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Abstract—A state-feedback adaptive control system is proposed for a class of linear systems
in the controllable canonical form with time-varying unknown parameters described by known
nonstationary exosystems with unknown initial conditions. The solution ensures global expo-
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The obtained theoretical results are validated via mathematical modeling.

Keywords : adaptive control, time-varying parameters, parametric error, finite excitation, iden-
tification, exponential stability

DOI: 10.25728/arcRAS.2024.40.64.001

1. INTRODUCTION

Considering plants with time-invariant parameters, classical algorithms of the model reference
adaptive control guarantee asymptotic stability of the tracking error (the difference between the
plant and reference model state vectors) [1]. However, as far as practical scenarios are concerned,
real physical systems are often described by models with time-varying parameters. Under these
conditions, conventional solutions face difficulties caused by the need to compensate for a term in
the derivative of the Lyapunov function that is proportional to the unknown parameters change
rate [1, p. 552].

If the unknown time-varying parameters converge exponentially to a constant value, then asymp-
totic stability of the tracking error is still ensured [2, p. 339]. In case the unknown parameters
change their values arbitrarily, and the restrictive condition of the regressor persistent excitation
is met, then the baseline solutions guarantee the boundedness of all signals and the convergence
of the tracking error to a compact set. If the above-mentioned condition is not satisfied, then the
application of robust modifications of the basic adaptive laws allows one to ensure similar properties
for the closed-loop system [1, 2].

Further the existing methods to improve the properties of the baseline solutions are reviewed.

In [3, 4] the method of congelation of variables is proposed that is capable of reduction of the time-
varying parameters estimation problem to the one of their mean identification. The upper bound
of the parameters variance is assumed to be known, and the control law is designed using static
nonlinear damping. In this scheme, the adaptive law compensates for the unknown parameters
mean, whereas the nonlinear damping is responsible for their variance rejection. Such a solution
guarantees asymptotic stability of the tracking error and boundedness of all signals of the closed-
loop system. The disadvantage of the above-described method is that the power functions from the
plant state (regressor) are used to form the control signal [5, pp. 222–223]. As it is highlighted in [6],
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EXPONENTIALLY STABLE ADAPTIVE CONTROL. III. 1381

another disadvantage of such method is that the parametric uncertainty represented as θ(t)ϕ (x(t))
with ϕ (0) 6= 0 can not be compensated.

In [7–9] an approach based on the application of the composite adaptive laws is proposed, in
which the parameters are adjusted using both tracking and prediction errors. Compared to the
basic solutions [1, 2], under the same assumptions (the regressor is persistently exciting and the
robust modifications are used) the composite laws ensure convergence of the tracking error to a
compact set of a smaller size. In contrast to the method of congelation of variables [3, 4], the
asymptotic stability is not guaranteed. A detailed review of some composite laws for the case of
the time-varying parameters is given in the introduction of [10].

In [11] a simple scheme to adjust the geometric mean pole of a closed-loop system is proposed,
which guarantees asymptotic stability of the tracking error. The disadvantage of the solution is
the need to know the plant input matrix. In [12] the adaptive law with astatism of the first order
is developed, which extends the applicability of the basic adaptive laws to a class of systems with
linearly varying unknown parameters. In [13–15] a scheme of robust control of nonstationary linear
systems represented as transfer functions is proposed. A disadvantage of the approach is the need
to know the plant control direction and upper bounds for all unknown time-varying parameters of
the system.

The above discussed approaches [3–15] do not consider a priori information about the structure
of a function according to which the system changes its parameters. However, as is known [16],
taking such information into account can significantly improve the properties of a closed-loop
system. Recently, in [17, 18] a state observer of time-varying systems based on a parametric
identification has been proposed. The system parameters are described by known nonstationary
exosystems with unknown initial conditions. The problem of the system state reconstruction is
reduced to the identification of the initial conditions of both plant and exosystems. If the regressor
finite excitation condition (observability of the system over a finite time interval) is satisfied, then
exponential or finite-time convergence of the parametric and state observation errors is ensured.

Based on the results of [17, 18], in this study it is proposed to reduce the control problem to the
estimation of the initial conditions of the exosystems used to generate the system parameters.

A class of linear completely controllable systems with time-varying parameters described by
known nonstationary exosystems with unknown initial conditions is considered. The difference be-
tween ideal and actual control signals is represented as a linear regression equation with an unknown
regressor with respect to the unknown initial conditions of the exosystems. Then, in accordance
with the results from [18] and using the measurable state and control signal, a measurable regression
equation,1 which scalar regressor is bounded away from zero, is derived with respect to the initial
conditions of the exosystems. Using the results of the first part [19] of this paper series, an adaptive
law is derived on the basis of such regression, which, in contrast to [3–15], guarantees exponential
convergence of the tracking error to zero if the regressor finite excitation (FE) requirement is met.

In addition to FE, the proposed extension of the results from [19] to a class of systems with
time-varying parameters also requires:

— the lower and upper bounds of the absolute value of the high-frequency gain to be known;

— the sign of the high-frequency gain to be constant;

— application of the projection operator, which prevents division by zero in the control law.

Compared to [3–11, 13–15], the proposed approach requires knowledge of the state and output
matrices of the nonstationary exosystems, and hence, of the physical nature of the processes that
cause the system parameters variation.

1 A measurable regression equation means that its regressor and regressand are measurable or can be computed,
while its parameters are unknown.
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1382 GLUSHCHENKO, LASTOCHKIN

Main definitions

To prove theorem and propositions, the regressor finite excitation definition and corollary of the
Kalman–Yakubovich–Popov (KYP) lemma [1, 2] are used further .

Definition 1. A regressor ω(t) is finitely exciting ω(t)∈FE over [t+r ; te] if there exists t+r > 0,
te > t+r and α such that the following inequality holds

te∫

t+r

ω (τ)ωT (τ) dτ > αIn×n, (1.1)

where α > 0 is an excitation level, In×n stands for an identity matrix.

Corollary 1. For any matrix D > 0, a controllable pair (A, B) with B ∈R
n×m, a Hurwitz matrix

A∈R
n×n there exist matrices P = PT > 0, Q∈R

n×m, K ∈R
m×m and a number µ > 0 such that

ATP + PA = −QQT − µP, PB = QK,

KTK = D +DT.
(1.2)

2. PROBLEM STATEMENT

A class of continuous linear time-varying systems is considered2:

∀t > t+0 ẋ(t) = A(t)x(t) +B(t)u(t), x
(

t+0

)

= x0,

A(t) = A0 + e1ϑ
T(t), B(t) = e1β(t),

A0 =

[

0(n−1)×1 In−1

01×n

]

, e1 =

[

0(n−1)×1

1

]

,

(2.1)

where x(t)∈R
n is a system state with unknown initial conditions x0, u(t)∈R stands for a con-

trol signal, A0 ∈R
n×n denotes a known state matrix, B(t)∈R

n, ϑ(t)∈R
n are unknown vectors,

t+0 stands for a known initial time instant. The pair (A(t), B(t)) is completely controllable for all
t > t+0 in a sense of criterion from [20].

The following assumptions are adopted for the unknown parameters of the system (2.1).

Assumption 1. The vectors ϑ(t), B(t) are bounded, continuous and formed by time-varying
exosystems3:







ẋϑ(t) = Aϑ(t)xϑ(t), xϑ
(

t+0

)

= xϑ0
,

ϑ(t) = hϑxϑ(t),






ẋB(t) = AB(t)xB(t), xB
(

t+0

)

= xB0
,

B(t) = hBxB(t),

(2.2)

where xϑ(t)∈R
nϑ , xB(t)∈R

nB are exosystems state with unknown initial conditions xϑ
(

t+0

)

,

xB
(

t+0

)

, hϑ ∈R
n×nϑ , hB ∈R

n×nB ; Aϑ(t)∈R
nϑ×nϑ , AB(t)∈R

nB×nB denote known vectors and
matrices.

Assumption 2. Lower βmin > 0 and upper βmax > βmin bounds are known for |β(t)|.
2 The obtained results can be generalized to MIMO systems in case if the structures of matrices A(t)∈R

n×n and
B(t)∈R

n×m are known.
3 In general case, the matrices Aϑ(t), AB(t) can depend on the system state x(t) in a nonlinear fashion.
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Assumption 3. The sign of the high-frequency gain β(t) is constant but unknown (sgn(β(t)) =
const).

The required control quality for a closed-loop system with the control signal u(t) and plant (2.1)
is defined using the time-invariant reference model:

∀t > t+0 ẋref (t) = Arefxref (t) +Brefr(t), xref
(

t+0

)

= x0ref , (2.3)

where xref (t)∈R
n is a reference model state with known initial conditions x0ref , r(t)∈R stands

for a reference signal, Aref ∈R
n×n denotes a Hurwitz state matrix of the reference model, Bref ∈R

n

is a reference model control input vector.

Having the plant (2.1), reference model (2.3) and a controllable pair (A(t), B(t)), if Assumption 3
is met, then it is assumed that the matching conditions are satisfied.

Assumption 4. There exists a matrix Kx(t) = Aref −A(t)∈R
n×n and a vector Kr(t) =

[

BT(t)B(t)
]−1

BT(t)∈R
1×n such that the following holds

A(t) +B(t)Kr(t)Kx(t) = Aref , B(t)Kr(t)Bref = Bref . (2.4)

Considering Assumption 2, the error equation between the plant (2.1) and the reference
model (2.3) is written as

ėref (t) = Areferef (t) +B(t)u(t)− (Aref −A(t)) x(t)−Brefr(t)

= Areferef (t) +B(t) (u(t)− u∗(t)) ,
(2.5)

where eref (t) = x(t)− xref (t), u∗(t) = Kr(t) (Kx(t)x(t) +Brefr(t)) .

The aim is to derive a control law u(t) that ensures achievement of the following goal:

Φ(t)∈FE ⇒ lim
t→∞

‖eref (t)‖ = 0 (exp) , (2.6)

where Φ(t) is some generalized vector of measurable signals.

Remark 1. Assumption 1 is to single out a group of systems, for which the problem of exponen-
tially stable control (2.6) is stated and solved in this paper, from the general class of linear sys-
tems with time-varying parameters. The proposed solution uses information about βmax > βmin > 0,
which is required by Assumption 2. Mathematical modeling indicates that one can choose βmax → ∞,
βmin → 0, which somewhat relaxes the strictness of this condition. Assumption 3 guarantees the
continuity of the coefficients Kx(t), Kr(t) of the control law u∗(t). Assumption 4 implies that the
respective matrices of the reference model (2.3) and the plant (2.1) have the same structure.

Remark 2. Systems (2.1) with matched parametric uncertainty (2.4) are quite widespread, as far
as practical scenarios are concerned. For example, the Euler angles dynamics equations of a solid
body under the assumption of its symmetry are represented as a second-order system with matched
uncertainty. Another good example of a control problem with matched uncertainty is the control of
manipulator coordinates using the Euler–Lagrange formalism.

3. MAIN RESULT

In Subsection 3.1 the stated problem of exponentially stable control (2.6) is reduced to the one of
identification of the initial conditions xB0

, xϑ0
. In subsection 3.2 a regression equation with respect

to xB0
, xϑ0

is derived on the basis of the measurable signals, and an adaptive law is introduced
that allows one to achieve the goal (2.6).
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3.1. Control Law Parametrization

The control law u∗(t) is to be written via the plant measurable state (2.1), (2.2) and unknown
parameters xB0

, xϑ0
. For this equation (2.2) is solved:

ϑ(t) = hϑΦϑ(t)xϑ0
,

B(t) = hBΦB(t)xB0
,

(3.1.1)

where, if Assumptions 2 and 3 are met, the following inequality holds

0 < β2min 6 xTB0
G(t)xB0

6 λmax (G(t)) ‖xB0
‖2,

G(t) = ΦT
B(t)h

T
BhBΦB(t),

(3.1.2)

and the fundamental matrices Φϑ(t) and ΦB(t) are measurable and defined as

Φ̇ϑ(t) = Aϑ(t)Φϑ(t), Φϑ

(

t+0

)

= Inϑ
,

Φ̇B(t) = AB(t)ΦB(t), ΦB

(

t+0

)

= InB
.

Considering (2.4) and (3.1.1), the ideal control law u∗(t) is rewritten in the required form

u∗(t) = Kr(t) (Kx(t)x(t) +Brefr(t))

=
xTB0

ΦT
B(t)h

T
B

xTB0
ΦT
B(t)h

T
BhBΦB(t)xB0

(

(Aref −A0)x(t) − e1ϑ
T(t)x(t) +Brefr(t)

)

=
xTB0

ΦT
B(t)h

T
B

F (t)
e1
(

eT1 (Aref −A0)x(t)− xTϑ0
ΦT
ϑ (t)h

T
ϑx(t) + eT1Brefr(t)

)

,

(3.1.3)

where F (t) = xTB0
G(t)xB0

> 0.

As according to (2.5) the parameters xB0
and xϑ0

are unknown, then equation (3.1.3) motivates
to introduce the control law with the adjustable parameters:

u(t) =
x̂TB0

(t)ΦT
B(t)h

T
B

F̂ (t)
e1
(

eT1 (Aref −A0) x(t)−x̂Tϑ0
(t)ΦT

ϑ (t)h
T
ϑx(t) + eT1Brefr(t)

)

, (3.1.4)

where F̂ (t) = x̂TB0
(t)G(t)x̂B0

(t).

Proposition 1. The error u(t)− u∗(t) between the actual (3.1.4) and ideal (3.1.3) control signals
is written as

u(t)− u∗(t) = θ̃T(t)ω(t), (3.1.5)

where θ̃(t) =
[

x̃Tϑ0
(t) x̃TB0

(t)
]T

∈ R
nϑ+nB is a parametric error, ω(t) ∈ R

nϑ+nB stands for an un-

measurable regressor.

Proof of Proposition 1 and functional definition of the regressor ω(t) are given in Appendix.

Having substituted (3.1.5) into (2.5), it is obtained that:

ėref (t) = Areferef (t) +B(t)θ̃T(t)ω(t). (3.1.6)

Then, according to the first paper [19] in this series, the following transformations are to be
defined

Φ(t) = F1 (t, x(t), u(t),Φϑ(t),ΦB(t)) , z(t) = F2 (x(t)) ,

˙̂
θ(t) = G (Φ(t), z(t)) ,
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which together ensure that the goal of exponentially stable control in the augmented tracking error
space is achieved:

Φ(t)∈FE ⇒ lim
t→∞

‖ξ(t)‖ = 0 (exp) , (3.1.7)

where ξ(t) =
[

eTref (t) θ̃T(t)
]T

is the augmented tracking error.

3.2. Adaptive Law Design

The next aim is to derive the regression equation with respect to the unknown time-invariant
parameters xB0

and xϑ0
of the ideal control law (3.1.3). The result of such parametrization is

represented as the following proposition.

Proposition 2. Using (i) the states of the set of filters (AK ∈ R
n×n is a Hurwitz matrix )

˙̄x(t) = AK x̄(t)−AKx(t), x̄
(

t+0

)

= 0n,

ϕ̇(t) = AKϕ(t) + e1x
T(t)hϑΦϑ(t), ϕ(t

+
0 ) = 0n×nϑ

,

ψ̇(t) = AKψ(t) + hBΦB(t)u(t), ψ
(

t+0

)

= 0n×nB
,

υ̇(t) = AKυ(t) +A0x(t), υ
(

t+0

)

= 0n,

AK =

[

K ∈R
n

I(n−1)×(n−1)

01×(n−1)

]

, (3.2.1)

(ii) normalization procedures

z(t): =
eT1 (x(t)− x̄(t)− υ(t))

1 + ΦT(t)Φ(t)
ΨT(t): =

ΦT(t)

1 + ΦT(t)Φ(t)
,

ΦT(t): =
[

eT1 e
AK(t−t+

0 ) eT1 ϕ(t) eT1 ψ(t)
]

,

(3.2.2)

(iii) dynamic extension

∆̇(t) = e−σ(t−t+
0 )Ψ(t)ΨT(t), ∆

(

t+0

)

= 0(nϑ+nB+n)×(nϑ+nB+n), (3.2.3a)

ẏ(t) = e−σ(t−t+
0 )Ψ(t)z(t), y

(

t+0

)

= 0(nϑ+nB+n) (3.2.3b)

(iv) and mixing
Y (t): = adj {∆(t)} y(t), Ω(t): = det {∆(t)} , (3.2.3c)

the following regression equation with respect to the parameters xB0
and xϑ0

is obtained :

Υ(t) := LY (t) = Ω (Φ(t)) θ, L =
[

0(nϑ+nB)×n I(nϑ+nB)×(nϑ+nB)

]

, (3.2.4)

where, if Φ(t)∈FE, then ∀t > te it holds that ΩUB(t) > Ω(t) > ΩLB > 0.

Proof of Proposition 2 is postponed to Appendix.

If ω(t) is measurable, then, using equation (3.2.4) and the results of Theorem 1 from [19], the
adaptive law can be derived, which ensures that the goal (3.1.7) is achieved. The following theorem
is to obtain the adaptive law, which ensures (3.1.7) in case ω(t) is unmeasurable.

Theorem 1. Let Assumptions 1–4 be met and Φ(t)∈FE, then the adaptive law

˙̂
θ(t) = −γ(t)Ω(t)

(

Ω(t)θ̂(t)−Υ(t)
)

= −γ(t)Ω2(t)θ̃(t), θ̂
(

t+0

)

= θ̂0,

γ(t) =







0, if Ω(t) < ρ∈ (0; ΩLB] ,

γ0λmax

(

ω̂(t)ω̂T(t)
)

+ γ1

Ω2(t)
otherwise

(3.2.5)
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1386 GLUSHCHENKO, LASTOCHKIN

in case γ0 > 0, γ1 > 0 ensures the following:

1)
∣
∣
∣θ̃i (ta)

∣
∣
∣ 6

∣
∣
∣θ̃i (tb)

∣
∣
∣ ∀ta > tb;

2)







sgn
(

V T
1 (t)x̂B0

(

t+0

))

= sgn
(

V T
1 (t)xB0

)

∣
∣
∣V T

1 (t)x̂B0

(

t+0

)∣
∣
∣ >

∣
∣
∣V T

1 (t)xB0

∣
∣
∣







⇒ F̂ (t) > 0;

3) ∀t > t+0 boundedness of ξ(t)∈L∞;

4) exponential convergence of ξ(t) to zero for all t > te.

Proof of theorem and definitions of V1(t), ω̂(t) are presented in Appendix.

In case the conditions of the second statement of theorem are not met, then a division by zero
may occur in the control law (3.1.4). That is why, considering a practical scenario, the law (3.1.4)
should be augmented with the projection operator:

u(t) =
x̂TB0

(t)ΦT
B(t)h

T
B

F̂prj(t)
e1
(

eT1 (Aref −A0)x(t)− x̂Tϑ0
(t)ΦT

ϑ (t)h
T
ϑx(t) + eT1 Brefr(t)

)

,

F̂prj(t): =







x̂TB0
(t)G(t)x̂B0

(t), if x̂TB0
(t)G(t)x̂B0

(t) > β2min > 0,

β2min otherwise.

(3.2.6)

The proposed transformations F1 (.) and F2 (.) are described by (3.2.1), (3.2.2), and G (.) — by
(3.2.3)–(3.2.5), respectively. In general, the designed adaptive control system includes the control
law (3.1.4), procedures of the measurable signals processing (3.2.1)–(3.2.4) and the adaptive law
(3.2.5). The filtering (3.2.1) allows one, using the measurable signals x(t), u(t), Φϑ(t), ΦB(t), to
obtain the static regression equation with respect to the unknown parameters xB0

, xϑ0
, x0. The

normalization (3.2.2) guarantees that the regressor Ψ(t) is bounded, which, owing to Proposition 1
from [19], is sufficient to state that Ω(t) is upper bounded. The procedures of extension and mixing
(3.2.3) are used to transform the vector regressor Ψ(t), first, into a matrix one ∆(t), and then —
into a scalar one Ω(t). The division by Ω2(t) used in the adaptive law (3.2.5) is a safe operation as
Ω(t) > ΩLB > 0, and in case of proper choice of ρ it allows one to ensure the convergence of θ̃(t) to

zero with the rate defined as γ0λmax

(

ω̂(t)ω̂T(t)
)

+ γ1.

According to the results of theorem, unlike most known approaches [3–15] to control linear sys-
tems with time-varying parameters, the proposed system ensures exponentially stable control (2.6).

Remark 3. The application of the projection operator (3.2.6) is a classical and well-known tool
to avoid singularity in adaptive control schemes (see, for example, [1, p. 400]). In case conditions
from the second statement of theorem are met, the choice βmin → 0 guarantees that there are no
switches in (3.2.6). Otherwise, the choice βmin → 0 ensures that the number of switches is finite.

Remark 4. Over
[

t+0 ; te
]

or when Φ(t) /∈ FE, the loop of adjustment (3.2.5) of the control law

(3.1.4) parameters is open, and in case of arbitrary choice of the initial conditions θ̂
(

t+0

)

the control

quality can be arbitrarily poor up to loss of stability. Therefore, in practice, for the proposed adaptive
system:

i) the choice of the initial conditions θ̂
(

t+0

)

should be made using robust control techniques to

ensure that the following system is asymptotically stable

ẋ(t) =
(

A(t) +B(t)K̂r(t)K̂x(t)
)

x(t) when
˙̂
θ(t) ≡ 0 for all t > t+0 ,

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 11 2023
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ii) the control law (3.1.4) should be augmented with some robust term, which guarantees the
boundedness of the error ξ(t) and acceptable control quality.

For example, a) in case sgn (β(t)) and bounds βmin, βmax are known, the following control law
can be applied

u(t) = {(3.1.4) , (3.2.6)} − γ3 sgn (β(t)) eref (t)Pe1ω̂(t)ω̂
T(t), γ3 > 0

(see Lemma 2.2 from [5]), b) if sgn (β(t)) is unknown, but βmin, βmax are known, then the law with
the damping and Nussbaum function [21] can be used:

u(t) = {(3.1.4) , (3.2.6)} − γ3N (w(t)) eTref (t)Pe1ω̂(t)ω̂
T(t), γ3 > 0,

N (w(t)) = w2(t)cos (w(t)) ,

ẇ(t) = γ3γ4e
T
ref (t)Pe1e

T
1 Peref (t)ω̂(t)ω̂

T(t), γ4 > 0.

4. NUMERICAL EXPERIMENTS

In Matlab/Simulink the numerical experiments with the proposed adaptive control system have
been conducted for cases when the conditions of the second statement of theorem are met and
violated. The simulation was done using numerical integration by the explicit Euler method with
a constant discretization step of τs = 10−4 s.

4.1. sgn
(

V T
1 (t)x̂B0

(

t+0

))

= sgn
(

V T
1 (t)xB0

)

and
∣
∣
∣V T

1 (t)x̂B0

(

t+0

)∣
∣
∣ >

∣
∣
∣V T

1 (t)xB0

∣
∣
∣

The matrices of the plant (2.1) were defined as follows for all t > 0 :

A(t) =

[

0 1

a1sin (a2t) a4e
a3t + a5

(
1− ea3t

)

]

,

B(t) =

[

0

b1cos (b2t) + b4e
b3t + b5

]

, x
(

t+0

)

=

[

−1
1

]

,

(4.1.1)

where a2 =1, a3 = b3 = −0.25, b2 =
√
12 are known constants, a1 = −10, a4 = 1, a5 = 7, b1 = 0.25,

b4 = −2, b5 = −4 denotes unknown constants.

Then the matrices and exosystem (2.2) initial conditions took the form:

Aϑ(t) =








0 1 0 0

−a22 0 0 0

0 0 a3 0

0 0 0 0







, xϑ0

=








−a1a2
0

a4 − a5
a5







, hϑ =

[

1 0 0 0
0 0 1 1

]

,

AB(t) =








0 1 0 0

−b22 0 0 0

0 0 0 0

0 0 0 b3







, xB0

=








0
b1
b5
b4







, hB =

[

0 0 0 0
0 1 1 1

]

.

(4.1.2)
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Fig. 1. Behavior of (a) V T
1 (t)x̂B0

(
t+0
)
and V T

1 (t)xB0
, (b) F̂ (t) and F (t).

Fig. 2. Behavior of (a) x(t) and xref (t), (b) u
∗(t) and u(t).

The matrices of the reference model (2.3), filters parameters (3.2.1), (3.2.3) and some parameters
of the adaptive law (3.2.5) were picked as:

Aref =

[

0 1
−8 −4

]

, Bref =

[

0
8

]

, AK =

[

−20 1
−100 0

]

, σ = 5,

ρ = 10−62, βmin = 0.1, βmax = 10, γ0 = 10−8, γ1 = 0,

θ̂0 =
[

0 0 0 0 0 1 −8 1
]T
.

(4.1.3)

First of all, it was checked whether the requirements of the second statement of theorem were

met for such an experiment. Figure 1 depicts comparison of the functions V T
1 (t)x̂B0

(

t+0

)

with

V T
1 (t)xB0

and F̂ (t) with F (t).

The discontinuities in Fig. 1 were caused by the change of the direction of the eigenvector V1(t)
(the elements of the matrix G(t) crossed zero). It follows from Fig. 1a that the chosen initial
conditions (4.1.3) guaranteed that the conditions of the second statement of theorem were met.
Together Figs. 1a and 1b confirm the implication







sgn
(

V T
1 (t)x̂B0

(

t+0

))

= sgn
(

V T
1 (t)xB0

)

∣
∣
∣V T

1 (t)x̂B0

(

t+0

)∣
∣
∣ >

∣
∣
∣V T

1 (t)xB0

∣
∣
∣







⇒ F̂ (t) > 0.

Having validated that F̂ (t) > 0, the modelling was continued. Figure 2a presents comparison
of states of the reference model xref (t) (when x0ref = x0) and the plant x(t), and in Fig. 2b the
ideal u∗(t) and actual u(t) control signals are compared.
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Fig. 3. Behaviour of (a) xϑ0
and x̂ϑ0

(t), (b) xB0
and x̂B0

(t).

Fig. 4. Behavior of (a) K̂x(t) and Kx(t), (b) K̂r(t) and Kr(t).

In Fig. 3a the parameters xϑ0
and x̂ϑ0

(t) are compared, while in Fig. 3b — xB0
and x̂B0

(t).

Figure 4 demonstrates the comparison of the parametersKx(t), Kr(t) and their estimates K̂x(t),
K̂r(t) calculated with the help of x̂ϑ0

(t), x̂B0
(t).

The simulation results confirm the theoretical conclusions of Theorem 1. Indeed, when γ0> 0,
γ1 > 0 the proposed adaptive system guaranteed that the goal (2.6) was achieved.

The transients shown in Figs. 2–4 confirm the shortcoming of the proposed system noted in
Remark 3. Over the time interval [0; 1] the control system functioned with an open adaptive
loop (3.2.5), which resulted in oscillations of x(t).

4.2. sgn
(

V T
1 (t)x̂B0

(

t+0

))

6= sgn
(

V T
1 (t)xB0

)

The same plant was considered (4.1.1), (4.1.2) and the same parameters (4.1.3) of the reference
model (2.3), filters (3.2.1), (3.2.3), adaptive law (3.2.5) were used, but under more realistic sce-

nario for practice sgn
(

V T
1 (t)x̂B0

(

t+0

))

6= sgn
(

V T
1 (t)xB0

)

. The modified control law (3.2.6) was

chosen and, according to the first set of experiments, we picked γ0 = 10−10, γ1 = 10 and βmin = 1,

ρ = 10−81, θ̂0 =
[

0 −8 −2 −2 0 1 −8 1
]T

.

Figure 5 depicts the comparison of the function V T
1 (t)x̂B0

(

t+0

)

with V T
1 (t)xB0

, and F̂ (t), F̂prj(t)

with F (t).

The discontinuities in Fig. 5 were caused by the change of the direction of the eigenvector V1(t)
(the elements of the matrix G(t) crossed zero). It follows from Fig. 5a that the chosen initial con-

ditions guaranteed that the condition sgn
(

V T
1 (t)x̂B0

(

t+0

))

6= sgn
(

V T
1 (t)xB0

)

was met. Figure 5b

demonstrates the effect of the projection operator (3.2.6) application. Together Figs. 5a and 5b
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Fig. 5. Behavior of (a) Θ̂i
0(t) and Θi

0(t), (b) F̂ (t), F̂prj(t) and F (t).

Fig. 6. Comparison of: (a) x(t) and xref (t), (b) Kx(t) and K̂x(t), (c) Kr(t) and K̂r(t).

confirm the implication

sgn
(

V T
1 (t)x̂B0

(

t+0

))

6= sgn
(

V T
1 (t)xB0

)

⇒ F̂ (t) > 0.

Figure 6 depicts the comparison of the states of the reference model xref(t) (when x0ref = x0)

and the plant x(t), as well as the parameters Kx(t), Kr(t) and their estimates K̂x(t), K̂r(t).

The experimental results confirm the capability of the adjustable control law (3.2.6) to effectively

avoid possible division by zero when sgn
(

V T
1 (t)x̂B0

(

t+0

))

6= sgn
(

V T
1 (t)xB0

)

.

Conducted experiments fully confirmed all theoretical conclusions of Theorem 1, Remarks 3
and 4.

5. CONCLUSION

The results of the first paper of this series were extended to the class of linear systems with
time-varying unknown parameters described by known nonstationary exosystems with unknown
initial conditions.
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For this class of systems, the control system was proposed that solved the problem of tracking
the trajectories of a time-invariant reference model by a time-varying plant. The control signal was
computed using measurable signals and unknown initial conditions of the exosystems that generated
the system parameters. To identify such initial conditions, an adaptive law was proposed that
ensured exponential stability of the tracking error eref (t) if the regressor was finitely exciting. The
solution did not require to know the sign of the high-frequency gain, but requires known bounds of
its absolute value.

The result had a drawback in common with [19, 22], namely it required the condition of the
regressor finite excitation to be met to ensure boundedness of the tracking error. In Remark 4,
some ways of dealing with this problem for single-input systems were given. For systems with
multiple inputs, the problem to ensure tracking error boundedness without knowing the sign of the
control allocation matrix is an open one.

The scope of further research could be to extend the results to (a) output-feedback control
problems for systems with time-varying parameters, (b) control problems when matching conditions
are violated, and (c) systems with multiple inputs.
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APPENDIX

Proof of Proposition 1. The following estimates are defined:

ϑ̂(t) = hϑΦϑ(t)x̂ϑ0
(t),

B̂(t) = hBΦB(t)x̂B0
(t),

v(t) = eT1 (Aref −A0) x(t) + eT1Brefr(t).

(A.1)

Considering (A.1), the subtraction u(t)− u∗(t) is written as follows (for the sake of brevity, time
dependencies are omitted for a while):

u− u∗ =
B̂T

F̂
e1
(

v − ϑ̂Tx
)

− BT

F
e1
(

v − ϑTx
)

±B
T

F
e1
(

v − ϑ̂Tx
)

= −B
Te1
F

ϑ̃Tx+

(

B̂Te1

F̂
− BTe1

F

)
(

v − ϑ̂Tx
)

.

(A.2)

The subtraction B̂Te1
F̂

− BTe1
F

is transformed into a linear regression with respect to B̃ and F̃ :

B̂Te1

F̂
− BTe1

F
=
B̂Te1F ± B̂Te1F̂ −BTe1F̂

F̂F

=
−B̂Te1

(

F̂ − F
)

+
(

B̂T −BT
)

e1F̂

F̂F

=
−B̂Te1F̃ + B̃Te1F̂

F̂F
=

−B̂Te1

F̂ F
F̃ + B̃T e1

F
.

(A.3)
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The error F̃ is considered separately:

F̃ = B̂TB̂ −BTB +BTB̂ −BTB̂

=
(

B̂T −BT
)

B̂ +BT
(

B̂ −B
)

= B̃TB̂ +BTB̃.
(A.4)

The substitution of (A.4), (A.3) into (A.2) allows one to obtain:

u− u∗ = −B
Te1
F

ϑ̃Tx−
(

B̂Te1

F̂F
B̃TB̂ +

B̂Te1

F̂F
BTB̃ − B̃T e1

F

)
(

v − ϑ̂Tx
)

= −B
Te1
F

xTϑ̃−
(

B̂Te1

F̂F
B̂T +

B̂Te1

F̂F
BT − eT1

F

)
(

v − ϑ̂Tx
)

B̃

= −B
Te1
F

xThϑΦϑx̃ϑ0
−
(

B̂Te1

F̂F
B̂T +

B̂Te1

F̂F
BT − eT1

F

)
(

v − ϑ̂Tx
)

hBΦBx̃B0
= θ̃Tω,

(A.5)

where

θ̃ =
[

x̃Tϑ0
x̃TB0

]T
, ω =












−
(

BTe1
F

xThϑΦϑ

)T

−ΦT
Bh

T
B

[(

B̂Te1

F̂F
B̂T+

B̂Te1

F̂F
BT− eT1

F

)
(

v− ϑ̂Tx
)
]T












,

which completes proof of Proposition 1.

Proof of Proposition 2. The error χ(t) = x(t)− x̄(t) is introduced. Differentiating χ(t) with
respect to time, it is obtained that:

χ̇(t) = ẋ(t)− ˙̄x(t)

= A(t)x(t) +B(t)u(t)−AK x̄(t) +AKx(t)

= AK (x(t)− x̄(t)) +A(t)x(t) +B(t)u(t)

= AKχ(t) +A0x(t) + e1x
T(t)ϑ(t) +B(t)u(t)

= AKχ(t) +A0x(t) + e1x
T(t)hϑΦϑ(t)xϑ0

+ hBΦB(t)u(t)xB0
.

(A.6)

The solution of the differential equation (A.6), which is multiplied by eT1 , takes the following
form:

eT1 [χ(t)− υ(t)] = eT1 [x(t)− x̄(t)− υ(t)]

= eT1 e
AK(t−t+

0 )x
(

t+0

)

+ eT1 ϕ(t)xϑ0
+ eT1 ψ(t)xB0

= eT1 e
AK(t−t+

0 )x0 + eT1 ϕ(t)xϑ0
+ eT1 ψ(t)xB0

=
[

eT1 e
AK(t−t+

0 ) eT1 ϕ(t) eT1 ψ(t)
]






x0
xϑ0

xB0




: = ΦT(t)η.

(A.7)

Having applied to the regression equation (A.7) the procedures of normalization (3.2.2), dy-
namic extension (3.2.3a), (3.2.3b) and mixing (3.2.3c), and using the property adj {∆(t)}∆(t) =
det {∆(t)} I(nϑ+nB+n)×(nϑ+nB+n), the measurable regression equation (3.2.4) is obtained.
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Proof of the fact that for all t > te the inequality ΩUB(t)> Ω(t) > ΩLB > 0 holds if Φ(t)∈FE
has been obtain in Proposition 4 of [23].

Proof of Theorem 1. Proof of the first part of theorem coincides with the one of the first part
of the theorem from [19].

To prove the second part of theorem, the eigenvalue decomposition is applied to the matrix G(t):

∀t > t+0 F (t) = xTB0
V (t)Λ(t)V T(t)xB0

= xTB0
V1(t)Λ1(t)V

T
1 (t)xB0

= ΘT(t)Λ1(t)Θ(t),

V (t) =
[

V1(t) V2(t)
]

, Λ(t) =

[

Λ1(t) 0rG(t)×r̄G(t)

0r̄G(t)×rG(t) 0r̄G(t)

]

,

Λ1(t) = diag
{

λ1(t), λ2(t), . . . , λrG(t)(t)
}

, λmin (Λ1(t)) > 0,

where V1(t)∈R
nB×rG(t), V2(t)∈R

nB×r̄G(t), Λ(t)∈R
nB×nB , rG(t) = rank {G(t)}, r̄G(t) = nB−rG(t).

Using the above-introduced decomposition, the lower bound of F̂ (t) is written:

∀t > t+0 F̂ (t) = B̂T(t)B̂(t) = x̂TB0
(t)V1(t)Λ1(t)V

T
1 (t)x̂B0

(t)

= Θ̂T(t)Λ1(t)Θ̂(t) > λmin (Λ1(t))
∥
∥
∥Θ̂(t)

∥
∥
∥

2
> 0.

(A.8)

Based on (A.8), it is necessary and sufficient to satisfy the following inequality to ensure that
F̂ (t) > 0

∀t > t+0

∥
∥
∥Θ̂(t)

∥
∥
∥

2
=

rG(t)
∑

i=1

(

Θ̂i(t)
)2

6= 0,

m

∀i∈ 1, rG(t)
∣
∣
∣Θ̂i(t)

∣
∣
∣ 6= 0,

(A.9)

where Θ̂i(t) denotes the ith element of the vector Θ̂(t)∈R
rG(t).

The next aim is to obtain the functional definition of the estimate Θ̂i(t) for all t > t+0 . For this
the differential equation (3.2.5) is solved

∀t > t+0 x̃B0
(t) = φ

(

t, t+0

)

x̃B0

(

t+0

)

, (A.10)

then equation (A.10) is multiplied by V T
1 (t) and Θ(t) is added to both left- and right-hand sides

of the obtained multiplication:

V T
1 x̃B0

(t) + Θ(t) = Θ̂(t) = φ
(

t, t+0

)

V T
1 (t)x̃B0

(

t+0

)

+Θ(t),

m

Θ̂i(t) = φ
(

t, t+0

)

Θ̃0
i (t) + Θi(t),

(A.11)

where φ
(

t, t+0

)

= e

−βmax

t∫

t
+

0

{
0, if t<te,

γ0λmax(ω̂(τ)ω̂T(τ))+γ1 otherwise
dτ

, Θ̃0
i (t) = Θ̂0

i (t)−Θi(t), Θ̂
0
i (t) is the i

th

element of the vector V T
1 x̂B0

(

t+0

)

.
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Then (A.9) is met, if it holds that

Θ̂i(t) = φ
(

t, t+0

)

Θ̃0
i (t) + Θi(t) 6= 0 ⇒ φ

(

t, t+0

)

Θ̃0
i (t) 6= −Θi(t)

⇒ sgn
(

φ
(

t, t+0

))

︸ ︷︷ ︸

=1

6= sgn

(

−Θi(t)

Θ̃0
i (t)

)

= sgn

(

−Θi(t)

Θ̂0
i (t)−Θi(t)

)

⇒ sgn
(

Θ̂0
i (t)−Θi(t)

)

6= −sgn (Θi(t))

⇒







sgn
(

Θ̂0
i (t)

)

= sgn (Θi(t))
∣
∣
∣Θ̂0

i (t)
∣
∣
∣ > |Θi(t)|







⇒







sgn
(

V T
1 (t)x̂B0

(

t+0

))

= sgn
(

V T
1 (t)xB0

)

∣
∣
∣V T

1 (t)x̂B0

(

t+0

)∣
∣
∣ >

∣
∣
∣V T

1 (t)xB0

∣
∣
∣







,

(A.12)

which completes proof of the second part of theorem.

The next step is to prove the third part of theorem. According to the Kalman–Yakubovich–
Popov lemma, for the pair (Aref , In×n) and any constant matrix D > 0 one can find matrices
Q∈R

n×n, K ∈R
n×n and a constant µ > 0 such that there exists a solution of the following set of

equations

AT
refP + PAref = −QQT − µP, PIn×n = QK,

KTK = D +DT,
(A.13)

or a solution of the following Riccati equation, which is an equivalent of the above-given set of
equations in a particular case D = 0.5k2In×n, K = k2In×n, k = 1:

AT
refP + PAref + PPT + µP = 0. (A.14)

The following quadratic form is introduced to analyze the stability:

V = ξTHξ = γ0e
T
refPeref +

β2max

2
θ̃Tθ̃,

H = blockdiag

{

γ0P,
β2max

2
I(nϑ+nB)×(nϑ+nB)

}

,

λmin (H)
︸ ︷︷ ︸

λm

‖ξ‖2 6 V (‖ξ‖) 6 λmax (H)
︸ ︷︷ ︸

λM

‖ξ‖2,

(A.15)

where the matrix P is a solution of the set (A.13) when K = k2In×n, D = 0.5k2In×n, k = 1 or
equivalent Riccati equation (A.14).

Owing to equations (3.1.6) and (3.2.5), the derivative of the quadratic form (A.15) is written as

V̇ = γ0
[

eTref

(

AT
refP + PAref

)

eref + 2θ̃TωeTrefPB
]

− β2maxθ̃
TγΩ2θ̃

= γ0
[

−µeTrefPeref −eTrefQQTeref +2θ̃TωeTrefPIn×nB
]

−β2maxθ̃
TγΩ2θ̃

= γ0
[

−µeTrefPeref − eTrefQQ
Teref + 2θ̃TωBTQTeref

]

− β2maxθ̃
TγΩ2θ̃.

(A.16)
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Completing the square in (A.16), it is obtained:

V̇ = γ0
[

− µeTrefPeref − eTrefQQ
Teref + 2eTrefQBω

Tθ̃ ± 2θ̃TωBTBωTθ̃
]

− β2maxθ̃
TγΩ2θ̃

= γ0

[

−µeTrefPeref −
(

eTrefQ−BωTθ̃
)2

+ θ̃TωBTBωTθ̃

]

− β2maxθ̃
TγΩ2θ̃

6 γ0
[

−µeTrefPeref + θ̃TωFωTθ̃
]

− β2maxθ̃
TγΩ2θ̃.

(A.17)

Two situations need to be considered: t < te and t > te. As for the first one, according to

proposition 1, in the most conservative case it holds that Ω(t) = 0 and
∥
∥
∥θ̃(t)

∥
∥
∥ =

∥
∥
∥θ̃
(

t+0

)∥
∥
∥.

Then for all t < te equation (A.17) is rewritten as

V̇ 6 −µγ0eTrefPeref + γ0θ̃
T
(

t+0

)

ωFωTθ̃
(

t+0

)

± β2maxθ̃
Tθ̃

6 −µγ0eTrefPeref − β2maxθ̃
Tθ̃ + γ0θ̃

T
(

t+0

)

ωFωTθ̃
(

t+0

)

+ β2maxθ̃
T
(

t+0

)

θ̃
(

t+0

)

.
(A.18)

The notion of the maximum eigenvalue of the matrix ω(t)BT(t)B(t)ωT(t) over the time range
[0; te) is introduced:

δ = sup max
∀t<te

λmax

(

ω(t)F (t)ωT(t)
)

. (A.19)

The function F (t) is bounded according to Assumption 2, the rate of the regressor ω(t) change
is no grater than exponential when Assumption 1 is met, therefore, it holds that δ ∈L∞.

Considering (A.19), equation (A.18) is rewritten as follows for t < te

V̇ 6 −µγ0λmin (P ) ‖eref‖2 − β2max

∥
∥
∥θ̃
∥
∥
∥

2
+
(

γ0δ + β2max

) ∥
∥
∥θ̃
(

t+0

)∥
∥
∥

2
6 −η1V + rB, (A.20)

where η1 = min
{
µλmin(P )
λmax(P ) ; 2

}

, rB =
(
γ0δ + β2max

)
∥
∥
∥θ̃
(

t+0

)∥
∥
∥

2
.

Having solved the differential equation (A.20), we have:

∀t < te: V (t) 6 e−η1(t−t+
0 )V

(

t+0

)

+
rB
η1
. (A.21)

Taking into consideration λm‖ξ(t)‖2 6 V (t) and V
(

t+0

)

6 λM
∥
∥
∥ξ
(

t+0

)∥
∥
∥

2
, the following upper

bound of the augmented tracking error is obtained for all t < te from (A.21):

‖ξ(t)‖ 6

√

λM
λm

e−η1(t−t+
0 )
∥
∥
∥ξ
(

t+0

)∥
∥
∥

2
+

rB
λmη1

6

√

λM
λm

∥
∥
∥ξ
(

t+0

)∥
∥
∥

2
+

rB
λmη1

, (A.22)

from which it follows that ξ(t) is bounded for all t < te.

As for the second situation, considering the definition of the adaptive gain γ and the fact that,
owing to Proposition 1, for all t > te the inequality 0 < ΩLB 6 Ω(t) 6 ΩUB holds, it is obtained
from (A.18) for t > te that:

V̇ 6 −µγ0eTrefPeref + γ0θ̃
TωFωTθ̃ − β2maxθ̃

T

(

γ0λmax

(

ω̂ω̂T
)

+ γ1
)

Ω2

Ω2
θ̃

= −µγ0eTrefPeref + γ0θ̃
TωFωTθ̃ − β2maxθ̃

T
[

γ0λmax

(

ω̂ω̂T
)

+ γ1
]

θ̃.

(A.23)
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The regressor ω̂(t) is defined as follows:

ω̂(t) =










−
(
βmax

β2
min

xThϑΦϑ

)T

−ΦT
Bh

T
B

[(

B̂Te1

β2
minF̂ e

T
1 e1

B̂T +
B̂Te1

β2
minF̂ e

T
1 e1

βmaxe
T
1 − eT1

β2
mine

T
1 e1

)
(

v − ϑ̂Tx
)
]T










.

It also holds for any ω(t) that

γ0θ̃
TωFωTθ̃ − θ̃Tγ0β

2
maxλmax

(

ω̂ω̂T
)

θ̃

= θ̃T
(

γ0ωFω
T − γ0β

2
maxλmax

(

ω̂ω̂T
)

I(nϑ+nB)×(nϑ+nB)

)

︸ ︷︷ ︸

6−κI(nϑ+nB)×(nϑ+nB)

θ̃ 6 0, (A.24)

so equation(A.23) is rewritten as

V̇ 6 −γ0µeTrefPeref − θ̃T
(

κ+ β2maxγ1
)

θ̃

6 −µγ0λmin (P ) ‖eref‖2 −
(

κ+ β2maxγ1
) ∥
∥
∥θ̃
∥
∥
∥

2
6 −η2V,

(A.25)

where η2 = min
{
µλmin(P )
λmax(P ) ; 2

(
κ

β2
max

+ γ1
)}

.

Having solved the inequality (A.25), it is obtained that V (t) 6 e−η2(t−te)V (te) for t > te.

Taking into account λm‖ξ(t)‖2 6 V (t), V (te) 6 λM‖ξ (te)‖2 and equation (A.22), the upper
bound of the augmented tracking error is obtained for t > te:

‖ξ(t)‖ 6

√

λM
λm

e−η2(t−te)‖ξ (te)‖2 6
√

λM
λm

(
λM
λm

∥
∥
∥ξ
(

t+0

)∥
∥
∥

2
+

rB
λmη1

)

, (A.26)

from which together with (A.22) it follows that ξ(t)∈L∞, as well as exponential convergence of
the error ξ(t) to zero for all t > te with the rate, which is directly proportional to the parame-
ters γ0, γ1, Q.E.D.
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