi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b

3Z
2/3
i

[
be

m∑
q=1

3
√
Zq +

n∑
q=m+1

3
√
Zq

]R− (1− q) = 0, i = 1, . . . ,m,

1

3Z
2/3
i

[
be

m∑
q=1

3
√
Zq +

n∑
q=m+1

3
√
Zq

]R− (1− q) = 0, i = m+ 1, . . . , n.

(26)

From (26) we obtain

Z∗
i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b
√
b

3(1 − q)
[
mb

√
b+ (n−m)

]R, i = 1, . . . ,m,

1

3(1 − q)
[
mb

√
b+ (n−m)

]R, i = m+ 1, . . . , n.

(27)

According to (27), the planned costs of the agent with the high priority exceed in the Nash
equilibrium those of the agent with the low priority.

Using (25), we calculate the amount of agent funds in the Nash equilibrium:

c
∗(rp)
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b3/2

b3/2m+ (n−m)
R, i = 1, . . . ,m,

1

b3/2m+ (n−m)
R, i = m+ 1, . . . , n.

(28)

According to (28), the funding of the agent with the high priority exceeds in the Nash equilibrium
that of the agent with the low priority.

Using (28), we can express the amount of agents’ internal funds allocated to projects in the

Nash equilibrium: u
∗(rp)
i = zi − c

∗(rp)
i .

Under the assumption z1 = zn, direct comparison of u
∗(sp)
1 and u

∗(sp)
n shows the following: the

agent whose project has the low priority allocates more of its internal funds to project implemen-
tation.

Indeed, this result is immediate from the inequality

zn − 1

b3/2m+ (n−m)
R > z1 − b3/2

b3/2m+ (n−m)
R.

In the case m = n (all projects are equally important for the Principal), the expressions (27)
and (28) take the form

Z∗
i =

R

3(1 − q)
, i = 1, . . . , n,

and, consequently, c
∗(rp)
i = R/n, i = 1, . . . , n.

Let us demonstrate that
c
∗(sp)
i < c

∗(rp)
i , i = m+ 1, . . . , n. (29)

Inequality (29) can be written as

b3 −m(b3 − 1)

m+ b3(n−m)
R <

1

b3/2m+ (n−m)
R.
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Trivial transformations yield[
b3 −m(b3 − 1)

] (
b3/2 − 1

)
− (n− 1)(b3 − 1) < 0. (30)

Since m � 1, inequality (30) holds if(
b3/2 − 1

)
− (n− 1)(b3 − 1) < 0.

With this condition written as

1− (n− 1)
(
b3/2 + 1

)
< 0,

inequality (29) obviously holds. In fact, we have established the following result: in a Nash equilib-
rium, using the inverse priority principle, the Principal distributes more funds to the agents with

the low priority than in the case of the straight priority principle. Therefore, u
∗(f,rp)
i < u

∗(f,dp)
i ,

i = m+ 1, . . . , n.

4. CONCLUSIONS

According to the above analysis of the blended finance mechanism model, we draw the following
conclusions. In the case of the Principal’s complete awareness and the straight (or reverse) priority
distribution procedure, agents allocate different amounts of their internal funds for projects with
different priorities but the same factual costs. In addition, the agent whose project has a low
priority receives less funds from the Principal and, accordingly, allocates more of its internal funds
for project implementation.

In the case of the Principal’s incomplete awareness and the straight (or reverse priority) distri-
bution procedure, the agent with the high priority receives more funds in a Nash equilibrium than
that with a low priority. Under the same factual costs, the agent whose project has a low priority
allocates more of its internal funds to the project. Note that in a Nash equilibrium, the Principal’s
reverse priority distribution procedure provides the agents with a low priority with more funds
compared to the case of straight priorities.
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Abstract—This paper considers the set of reversible mechanical systems with single-period
oscillations and individual phase shifts in them. The problem of aggregating a coupled system
with an attracting cycle is solved. The approach developed below is to choose a leader (control)
system that acts on the other (follower) systems through one-way coupling control: in an
aggregated system, there are no links between follower systems. Universal coupling controls are
used. Particular attention is paid to conservative systems. Possible scenarios for the operation
of the aggregated system are presented.
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1. PRELIMINARIES

Models containing coupled subsystems are studied in various fields of knowledge. In mechanics,
A. Sommerfeld’s sympathetic pendulums have become such a (classical) model. Other examples
were given, e.g., in [1–5].

Aggregation consists in constructing a coupled system from a given set of systems so that the
resulting whole will possess a desired dynamic property. In oscillation stabilization, this property
is achieved, in particular, in an attracting cycle of the system. Aggregation occurs by finding
appropriate coupling controls between the systems.

In the paper [6], the aggregation problem was solved for a set of conservative systems. According
to [6, Lemma 1], there exists a cycle in the system only if all mechanical systems, possibly except
one system with a degenerate family of oscillations, contain nondegenerate families of oscillations.
Aggregation was carried out for systems containing nondegenerate families of oscillations that also
form a nondegenerate family in an uncoupled system as a whole. The case of phase-synchronized
oscillations in systems was considered. The universal control from [7] was applied.

At the same time, it is of definite interest to study oscillation modes in which, e.g., the phases
in system oscillations are equidistant from each other or neighbor systems oscillate in antiphase.
Therefore, a common problem is to find coupling controls for implementing an attracting cycle of
the coupled mechanical system with phase shifts in the oscillations of its constituent systems. Also,
it seems interesting to aggregate a coupled system containing one or more mechanical systems with
degenerate families of oscillations. Thus, we arrive at the following general problem statement:
aggregate a coupled system with an attracting cycle on a set of mechanical systems admitting
oscillations.
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Note that some approaches to aggregating a general-form autonomous system with an attracting
cycle were proposed in [8]; Lyapunov method-based procedures for aggregating a complex system
were described in [9].

2. PROBLEM STATEMENT

Consider the set Ξ of n smooth reversible mechanical systems with one degree of freedom

q̈s + fs(qs, q̇s) = 0, fs(qs,−q̇s) = fs(qs, q̇s), s = 1, . . . , n. (1)

The phase portrait of the sth system is symmetric with respect to the fixed setMs = {qs, q̇s : q̇s = 0},
where qs denotes the generalized coordinate. By assumption, each system of the set Ξ admits a
single-frequency oscillation. It will be symmetric with respect to the set Ms and represents a
symmetric periodic motion (SPM). The SPM is described by the formula

qs = ϕs(hs, t+ γs), s = 1, . . . , n,

where the period Ts(hs) depends on the parameter hs and the parameter γs specifies the time shift
of the initial point: for γs = 0, the initial point belongs to the fixed set Ms. In this case, the SPM
is described by a function even in the variable t. SPMs always form families. In a conservative
system, the function fs does not depend on the velocity q̇s.

Further considerations involve a definition from [6].

Definition 1. A family of SPMs in the parameter h is said to be nondegenerate if the derivative
of the period T (h) with respect to the variable h differs from zero on this family. An SPM of a
nondegenerate family is called nondegenerate as well.

The period T (h) on the family of nondegenerate SPMs can increase or decrease. For example,
the period of oscillations of a mathematical pendulum monotonically increases with the energy of
the pendulum, and the oscillations are nondegenerate. The solutions of the equation ẍ+ x3 = 0
belong to the family of SPMs with a decreasing period.

The oscillations of a linear oscillator are isochronous and form a degenerate family of SPMs. As a
rule, a degenerate SPM of a nonlinear system is on the boundary of the family of its nondegenerate
SPMs. In a conservative system, the parameter h is usually the constant of the energy integral.

The general problem statement involves the set Ξ of reversible mechanical systems containing
nondegenerate (and/or degenerate) families of SPMs with increasing (and/or decreasing) periods
on the family. In this case, if the set Ξ simultaneously includes a system with an increasing
period (dT1/dh1 > 0) and a system with a decreasing period (dT2/dh2 < 0), the period curves will
intersect at one point where T1(h

∗
1) = T2(h

∗
2) = T ∗. The phases of oscillations generally differ. If

the set Ξ also includes a system with a degenerate family, the period on it will equal T ∗ as well.
The set of three equations in Ξ leads in the coupled system to two arbitrary phases of oscillations
in the systems. Given an arbitrary number n of equations in Ξ, it is assumed that γs = γ1 + δs,
s = 2, . . . , n. Therefore, we pose the problem of aggregating a coupled system with an attracting
cycle for all possible vectors δ = (δ2, . . . , δn).

Further analysis focuses on an autonomous coupled mechanical system of the form

q̈s + fs(qs, q̇s) = εσsus(q, q̇), s = 1, . . . , n, (2)

where the coupling control
u(q, q̇) = (u1(q, q̇), . . . , un(q, q̇)) (3)

acts with a small gain ε: the switches σs are +1 or (−1). By assumption, for ε = 0, system (2),
treated as a whole, admits a T ∗-periodic SPM. The problem is to find the coupling control (3)
ensuring the existence of an attracting cycle with the period T ∗ in system (2).
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This problem covers the following special cases:

1) All reversible mechanical systems in the set Ξ admit a family of nondegenerate SPMs with
an increasing (decreasing) period.

2) The monotonicity of the period in the systems differs by character.

3) The set of mechanical systems contains nondegenerate and degenerate families of SPMs.

In [6], case 1) was investigated for conservative systems under the additional assumption that
the set of uncoupled systems as a whole admits a nondegenerate family of SPMs.

3. UNIVERSAL COUPLING CONTROLS UNDER δ �= 0

For the vector δ �= 0, we find universal coupling controls ensuring the existence and orbital
asymptotic stability of the cycle of system (2). Such coupling controls can be treated as a general-
ization of the couplings from [7].

The proposed coupling controls have the form

u1 = [1−K1(h1)q
2
1 ]q̇1,

uj = [1−Kj(hj , δj)q
2
1]q̇j , j = 2, . . . , n.

(4)

The functions K1(h1) and Kj(hj , δj) are calculated below.

By assumption, for ε = 0 system (2) admits a T ∗-periodic SPM and the corresponding values in
the subsystems are hs = h∗s, s = 1, . . . , n. According to formulas (4), the equations in (2) become
unequal: we construct a controlled coupled system in which the system with number s = 1 is the
leader and the other systems are followers. Another feature of the controls (4) is that the subsystems
with numbers s = 2, . . . , n have no direct influence on each other. Due to these remarks, we analyze
(n − 1) independent subsystems of the same type:

q̈1 + f1(q1, q̇1) = εσ1[1−K1(h
∗
1)q

2
1]q̇1,

q̈j + fj(qj , q̇j) = εσj[1−Kj(h
∗
j , δj)q

2
1 ]q̇j, j = 2, . . . , n.

(5)

For the subsystem with number j in (5), we solve the cycle problem under the condition ε �= 0.
Then, applying the obtained result to all subsystems with numbers j = 2, . . . , n, we come to the
solution of the cycle problem for the coupled system. In system (5), K1(h

∗
1) and Kj(h

∗
j ) denote

values. In addition, h∗1 and h∗j mean that the controls are chosen for the SPM with the period T ∗

and the corresponding values h1 = h∗1 and hj = h∗j . On the other hand, when solving the control
problem in (5) for another pair (h1, hj), a different pair of the coefficients (K1(h1),Kj(hj , δ)) is
chosen: in (6), the control is applied with some changed coefficients K1 and Kj. Hence, we design
an adaptive control system in (6).

Thus, for the adaptive control system (6), it is required to find the relationships K1(h1) and
Kj(hj , δ) (the second with the parameter δ) ensuring the existence of an attracting cycle.

For the subsystem with number j, we write the system of amplitude equations

I1(h1) ≡
T ∗∫
0

[1−K1(h
∗
1)ϕ

2
1(h1, t)]ϕ̇1(h1, t)ψ1(h1, t)dt = 0,

Ij(h1, hj , δj) ≡
T ∗∫
0

[1−Kj(h
∗
j , δj)ϕ

2
1(h1, t)]ϕ̇j(hj , t+ δj)ψj(hj , t+ δj)dt = 0.

(6)

These equations are used to find h1 = h∗1 and hj = h∗j that meet the necessary conditions for the
existence of a cycle with the period T ∗ in the controlled system (5). In (6), (ψ1(h1, t), ψj(hj , t+ δj))
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denotes the solution of the adjoint equation for q1 = ϕ1(h1, t) and qj = ϕj(hj , t+ δj). This solution
is calculated in the Appendix.

The first equation in system (6) is the same for all numbers j. It can be analyzed independently
of the second one.

We begin with the first equation of (5). The necessary conditions for the existence of a cycle
must hold for all values of the parameter h1 and the corresponding values of the period T1(h1).
Therefore,

T1(h1)∫
0

[1−K1(h1)ϕ
2
1(h1, t)]ϕ̇1(h1, t)ψ1(h1, t)dt ≡ 0, (7)

which gives

K1(h1) =

T1(h1)∫
0

ϕ̇1(h1, t)ψ1(h1, t)dt

T1(h1)∫
0

ϕ2
1(h1, t)ϕ̇1(h1, t)ψ1(h1, t)dt

.

The denominator of this expression does not vanish; for the case of a conservative system, see
Section 4. In the general case of a reversible mechanical system, this result follows from the
solution of the adjoint equation calculated in the Appendix.

In view of the odd function ϕ̇1(h1, t) and the equality T1(h
∗
1) = T ∗, we determine the derivative

of the function I1(h1) at the point h1 = h∗1 from identity (7):

dI1(h
∗
1)

dh1
= χ1ν1,

χ1 =
dK1(h

∗
1)

dh1
, ν1 =

T ∗∫
0

ϕ1(h
∗
1, t)

2ϕ̇1(h
∗
1, t)ψ1(h

∗
1, t)dt.

The equality I(h∗1) = 0 means that the necessary condition for the existence of a T ∗-periodic
solution holds in the first equation of system (5). Due to the inequality χ1ν1 �= 0, this solution is
a cycle, which becomes attracting under an appropriately chosen sign of σ1 (see [7]).

The second equation of system (6) is considered by analogy. We define the function

Kj(hj , δj) =

Tj(hj)∫
0

ϕ̇j(hj , t+ δj)ψj(hj , t+ δj)dt

Tj(hj)∫
0

ϕ2
1(h

∗
1, t)ϕ̇j(hj , t+ δj)ψj(hj , t+ δj)dt

and calculate the derivative

dIj(h
∗
1, h

∗
j , δj)

dhj
= χjνj ,

χj =
dKj(h

∗
j , δj)

dhj
, νj =

T ∗∫
0

ϕ1(h
∗
1, t)

2ϕ̇j(h
∗
j , t+ δj)ψj(h

∗
j , t+ δj)dt

for hj = h∗j (h1 = h∗1).
The conditions χ1ν1 �= 0 and χjνj �= 0 are now sufficient for the existence of a simple root (h∗1, h∗j )

of the system of amplitude equations (6) with a fixed number j. Then the simplicity of this root
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ensures the existence of a cycle in system (5) with a fixed number j. The cycle will be attracting
if the switches are chosen from the conditions σ1χ1ν1 < 0 and σjχjνj < 0.

Consider the systems of amplitude equations (6) for all numbers j = 2, . . . , n. Then, under the
inequalities χsνs �= 0, s = 1, . . . , n, a cycle is implemented in the coupled system (5). Given the
additional condition σsχsνs < 0, s = 1, . . . , n, the cycle becomes attracting.

Thus, the following result is true.

Theorem 1. Assume that the set of reversible mechanical systems with one degree of freedom
admits a T ∗-periodic motion. Then the coupled mechanical system (5), where j = 2, . . . , n, has a
unique cycle of the period T ∗ if χsνs �= 0, s = 1, . . . , n. Under the additional conditions σsχsνs < 0,
s = 1, . . . , n, the cycle becomes attracting.

Remark 1. The cycle of the coupled system (5) is determined within an arbitrary shift on the
trajectory. The cycle-generating oscillations have the phase shifts δ2, . . . , δn with respect to the
phase of the oscillation in the first equation of system (5).

Remark 2. In system (6), the integral

κj =

T ∗∫
0

ϕ̇j(h
∗
j , τ + δj)ψj(h

∗
j , τ + δj)dτ

does not depend on δj on the period. Therefore, for κj �= 0, we define the function

Kj(h
∗
j , δj) =

κj
T ∗∫
0
ϕ2
1(h

∗
1, τ − δj)ϕ̇j(h

∗
j , τ)ψj(h

∗
j , τ)dτ

, (8)

which will be T ∗-periodic in δj .

Remark 3. In formula (8), the nonzero denominator defines the admissible range of the phase
shift δj in the jth subsystem of system (5).

Remark 4. Theorem 1 designs the piecewise continuous system (5). Since the amplitude equa-
tions (6) are independent of σj, there exists a cycle in every smooth switchless system. The
attraction conditions (χsνs �= 0) must hold in the subsystem on the trajectories with both hs > h∗s
and hs < h∗s. Therefore, the signs of σs for these trajectories usually differ. An example of a switch
control law was provided in [10].

4. CONSERVATIVE SYSTEMS

For the set of conservative systems, the functions fs in (1) are independent of the velocities q̇s,
and each system admits an energy integral under ε = 0. The variational equations for SPMs contain
a symmetric matrix; therefore, the one-degree-of-freedom system under consideration satisfies the
equations

ψs(h
∗
s, τ + δs) = −ϕ̇s(h

∗
s, τ + δs), s = 1, . . . , n (δ1 = 0).

Consequently, νs > 0, κs < 0, s = 1, . . . , n.

The integrand in (8) is (T ∗/2)-periodic on δ and two points symmetric with respect to the fixed
set correspond to each value Kj(h

∗
j , δ

∗). In turn, these points implement one cycle.

Thus, we arrive at the following result.

Theorem 2. For the set of conservative systems with one degree of freedom that admits a T ∗-pe-
riodic SPM, the coupled system (5) has a unique attracting cycle under the conditions σsχs < 0,
s = 1, . . . , n.
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Example 1. In the coupled system

ẍ+ sinx = ε(1−Kx(hx)x
2)ẋ,

ÿ + y3/4 = σε(1 −Ky(hy , δ)x
2)ẏ

(9)

with ε = 0, the first equation describes a mathematical pendulum. Starting at 2π, the period Tx(hx)
grows monotonically with the pendulum energy hx on the family of oscillations, and the function
Kx(hx) is monotonically decreasing (see [11]). The solutions of the second equation form a family
of oscillations with the period Ty(hy) representing a decreasing function of the constant energy hy.

Indeed, the period Ty(hy) is given by

Ty(hy) = 2

y(0)∫
−y(0)

dy√
h− y4

,

where y(0) denotes the initial value of the variable y. Passing to the variable z = y/h
1/4
y yields

Ty(hy) =
2

h
1/4
y

−1∫
1

dz√
1− z4

=
a

h
1/4
y

, a = 4 ∗ 1.3 . . . ,

an explicit-form relationship between the period and the system energy.

According to the analysis above, for any h∗x and Tx(h
∗
x) > 2π, there exists a value h∗y such that

Tx(h
∗
x) = Ty(h

∗
y) (the equality of periods in (9)) with an increasing function f, i.e., h∗y = f(h∗x).

Hence, system (9) with ε = 0 admits a one-parameter family of SPMs with the parameter h∗x.
The function Kx(hx) is monotonically decreasing. Therefore, for hx = h∗x, the first equation

in (9) has an attracting cycle. By Theorem 2, the additional condition dKy(h
∗
y, δ)/dhy �= 0 leads

to an attracting cycle of the coupled system (9).

Thus, for any oscillation of the mathematical pendulum corresponding to the energy value h∗x,
there exists an energy value h∗y of the second equation in (9) such that an attracting cycle is
implemented in the coupled system. Moreover, the phases in the oscillations of the equations differ
by the desired value δ.

5. THE CASE OF A DEGENERATE FAMILY OF SPMS

Under identical phases in the oscillations of subsystems, a cycle in the coupled system exists only
if all mechanical systems, possibly except one system with a degenerate family of SPMs, contain
nondegenerate families of SPMs. This result was established in [6, Lemma 1]. In what follows, we
investigate in detail the case where one of the families is degenerate. Assume that the oscillations
in the systems are not phase-synchronized and n = 2 in system (5).

Consider the system

ẍ+ x = ε(1 −Kx(hx)x
2)ẋ,

ÿ + f(y) = εσ(1 −Ky(hy, δ)x
2)ẏ,

(10)

in which the first equation contains a degenerate family of oscillations under ε = 0 and the period
of oscillations in the second equation monotonically depends on the energy hy. The solution of the
uncoupled system is described by the formulas x = Ax cos t and y = ϕ(hy , t+ δ). On the generating
solution, we have Ax = 2/

√
Kx, and the period of oscillations 2π corresponds to the constant h∗y in

the second equation. Let us find the relationship between Ky(hy, δ) and Kx.
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For system (10), formula (8) is written as

Ky(h
∗
y, δ) = − κ

T ∗∫
0
A2

x cos
2 tϕ̇2(h∗y, t+ δ)dt

,

κ = −
T ∗∫
0

ϕ̇2(h∗y, t)dt, T ∗ = 2π.

(11)

The integral in the denominator can be transformed as follows:

1

2

T ∗∫
0

(1 + cos 2t)ϕ̇2(h∗y , t+ δ)dt =
1

2

T ∗+δ∫
δ

ϕ̇2(h∗y, τ)dτ

+
1

2

⎛⎝cos 2δ T ∗+δ∫
δ

cos 2τϕ̇2(h∗y, τ)dτ + sin 2δ

T ∗+δ∫
δ

sin 2τϕ̇2(h∗y , τ)dτ

⎞⎠ .
Consider the bracketed expression above; here, the first integral of a 2π-periodic function does not
depend on δ on the period, and the second integral is taken for an odd function (and vanishes
accordingly). Hence, we obtain a linear function of cos 2ϕ, and Ky(h

∗
y, δ) is given by an even

π-periodic function of δ.

Due to the equality Kx = 4/A2
x, formula (11) reduces to

Ky(h
∗
y, δ) =

Kx

T ∗∫
0
ϕ̇2(h∗y, t)dt

2
T ∗∫
0
(1 + cos 2δ cos 2t)ϕ̇2(h∗y, t)dt

. (12)

The derivative of (12) is an odd π-periodic function of δ. On the interval δ ∈ (−π/2, π/2), this
derivative vanishes for δ = 0.

The cycle of the coupled system (2) can be constructed using Theorem (10). The characteristic
Ky(hy, δ) is calculated for a given function ϕ(hy, t). For a mathematical pendulum, the function
Ky(hy, δ) is monotonically decreasing under δ = 0 (see [11]).

Example 2. Consider system (10) in which the function Ky(hy, δ) in the second equation is
independent of δ and coincides with Kx. Let this system be applied in the mechatronic oscillation
stabilization scheme proposed in [12]. More precisely put, the amplitude Ax at the point δ = δ∗

is selected to adjust the mode of satisfying the equality Ky(h
∗
y, δ) = Kx = 4/A2

x. As a result, we
obtain a possible scenario for the birth of a cycle described in [10]. Note that the existence of
the scenario was proved by analyzing the second equation in (10) by substituting the generating
solution of the first equation. In the mechatronic stabilization scheme, the time shift δ∗ between
the oscillations of the van der Pol oscillator and the mechanical system is given by (12).

6. THE CASE OF TWO DEGENERATE FAMILIES

In system (10), the van der Pol oscillator is used to generate signals for a mechanical system
admitting a nondegenerate family of oscillations. The system is designed to stabilize mechanical
oscillations. For Ky = Kx, the shift δ in the solutions of the equations of system (10) is given by
formula (12); see Section 5.

It seems interesting to analyze how the amplitude and phase of oscillations in the leader and
follower systems are synchronized in the cycle of the coupled system. We consider this problem for
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equal systems in Ξ, on an example of two identical linear oscillators. Then the coupled system has
the form

ẍ+ x = ε(1−Kx(hx)x
2)ẋ,

ÿ + y = εσ(1−Ky(hy, δ)x
2)ẏ,

(13)

where the first equation describes the van der Pol oscillator and the second equation becomes the
follower for this oscillator.

Under ε = 0, system (13) oscillates in each coordinate with a frequency of 1: the oscillations are
isochronous. The generating oscillations are given by

x = Ax cos t, Ax = 2/
√
Kx, y = Ay cos(t+ δ).

For the second equation in (13), we calculate κ = −
2π∫
0
A2

y sin
2 tdt = −πA2

y.

In the coupled system, Ky = Ky(hy , δ); therefore, formula (8) yields

Ky(hy , δ) = − 4κ

A2
xA

2
yπ(2− cos 2δ)

=
4

A2
x(2− cos 2δ)

=
Kx

2− cos 2δ
.

Hence, in the cycle of the coupled system, the amplitudes of oscillations in the leader and follower
systems are synchronized (Ky = Kx) only under δ = 0; phase synchronization also occurs under
δ = 0.

According to the formula Ky(hy, δ) = 2/(hy(2− cos 2δ)), the conditions for the existence of a
cycle in the coupled system (10) hold everywhere in δ. The control law σ = 1 is chosen for the
attracting cycle.

Note that the amplitudes of oscillations in the systems of the coupled system (13) are close to
linear oscillations. Therefore, the oscillations of the systems will appear to be synchronized in δ in
the cycle (operating mode) of the coupled system (13) under consideration regardless of the shift δ.

7. CONCLUSIONS

This paper has proposed an approach to aggregating a coupled system with an attracting cycle
on a given set n of reversible mechanical systems with oscillations. Within the approach, a leader
(control) system is selected to act on the other (follower) systems through one-way coupling control:
in an aggregated system, there are no links between follower systems. The coupled system oscillates
as (n− 1) independent subsystems controlled by the leader system. In addition, the oscillation of
each system may have an individual phase shift with respect to the phase of the oscillation in the
leader system.

Different control scenarios are possible for the aggregated system. If the subsystems have no
phase shift, the simultaneous control scenario is implemented for (n− 1) mechanical systems; see [6].
The conveyor scenario is implemented in the controlled coupled system when specifying a shift
change law for (n− 1) mechanical systems: for example, the maximum amplitude of oscillations in
the follower systems is achieved at different time instants. For n = 2, the leader–follower scenario
is implemented, a common one described, e.g., in [12] for a mechatronic oscillation stabilization
scheme.

The aggregation approach has been presented on an example of reversible mechanical systems in
the plane. It remains valid for a set of mechanical systems of arbitrary dimension. The constructed
coupled system represents one level of the hierarchy of a multilevel aggregated system with an
attracting cycle (for details, see [8]).
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APPENDIX

The adjoint solution can be calculated using Lemma 1.

Consider a smooth reversible mechanical system of the second order:

u̇ = U(u, v), v̇ = V (u, v), U(u,−v) = −U(u, v), V (u,−v) = V (u, v).

Let this system admit an SPM described by the functions

u = ϕ(t), v = θ(t), ϕ(−t) = ϕ(t), θ(−t) = −θ(t).

The variational equations for the SPM have the form

ẋ = a−(t)x+ a+(t)y,

ẏ = b+(t)x+ b−(t)y,
(A.1)

where a±(t), b±(t) denote even (+) and odd (–) periodic functions. They have the solution x =
ϕ̇(t), y = θ̇(t).

Lemma 1. For a given SPM, the solution of the system adjoint to (A.1) is calculated by con-
structive formulas.

Proof. Let us apply the transformation

x = ξ+(t)x̃, y = η+(t)ỹ

with even periodic functions ξ+(t) and η+(t) with nonzero means. As a result,

ξ+(t) ˙̃x+ ξ̇+(t)x̃ = a−(t)ξ+(t)x̃+ a+(t)η+(t)ỹ,

η+(t) ˙̃y + η̇+(t)ỹ = b+(t)ξ+(t)x̃+ b−(t)η+(t)ỹ.

The functions ξ+(t) and η+(t) are appropriately chosen to satisfy the equalities

ξ̇+ = a−(t)ξ+, η̇+ = b−(t)η+.

Then the transformed system

˙̃x = ã+(t)ỹ, ˙̃y = b̃+(t)x̃ (A.2)

contains no odd functions of t.

The adjoint system of
x1 = ξ1+(t)x̃1, y1 = η1+(t)ỹ1

is transformed by analogy. We obtain

˙̃x1 = −b̃+(t)ỹ1, ˙̃y1 = −ã+(t)x̃1. (A.3)

In the variables x̃1 = −ỹ and ỹ1 = x̃, the resulting system (A.3) coincides with (A.2). Hence,
its solution is given by x̃1 = −ξ+(t)−1θ̇(t), ỹ1 = η+(t)

−1ϕ̇(t). Therefore, the solution of the adjoint
system can be written as

x1 = −ξ1+(t)ξ+(t)−1θ̇(t), y1 = η1+(t)η+(t)
−1ϕ̇(t).

The proof of Lemma 1 is complete.
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Abstract—This paper proposes a method for diagnosing linear dynamic systems described by
discrete-time models with exogenous disturbances based on interval observers. Formulas are
derived to construct an interval observer producing two values of the residual as follows: if zero
is between these values, then the system has no faults to be detected by the observer. The case
where zero does not belong to the interval between these values is qualified as the occurrence
of a fault. The theoretical results are illustrated by an example.
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1. INTRODUCTION AND PROBLEM STATEMENT

This paper further develops the works [1, 2], devoted to the design of interval observers for
systems described by linear models with exogenous disturbances. The corresponding problem has
been actively studied in recent years. Overviews of the current results can be found in [3, 4]; the
solutions for various classes of systems and related applications, in [5–10]. Characteristic features
of the cited research are as follows. First, the interval observer has a dimension coinciding with that
of the original system; second, the set of admissible values of the full state vector is estimated. At
the same time, it may be of theoretical and practical interest to obtain such an estimate only for a
given linear function of the state vector. The corresponding interval observer may be considerably
simpler than the full-dimensional observer and the resulting interval may have an appreciably
smaller width.

In [11–16], interval observers were used to perform functional diagnosis. The authors [11–13, 15]
designed the observer based on the original system, which led to cumbersome constructs and com-
plicated methods for minimizing the influence of exogenous disturbances on the diagnosis process.
The paper [14] considered the diagnosis problem in a family of coupled subsystems: for each subsys-
tem, a particular interval observer of full dimension was constructed. In [16], a practical problem
was solved based on a special-form interval observer.

As is known, an adaptive threshold is traditionally used to reduce the probabilities of false
alarms and fault omissions during diagnosis. This threshold sets lower and upper bounds for the
residual in the absence of faults. Although the concept of an adaptive threshold appeared more
than 30 years ago, it has been developed for various classes of systems up to the present time; for
example, see [17, 18]. In these works, the residual was generated by a diagnostic observer whereas
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the adaptive threshold was formed separately. Such an approach leads to rather complicated
diagnostic schemes.

In contrast, due to its specifics, an interval diagnostic observer produces only two values of
the residual, which significantly simplifies the scheme. In addition, the residuals are formed so
that in the absence of faults, the values of one residual are nonpositive and those of the other are
nonnegative. In other words, if zero lies between these values, then the system has no faults to be
detected by the observer. The case where zero does not belong to the interval between these values
is qualified as the occurrence of a fault. In addition, unlike traditional adaptive threshold schemes,
the values of residuals produced by the interval observer are independent of the control and output
signals of the diagnosed system. This property also simplifies the decision process based on the
diagnosis results.

In this paper, we construct minimal-dimension interval observers for discrete time-invariant
systems described by linear dynamic models operating under exogenous disturbances in order to
solve the problems of functional diagnosis (fault detection and isolation). In [1, 2], interval observers
were used to estimate the values of a given linear function of the state vector of the original system.
In contrast to [1, 2], in accordance with the diagnosis task, we change the observer structure and
also consider several related issues: methods to maximize sensitivity to faults and isolate them.

Consider a class of systems with the linear discrete-time model

x(t+ 1) = Fx(t) +Gu(t) +Dd(t) + Lρ(t),

y(t) = Hx(t),
(1.1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rl denote the state, control, and output vectors, respectively; F , G,
H, L, and D are given constant matrices; ρ(t) ∈ Rq is an unknown bounded time-varying function
describing exogenous disturbances of the system, i.e., ρ � ρ(t) � ρ with given values ρ and ρ. In
many cases, system faults occur due to unacceptable changes in system parameters. Therefore, we
assume that the variations of the function d(t) ∈ Rp within d � d(t) � d with given values d and d
are admissible, being not treated as a fault; leaving the interval [d, d] is qualified as a fault to be
detected. As in the paper [3], for arbitrary vectors x1, x2 and matrices A1, A2, the relations x1 � x2

and A1 � A2 are understood elementwise.

2. THE MAIN RESULT

The problem under consideration will be solved using the minimal-dimension model of sys-
tem (1.1). In the general case, this model is described by the equation

x∗(t+ 1) = F∗x∗(t) +G∗u(t) + J∗y(t) +D∗d(t) + L∗ρ(t),

y∗(t) = H∗x∗(t),
(2.1)

where x∗(t) ∈ Rk and k < n denotes the model dimension; y∗ ∈ R; F∗, G∗, J∗, H∗, D∗, and L∗ are
the matrices to be determined. By assumption, the relations x∗(t) = Φx(t) and y∗(t) = R∗y(t) with
some matrices Φ and R∗ hold in the absence of faults and exogenous disturbances. The rules for
building this model are presented in Section 3.

According to [1, 2], the model matrices satisfy the conditions

ΦF = F∗Φ+ J∗H, R∗H = H∗Φ,

ΦG = G∗, ΦD = D∗, ΦL = L∗.
(2.2)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 12 2023
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As was demonstrated in [1], the matrices F∗ and H∗ can be written in the canonical form

F∗ =

⎛⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . .
0 0 0 . . . 0

⎞⎟⎟⎟⎠ , H∗ = ( 1 0 0 . . . 0 ). (2.3)

From the standpoint of the problem solved, this form seems ideal since the matrix F∗ is stable for
discrete systems and nonnegative (a necessary property to construct an interval observer) and the
matrix H∗ is nonnegative (a property simplifying the observer’s form).

The desired interval observer is constructed based on model (2.1). By analogy with [12, 13], we
find it in the form

x∗(t+ 1) = F∗x∗(t) +G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ L+
∗ ρ− L−

∗ ρ,

x∗(t+ 1) = F∗x∗(t) +G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ L+
∗ ρ− L−

∗ ρ,

y∗(t) = H∗x∗(t),

y∗(t) = H∗x∗(t),
r(t) = R∗y(t)− y∗(t),
r(t) = R∗y(t)− y∗(t),

(2.4)

where A+ = max{0, A} and A− = A+ −A for an arbitrary matrix A. Obviously, A+ � 0 and
A− � 0.

Theorem 1. If x∗(0) � x∗(0) � x∗(0), then the relation 0 ∈ [r(t), r(t)] holds for all t � 0 in the
absence of faults. The case 0 �∈ [r(t), r(t)] for some t > 0 is qualified as the occurrence of a fault.

Proof. We introduce the errors e(t) = x∗(t)− x∗(t) and e(t) = x∗(t)− x∗(t). In view of the ex-
pressions (1.1), (2.1), and (2.2), the equation for the first error can be written and transformed as
follows:

e(t+ 1) = x∗(t+ 1)− x∗(t+ 1)

= F∗x∗(t) +G∗u(t) + J∗y(t) +D∗d(t) + L∗ρ(t)

− (F∗x∗(t) +G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ L+
∗ ρ− L−

∗ ρ)

= F∗(e(t) + x∗(t))− F∗x∗(t) +D∗d(t)− (D+
∗ d−D−

∗ d)
+ L∗ρ(t)− (L+

∗ ρ− L−
∗ ρ)

= F∗e(t) +D∗d(t)− (D+
∗ d−D−

∗ d) + L∗ρ(t)− (L+
∗ ρ− L−

∗ ρ).

(2.5)

Since D∗ = D+∗ −D−∗ ,

D∗d(t)− (D+
∗ d−D−

∗ d) = D+
∗ d(t)−D−

∗ d(t)− (D+
∗ d−D−

∗ d)

= D+
∗ (d(t) − d) +D−

∗ (d− d(t)).

In the absence of faults, we have d � d(t) � d and, in addition, D+∗ � 0 and D−∗ � 0. Consequently,

D∗d(t)− (D+
∗ d−D−

∗ d) � 0.

Similar considerations are adopted to show that

L∗ρ(t)− (L+
∗ ρ− L−

∗ ρ) � 0.
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Recall that, by assumption, e(0) = x∗(0) − x∗(0) � 0 and F∗ � 0. From (2.5) it therefore follows
that e(1) � 0. By induction we establish the inequality e(t) � 0 for all t � 0. The second inequality
e(t) � 0 is proved by analogy.

Considering (2.2) and H∗ � 0, formula (2.4) implies

r(t) = R∗y(t)− y∗(t) = R∗Hx(t)−H∗x∗(t)
= H∗Φx(t)−H∗(e(t) + x∗(t))
= H∗x∗(t)−H∗(e(t) + x∗(t))
= −H∗e(t) � 0

for all t � 0. Similar considerations yield r(t) = R∗y(t)− y∗(t) � 0. The last two inequalities are
equivalent to the required result, which can be written as the implication

d(t) ∈ [d, d] ⇒ 0 ∈ [r(t), r(t)]

for all t � 0. Then, under the condition 0 �∈ [r(t), r(t)] for some t > 0, applying the negation
operation to this implication gives

0 �∈ [r(t), r(t)] ⇒ d(t) �∈ [d, d],

which corresponds to the occurrence of a fault. The maximal sensitivity to faults is ensured by
choosing appropriate matrices of the observer; see Section 3. The proof of Theorem 1 is complete.

Remark 1. In principle, the condition x∗(0)� x∗(0)� x∗(0) can be omitted: due to observer’s
stability, the requirement 0 ∈ [r(t), r(t)] will hold for all t � t0 with some finite time instant t0.

Remark 2. Since the matrix F∗ is stable by construction, the observer (2.4) is stable as well. It
seems natural to assume that the original system is also stable and the control action u(t) is finite;
in this case, the variables y(t), y∗(t), y∗(t) and the residuals r(t) and r(t) will be finite as well.

Thus, the built observer produces the interval [r(t), r(t)]. If zero belongs to this interval, the
decision about no system faults is made (see Section 1); otherwise, the occurrence of a fault is
concluded. In view of the observer’s equations (2.4), the width of the interval [r(t), r(t)] depends
on exogenous disturbances and the admissible range of the variable d(t). The smaller this width is,
the more reliably the faults will be detected.

In terms of diagnosis quality, in particular, sensitivity to faults, the best interval observer is
the one with the minimal width [r(t), r(t)]. According to (2.4), the corresponding case is when
the model has insensitivity to the disturbance, i.e., L∗ = ΦL = 0. The method for building such a
model was developed in [1, 2]. We briefly describe it below.

3. MODEL BUILDING

3.1. Main Relations

Due to the canonical form (2.3), equations (2.2) can be written as

Φ1 = R∗H, ΦiF = Φi+1 + J∗iH, i = 1, . . . , k − 1, ΦkF = J∗kH, (3.1)

where Φi and J∗i indicate the ith rows of the matrices Φ and J∗, respectively, i = 1, . . . , k, and k
is the dimension of model (2.1). These equations are reduced [1, 2] into the single one

( R∗ −J∗1 −J∗2 . . . −J∗k )V (k) = 0, (3.2)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 12 2023
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where

V (k) =

⎛⎜⎜⎜⎝
HF k

HF k−1

. . .
H

⎞⎟⎟⎟⎠ .
The condition of insensitivity to disturbances (ΦL = 0) can be represented as

( R∗ −J∗1 −J∗2 . . . −J∗k )L(k) = 0, (3.3)

where

L(k) =

⎛⎜⎜⎜⎝
HL HFL HF 2L . . . HF k−1L
0 HL HFL . . . HF k−2L
. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎞⎟⎟⎟⎠ .
Since the row ( R∗ −J∗1 −J∗2 . . . −J∗k ) satisfies (3.2), from (3.2) and (3.3) we obtain

( R∗ −J∗1 −J∗2 . . . −J∗k )(V (k) L(k)) = 0. (3.4)

Equation (3.4) has a nontrivial solution if

rank (V (k) L(k)) < l(k + 1).

This condition serves to determine the minimal dimension k � 1 under which equation (3.4) is
solvable. Then, it is necessary to find the solution of (3.4), obtain the rows of the matrix Φ
from (3.1), and let G∗ := ΦG and D∗ := ΦD.

3.2. Maximizing Sensitivity to Faults

If equation (3.4) with the minimal dimension k has several solutions, it is possible to choose the
one with the maximal contribution of faults to the observer (consequently, the maximal sensitivity
to faults, estimated by the norm of the matrix D∗ = ΦD). This can be done more efficiently as
follows. By analogy with the analysis of the contribution made by exogenous disturbances, we
introduce the matrix

D(k) =

⎛⎜⎜⎜⎝
HD HFD HF 2D . . . HF k−1D
0 HD HFD . . . HF k−2D
. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎞⎟⎟⎟⎠ .
Due to (3.1), it can be demonstrated that

‖D∗‖ = ‖(R∗ − J1 − J2 . . . − Jk)D
(k)‖.

Then the contribution of faults is maximized by maximizing the norm

‖(R∗ − J1 − J2 . . . − Jk)D
(k)‖

subject to condition (3.4).

Here, the idea is to find the minimal dimension k under which equation (3.4) has at least two
linearly independent solutions of the form ( R∗ −J∗1 −J∗2 . . . −J∗k ). All these solutions are
combined in a matrix W so that each row represents some solution of equation (3.4). According to
the aforesaid, another solution is an arbitrary linear combination of the rows of this matrix with
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a weight vector w = (w1, . . . , wN ), where N specifies the number of rows in the matrix W . The
problem is to determine the vector w maximizing the norm ‖wWD(k)‖.
To solve this problem, we calculate the singular-value decomposition of the matrix productWD(k).

In other words, the matrix WD(k) is represented as

WD(k) = UDΣDVD,

where UD and VD are orthogonal matrices and the matrix ΣD has the form

ΣD = (diag(σ1, . . . , σs) 0) or ΣD =

(
diag(σ1, . . . , σs)

0

)

depending on the number of rows and columns of the matrix WD(k), where s = min(N, kp) and
0 � σ1 � . . . � σs denote the singular values of the matrix WD(k) [19, 20]. Choosing the ith trans-
posed column of the matrix UD as the weight vector w = (w1, . . . , wN ) yields ‖wWD(k)‖ = σi
[19, 20]. In view of the considerations above, the appropriate vector w = (w1, . . . , wN ) is the
transposed column of the matrix UD that corresponds to the maximal singular value and
(R − J∗1 − J∗2 . . . − J∗k) := wW . Finally, it is necessary to obtain the rows of the matrix Φ
from (3.1) and let G∗ := ΦG and D∗ := ΦD.

Note that this solution is optimal for the chosen dimension k; increasing the dimen-
sion further may give a better solution in terms of the maximum norm of the matrix
(R − J∗1 − J∗2 . . . − J∗k)D(k).

3.3. Minimizing the Contribution of Exogenous Disturbances

If for all k < n equation (3.4) is unsolvable, we cannot build the model insensitive to exogenous
disturbances. Then it is necessary to employ robust methods minimizing the contribution of exoge-
nous disturbances to the model [19]. Based on the analysis above, this problem obviously reduces
to minimizing the norm ‖(R∗ − J1 − J2 . . . − Jk)L

(k)‖ subject to condition (3.2).

By analogy with the considerations above, the idea is to find the minimal dimension k
under which equation (3.2) has at least two linearly independent solutions of the form
( R∗ −J∗1 −J∗2 . . . −J∗k ). All these M solutions, are combined in a matrix V so that each
row represents some solution of equation (3.2). The problem is to determine a weight vector
v = (v1, . . . , vM ) mimizing the norm ‖vV L(k)‖.

Next, we calculate the singular-value decomposition of the matrix product V L(k), i.e.,
V L(k) = ULΣLVL, and take the first transposed column of the matrix UL as the weight vec-
tor v = (v1, . . . , vM ). According to the aforesaid, the linear combination of the solutions corre-
sponding to the rows of the matrix V with the weights v1, . . . , vM gives the optimal solution
( R∗ −J∗1 −J∗2 . . . −J∗k ) = vV. Finally, it is necessary to obtain the rows of the matrix Φ
from (3.1) and let G∗ := ΦG and D∗ := ΦD. Thus, the robust model has been designed.

Other methods for building robust models, particularly the ones considering the contribution of
faults, were discussed in [19].

4. ISOLATING FAULTS

The observer constructed above allows detecting the set of faults defined by the condition
D∗ := ΦD �= 0. To isolate faults, i.e., determine where they occur, it is necessary to design a
bank of observers in which each observer will be sensitive to a particular set of faults and insensi-
tive to the others. Such a bank can be constructed as follows. Let the set of possible faults in (1.1)
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be defined by the sum
∑s

i=1Didi(t) instead of the term Dd(t). A model insensitive to the first fault
is built by solving the equation

( R∗ −J∗1 −J∗2 . . . −J∗k )(V (k) D
(k)
1 ) = 0, (4.1)

where

D
(k)
1 =

⎛⎜⎜⎜⎝
HD1 HFD1 HF 2D1 . . . HF k−1D1

0 HD1 HFD1 . . . HF k−2D1

. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎞⎟⎟⎟⎠ .
Its minimal dimension k is determined starting from k = 1. Next, the rows of the matrix Φ are
obtained, G∗ := ΦG is assigned, and an interval observer is constructed according to the above
rules. It will be insensitive to several other faults, particularly to those for which Dj = D1N with
some matrix N, and sensitive to the faults for which ΦDj �= 0. Choosing the first fault among them,
we build a model and an observer insensitive to it by analogy. The procedure continues until the
consideration of all faults.

The information about the sensitivity and insensitivity of each observer is reflected by the
syndrome matrix S, where the rows correspond to observers and the columns to faults. In this
matrix, S(i, j) = 0 if the ith observer is insensitive to the jth fault, and S(i, j) = 1 otherwise. The
syndrome matrix may have two or more identical columns, meaning that some system faults are
indistinguishable from each other by the described procedure. Therefore, it is necessary to apply
more sophisticated approaches.

For fault isolation, the most convenient matrices are

S1 =

⎛⎜⎜⎜⎝
1 0 0 . . . 0
0 1 0 . . . 0
. . . . . . . . . . . .
0 0 0 . . . 1

⎞⎟⎟⎟⎠ , S2 =

⎛⎜⎜⎜⎝
0 1 1 . . . 1
1 0 1 . . . 1
. . . . . . . . . . . .
1 1 1 . . . 0

⎞⎟⎟⎟⎠ .

The first matrix allows isolating faults of arbitrary multiplicity, but it is rarely implementable in
applications due to the very strict requirement of insensitivity to many faults. From this point of
view, the second matrix seems more practical, but it is not always implementable as well. The
matter is that the elements of the matrix S may have certain relations due to the peculiarities and
faults of system (1.1), which make their choice nonarbitrary.

5. A PRACTICAL EXAMPLE

Consider an electric drive whose open circuit is described by the following model with viscous
friction:

x1(t+ 1) = γ1x2(t) + x1(t),

x2(t+ 1) = γ2x2(t) + γ3x3(t) + ρ(t),

x3(t+ 1) = γ4x2(t) + γ5x3(t) + γ6u(t) + d(t),

y1(t) = x2(t), y2(t) = x3(t).

(5.1)

Here, x1 is the rotation angle of the gearbox output shaft, x2 is the angular velocity of the electric
motor shaft, and x3 is the electric motor current. The coefficients γ1–γ6 depend on the drive
parameters and the sampling interval; in particular, viscous friction is specified by the coefficient γ2.
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These coefficients are given by

γ1 =
Δt

ir
, γ2 = −Δtkb

J
+ 1, γ3 =

Δtkm
J

,

γ4 = −Δtkω
Lm

, γ5 = −ΔtRm

Lm
+ 1, γ6 =

Δtku
Lm

with the following notations: Δt is the sampling interval; ir is is the gear ratio; kb is the viscous
friction coefficient; km is the torque coefficient; J is the moment of inertia of the motor rotor and
rotating parts of the gearbox reduced to this rotor; kω is the counter-emf coefficient; Rm is the
rated active resistance of the armature circuit; Lm is the armature circuit inductance; ku is the
power amplifier gain; finally, u(t) is the drive input voltage.

The electric drive is described by the matrices

F =

⎛⎜⎝ 1 γ1 0
0 γ2 γ3
0 γ4 γ5

⎞⎟⎠, G=

⎛⎜⎝ 0
0
γ5

⎞⎟⎠, H =

(
1 0 0
0 0 1

)
, D=

⎛⎜⎝ 0
0
1

⎞⎟⎠, L=

⎛⎜⎝ 0
1
0

⎞⎟⎠.
We build a model insensitive to the disturbance. Letting k = 1, we calculate the matrices V (1)

and B(1) :

V (1) =

⎛⎜⎜⎜⎝
1 γ1 0
0 γ4 γ5
1 0 0
0 0 1

⎞⎟⎟⎟⎠ , B(1) =

⎛⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎠ .
Since rank (V (1), B(1)) = 3 < 2(1 + 1) = 4, equation (3.4) has a solution with the matrices

R∗ = (γ4 − γ1), J∗ = (γ4 − γ1γ5).

As a result, Φ = (γ4 0 − γ1), G∗ = −γ1γ6, and D∗ = −γ1; model (2.1) takes the form

x∗(t+ 1) = γ4y1(t)− γ1γ5y2(t)− γ1γ6u(t)− d(t),

y∗(t) = x∗(t),
(5.2)

where x∗ = γ4x1 − γ1x3. Obviously, D+∗ = 0 and D−∗ = γ1.

According to (2.4) and (5.2), the interval observer is described by the equations

x∗(t+ 1) = γ4y1(t)− γ1γ5y2(t)− γ1γ6u(t)− γ1d,

x∗(t+ 1) = γ4y1(t)− γ1γ5y2(t)− γ1γ6u(t)− γ1d,

y∗(t) = x∗(t), y∗(t) = x∗(t),

r(t) = γ4y1 − γ1y3 − y∗(t), r(t) = γ4y1 − γ1y3 − y∗(t).

For the sake of simplicity in simulation, we choose γ1 = γ3 = γ6 = 1, γ2 = γ4 = γ5 = −1, and
u(t) = 2 + sin(t); the disturbance ρ(t) is represented by a random variable with the uniform dis-
tribution on the interval [−0.2, 0.2]; finally, the admissible variations of the function d(t) belong to
the interval [d, d] = [−0.05, 0.05]. Figures 1 and 2 show the simulation results for the observer with
the initial conditions x1(0) = x2(0) = x3(0) = 0, x∗(0) = −0.2, and x∗(0) = 0.2.

In Fig. 1, d(t) = 0 for t < 40 s, and d(t) = 0.04 for t � 40 s. Since the value d(t) = 0.04 lies
within the admissible interval, we have 0 ∈ [d, d], which is qualified as no faults. In Fig. 2, the
function d(t) is represented by a random variable with the uniform distribution on the interval
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Fig. 1. The residuals r and r without faults.

Fig. 2. The residuals r and r under fault occurrence.

[−0.01, 0.01] for t < 40 s, and d(t) = 0.06 for t � 40 s. Now, 0 �∈ [r(t), r(t)] for t > 40 s, and the
occurrence of a fault is concluded.

According to Fig. 2, the random variable d(t) affects the behavior of the functions r(t) and r(t).
The disturbance ρ(t) is also represented by a random variable, but the functions r(t) and r(t) in
Fig. 1 are constant (except for a jump due to the change in the function d(t)). Therefore, the
disturbance has no impact on the result.

6. CONCLUSIONS

This paper has considered interval observer-based functional diagnosis for linear dynamic sys-
tems described by discrete-time models with exogenous disturbances. Formulas have been derived
to construct an interval observer that is insensitive to disturbances and sensitive to a limited extent.
Such an observer produces two values of the residual as follows: if zero is between these values,
then the system has no faults to be detected by the observer. The case where zero does not belong
to the interval between these values is qualified as the occurrence of a fault. The theoretical results
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have been illustrated by an example of observer design for a real technical system. The simulation
results of this example have confirmed the correctness of theoretical constructs related to fault
detection.
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