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Abstract—The problem of state reconstruction is considered for a class of linear systems with
time-invariant unknown parameters and overparameterization that are affected by external
perturbations generated by a known exosystem with unknown initial conditions. An extended
adaptive observer is proposed, which, in contrast to existing approaches, solves state and per-
turbation adaptive estimation problems for systems that are not represented in the observer
canonical form. The obtained theoretical results are validated via mathematical modeling.
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1. INTRODUCTION

One of the problems of automatic control theory is the reconstruction of unmeasured state of
completely observable linear systems:

ẋ(t) = Ax(t) +Bu(t),

y(t) = CTx(t)
(1.1)

with unknown matrices A ∈ R
n×n, B ∈ R

n, C ∈ R
n.

To solve it, various observers based on the invariant ellipsoid technique [1], high-gain methods
[2, 3], sliding mode approach [3, 4], and parametric identification theory [5, 6] have been proposed.

In contrast to other approaches, observers based on the methods of identification theory [5, 6] use
parameter adaptation algorithms and, therefore, usually require less a priori information about the
system parameters. However, since the baseline solutions [7–10], the class of systems, for which the
adaptive observers can be designed, is traditionally restricted to models in the observer canonical
form:

ξ̇(t) = A0ξ(t) + ψay(t) + ψbu(t) = Aaξ(t) + ψbu(t),

y(t) = CT
0 ξ(t),

(1.2)

A0 =

[

0n
In−1

0Tn−1

]

, Aa =

[

ψa
In−1

0Tn−1

]

,

ψa =









−an−1

−an−2
...

−a0









, ψb =









bn−1

bn−2
...
b0









, C0 =









1
0
...
0









,
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ADAPTIVE OBSERVER OF STATE AND DISTURBANCES 1353

where ψa and ψb are parameters of the characteristic polynomials of the following linear operator

Wuy (s) =
bn−1s

n−1 + bn−2s
n−2 + . . .+ b0

sn + an−1sn−1 + . . .+ a0
,

and they are related to the matrices of the model (1.1) via a transformation matrix T :

ψa = TAT−1C0, ψb = TB, CT
0 = CTT−1,

On = O
[

01×(n−1) 1
]T
, (1.3)

O−1 =
[

C ATC · · ·
(

An−1
)T
C
]T
, T−1 =

[

An−1On An−2On · · · On

]

.

The point is that the measurable control u(t) and output y(t) signals allow one to uniquely
identify the parameters of such canonical state space form only [5, p. 269]. The states ξ(t) ∈ R

n

of the model (1.2) are virtual and related to the plant physical states x(t) ∈ R
n via a non-singular

transformation ξ(t) = Tx(t).

Therefore, the estimates ξ̂(t) obtained by classical adaptive state observers [5, 6] of the following
form (ψ̂a(t), ψ̂b(t) are estimates of the parameters (1.3), L stands for the correction matrix, and
the specific structures of functions fa (.) , fb (.) , fv (.) are defined in [5, 6]):

˙̂
ξ(t) = A0ξ̂(t) + ψ̂a(t)y(t) + ψ̂b(t)u(t) + L (ŷ(t)− y(t)) + v(t),

ŷ (t) = C0
Tξ̂ (t) ,

˙̂
ψa(t) = fa

(

u, y, ŷ, ψ̂a

)

,

˙̂
ψb(t) = fb

(

u, y, ŷ, ψ̂b

)

,

Re
{

λi

(

A0 + LCT
)}

< 0,

v(t) = fv

(

u, y,
˙̂
ψa,

˙̂
ψb

)

or v(t) = 0n,

(1.4)

not only do not coincide with x(t), but also turn out to be useless, for example, to solve the
problems of failure diagnostics, monitoring and storage of unmeasured variables of technological
processes, design and online adjustment of digital twins and other practical scenarios.

The solution to this problem is to identify the linear transformation matrix T together with
the parameters ψa and ψb. For one specific class of linear systems, an algorithm is proposed in [7]
that forms an estimate of T̂ (t) on the basis of the ones of ψ̂a(t) and ψ̂b(t). In the general case, the

mapping T̂ (t) = fT

(

ψ̂a(t), ψ̂b(t)
)

can be singular for certain values of the estimates ψ̂a(t), ψ̂b(t)

(see Section VIII of [7]). In more recent papers [10–12] devoted to the development of methods
to design adaptive observers (and even in the fundamental books on adaptive observers for linear
systems [5, 6]), to the best of the authors’ knowledge, the problem of the physical state x(t)
reconstruction and the estimation of the linear transformation matrix T with the help of adaptive
observers was no longer touched upon.

In a recent paper [13] a new approach of adaptive reconstruction of the linear system physical
state is presented instead of identification of the linear transformation matrix. It is proposed to
overparameterize the matrices of the system (1.1) with respect to some physical parameters θ ∈ R

nθ

(such overparameterization is always possible if the model is obtained directly on the basis of the
laws of mathematical physics—Kirchhoff, Euler–Lagrange, etc.):

ẋ(t) = A (θ)x(t) +B (θ)u(t) = ΦT (x, u)ΘAB (θ) ,

y(t) = CTx(t),
(1.5)
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1354 GLUSHCHENKO, LASTOCHKIN

and, using the following change of notation ψa := ψa (θ) , ψb := ψb (θ), to take into account the
dependence of the model (1.1) parameters from θ.

The fact that the overparameterization is considered allows one to link the matrices of the models
(1.1) and (1.2) not via the above-mentioned transformation, but by means of some new functional
transformations of the following form (θ = F (ψab) is an inverse function, Lab ∈ R

nθ×2n stands for
a matrix that defines some linear transformation, which ensures dim{ψab} = dim{θ})

ΘAB (θ) = (ΘAB ◦ F) (ψab) ,

ψab (θ) = Lab

[

ψa (θ)
ψb (θ)

]

: Rnθ → R
nθ ,

which provides much room to design the adaptive observers of physical states x(t).

In [13] it is shown that, if the condition

det2 {∇θψab (θ)} > 0, ψab (θ) = Lab

[

ψa (θ)
ψb (θ)

]

: Rnθ → R
nθ (1.6)

of existence of the inverse function F : Rnθ → R
nθ holds and ψab (θ) and ΘAB (θ) depend from θ

in a polynomial fashion, then, using only the measurable signals y(t), u(t) and known vector C,
the following regression equations can be obtained without identification of the parameters ψab (θ)
and θ (where YAB(t), YL(t), MAB(t), ML(t) stand for the measurable signals):

YAB(t) = MAB(t)ΘAB (θ) ,

YL(t) = ML(t)L (θ)

and, as a consequence, an adaptive observer of the system (1.5) state can be implemented in the
following form:

˙̂x(t) = ΦT (x̂, u) Θ̂AB(t)− L̂(t) (ŷ(t)− y(t)) ,

˙̂
ΘAB(t) = fΘAB

(

YAB,MAB , Θ̂AB

)

,

˙̂
L(t) = fL

(

YL,ML, L̂
)

,

(1.7)

where L̂(t) is an estimate of the matrix L (θ) such that A (θ)− L (θ)CT is a Hurwitz one.

In other words, owing to the fact that ΘAB (θ) and ψab (θ) are related to each other via the
physical parameters θ, if the condition (1.6) is met, then, in accordance with [13], ΘAB (θ) and L (θ)
can be identified without direct estimation of θ or ψab (θ). In contrast to (1.4), the (1.7) observer
allows one to obtain estimates of the physical state x(t), and, contrary to [7], it is applicable to a
wider class of systems and does not require direct identification of parameters ψab (θ).

The aim of this paper is to extend the results of [13] to the class of linear systems with over-
parameterization that are affected by the external perturbations generated by a known exosystem
with unknown initial conditions.

Main definitions

The definition of a heterogeneous mapping, the regressor persistent excitation condition, and
the property of the Kreisselmeyer filtering [10] given below will be used throughout this paper1.

1 For the sake of brevity, hereafter the arguments θ and t will be omitted except the cases in which it is necessary
for understanding.
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ADAPTIVE OBSERVER OF STATE AND DISTURBANCES 1355

Definition 1. A mapping F : Rnθ → R
nF×mF is heterogeneous of degree ℓF > 1, if there exists

ΠF (ω) ∈ R
nF×nF , ΞF (ω) = ΞF (ω)ω(t) ∈ R

∆F×nθ , and mapping TF : R∆F → R
nF×mF such that

for all ω(t) ∈ R and θ ∈ R
nθ the following functional equation has a solution

ΠF (ω)F (θ) = TF (ΞF (ω) θ) , (1.8)

where

det {ΠF (ω)} > ωℓF (t),

ΞF ij (ω) = cijω
ℓij(t), ΞFij (ω) = cijω

ℓij−1(t),

cij ∈ {0, 1} , ℓij > 1.

For example, F(θ) = col{θ1θ2, θ1} with ΠF (ω) = diag{ω2, ω}, ΞF (ω) = diag{ω, ω} is heteroge-
neous of degree ℓF = 3.

Using a known function Yθ(t) = ω(t)θ, the main property ΞF (ω) θ = ΞF (ω)ω(t)θ from Def-
inition 1 allows one to obtain a linear regression equation with respect to F (θ) in the following
way:

ΠF (ω)F (θ) = TF
(

ΞF (ω)Yθ
)

,

[

ω2(t) 0

0 ω(t)

]

F (θ) =

[

Y1θ(t)Y2θ(t)

Y1θ(t)

]

.

The elements of a mapping F(θ) satisfy Definition 1 if they are polynomials or monomials of θ,
as well as some of the irrational functions.

Definition 2. A regressor ϕ(t) ∈ R
n is persistently exciting (ϕ(t) ∈ PE) if ∃T > 0 and α > 0

such that ∀t > t0 > 0 the following inequality holds

t+T∫

t

ϕ (τ)ϕT (τ) dτ > αIn, (1.9)

where α > 0 is an excitation level, In stands for an identity matrix.

For a determinant of state of a stable (l > 0) dynamical filter

ϕ̇(t) = −lϕ(t) + ϕ(t)ϕT(t), ϕ (t0) = 0n×n

it holds that

Proposition 1. (a) If ϕ(t) ∈ PE, then for all t > t0 + T the following inequality holds

∆(t) = det {ϕ(t)}> αne−nlT = ∆min > 0. (1.10)

(b) If there exists te ∈ [t0,∞) such that for all t > te equation (1.10) holds, then ϕ(t) ∈ PE.

Proof of Proposition 1 is given in [14].

2. PROBLEM STATEMENT

We consider the following class of SISO-systems with overparameterization affected by a bounded
external perturbation:

ẋ(t) = A (θ)x(t) +B (θ)u(t) +D (θ) δ(t) = ΦT (x, u, δ)ΘAB (θ) ,

y(t) = CTx(t), x (t0) = x0,
(2.1)
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where

ΦT (x, u, δ) =
[

In ⊗ xT(t) In ⊗ uT(t) In ⊗ δT(t)
]

DΦ ∈ R
n×nΘ,

ΘAB (θ) = LΦ

[

vecT
(

AT (θ)
)

BT (θ) DT (θ)
]T

∈ R
nΘ,

x(t)∈R
n are physical states of the system with unknown initial conditions x0, δ(t) stands for

a bounded external perturbation, ΘAB ∈R
nΘ, θ ∈R

nθ denote unknown vectors such that nΘ>nθ,
DΦ ∈R

(n2+2n)×nΘ , LΦ∈R
nΘ×(n2+2n) are unknown matrices, the vector C ∈ R

n and mapping ΘAB :
R
nθ → R

nΘ are known. Only the control u(t) ∈ R and output y(t)∈R signals are measurable.

The following assumptions are adopted for the control and disturbance signals.

Assumption 1. For all t > t0 the control signal u(t) ensures existence and boundedness of all
trajectories of the system (2.1).

Assumption 2. The disturbance δ(t) is continuous and generated by a stable exosystem with
time-invariant parameters:

ẋδ(t) = Aδxδ(t), xδ (t0) = xδ0,

δ(t) = hTδ xδ(t),
(2.2)

where xδ(t) ∈ R
nδ are states of the exosystem with unknown initial conditions xδ0, hδ ∈ R

nδ ,

Aδ(t) ∈ R
nδ×nδ are known vector and matrix, which form an observable pair

(

hTδ ,Aδ

)

.

Taking into account the duality of the observation and control problems and following the results
of the generalized pole placement theory [15, 16], we adopt an assumption that there exists a vector
L (θ) ∈ R

n, which transforms an algebraic spectrum σ{.} of the matrix AT (θ) − CLT (θ) into a
desired one.

Assumption 3. A pair
(

AT (θ) , C
)

is controllable, there exists a known state matrix Γ ∈ R
n×n

of an exosystem

χ̇(t) = Γχ(t),

v(t) = BT (θ)χ(t)
(2.3)

such that the pair
(

BT (θ) , Γ
)

is observable and σ {A (θ)} ∩ σ {Γ} = 0.

If Assumptions 1–3 are met, then the following observer of the state and perturbation can be
introduced:

˙̂x(t) = ΦT
(

x̂, u, δ̂
)

Θ̂AB(t)− L̂(t) (ŷ(t)− y(t)) ,

δ̂(t) = hTδ Φδ(t)x̂δ0(t),

Φ̇δ(t) = AδΦδ(t), Φδ (t0) = Inδ .

(2.4)

The aim is to augment the observer (2.4) with the estimation laws, which ensure that the
following equalities hold

lim
t→∞

‖x̃(t)‖ = 0 (exp) , lim
t→∞

∥
∥
∥δ̃(t)

∥
∥
∥ = 0 (exp) , lim

t→∞
‖κ̃(t)‖ = 0 (exp) ,

κ̃(t) =
[

x̃Tδ0(t) Θ̃T
AB(t) L̃T(t)

]T
,

(2.5)

where x̃(t) = x̂(t)− x(t) is the state (2.1) observation error, δ̃(t) = δ̂(t)− δ(t) stands for the dis-
turbance observation error, Θ̃AB(t) = Θ̂AB(t)−ΘAB (θ) denotes the error of the system (2.1) pa-
rameters estimation, x̃δ0(t) = x̂δ0(t)− xδ0 is the observation error of the exosystem (2.2) initial
conditions, L̃(t) = L̂(t)− L (θ) stands for the error of L (θ) estimation.
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Remark 1. Assumptions 1 and 3 are conventional for the adaptive observation [10–12] and pole
placement design [15, 16] problems, respectively. Assumption 2 restricts the class of permissible
external perturbations.

3. PREREQUISITES AND PRELIMINARY TRANSFORMATIONS

Before presenting the solution of the problem (2.5), the identifiability of the unknown parame-
ters κ from the measurements of y(t) and u(t) is investigated. For this purpose, using the trans-
formations (1.3), the system (2.1) is represented in the form (1.2):

ξ̇(t) = A0ξ(t) + ψa (θ) y(t) + ψb (θ)u(t) + ψd (θ) δ(t), (3.1)

y(t) = CTx(t) = CT
0 ξ(t), ξ (t0) = Tx0 = ξ0, (3.2)

where ψd(θ) = TD(θ), ξ(t)∈R
n are unmeasurable virtual state of the observer canonical form, the

vector C0 ∈R
n and mappings ψa, ψb, ψd: R

nθ → R
n are known.

The following parametrization can be obtained for the unknown parameters η(θ) =
col{ψa(θ), ψb(θ)} of equation (3.1) in case Assumptions 1 and 2 are met.

Lemma 1. The unknown parameters η (θ) satisfy the following linear regression model 2

Y(t) = ∆(t)η (θ) + ǫ(t),

Y(t) = k(t)× adj {ϕ(t)} q(t), ∆(t) = k(t)× det {ϕ(t)} ,
(3.3)

where

q̇(t) = −k2q(t) + ϕf (t)(q(t)− k1qf (t)− βT(Ff (t) + lyf (t))), q(t0) = 02n,

ϕ̇(t) = −k2ϕ(t) + ϕf (t)ϕ
T
f (t), ϕ (t0) = 02n×2n,

(3.4)

q̇f (t) = −k1qf (t) + q(t), qf (t0) = 0,

ϕ̇f (t) = −k1ϕf (t) + ϕ(t), ϕf (t0) = 02n,

Ḟf (t) = −k1Ff (t) + F (t), Ff (t0) = 0nδ ,

ẏf (t) = −k1yf (t) + y(t), yf (t0) = 0,

(3.5)

q(t) = y(t)− CT
0 z(t), ϕ(t) =

[

Ω̇T(t)C0 +NT(t)β

ṖT(t)C0 +HT(t)β

]

,

ż(t) = AKz(t) +Ky(t), z (t0) = 0n,

Ω̇(t) = AKΩ(t) + Iny(t), Ω (t0) = 0n×n,

Ṗ (t) = AKP (t) + Inu(t), P (t0) = 0n×n,

Ḟ (t) = GF (t) +Gly(t)− lCT
0 ż(t), F (t0) = 0nδ ,

Ḣ(t) = GH(t) − lCT
0 Ṗ (t), H (t0) = 0nδ×n,

Ṅ(t) = GN(t)− lCT
0 Ω̇(t), N (t0) = 0nδ×n,

(3.6)

and, if ϕ(t) ∈ PE, then for all t > t0 + T it holds that ∆max > ∆(t) > ∆min > 0.

Here ǫ(t) is an exponentially decaying term, k(t) > kmin > 0 stands for an amplitude modulator
(can be time-varying), k1 > 0, k2 > 0 denote filters constants, AK = A0 −KCT

0 , G are stable ma-
trices of respective dimension, the vector l ∈ R

nδ is such that the pair (G, l) is controllable, and

2 Without loss of generality, further the exponentially decaying term ǫ(t) is omitted.
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1358 GLUSHCHENKO, LASTOCHKIN

G is chosen considering σ {Aδ} ∩ σ {G} = 0, the parameter β ∈ R
nδ is a solution of the following

set of equations

MδAδ −GMδ = lh
T
δ , h

T
δ = hTδ Aδ,

β = h
T
δM

−1
δ .

Proof of Lemma 1 is postponed to Appendix.

In the general case, the goal (2.5) cannot be achieved because only the parameters ψa, ψb
of the characteristic polynomials of the transfer function Wuy (s) = CT (sIn −A (θ))−1B (θ) are
identifiable on the basis of measurable signals u(t), y(t) via parameterization (3.3) if ϕ(t)∈PE.
However, in the case that is important for practical scenarios, according to the problem statement,
the parameters ΘAB, ψd, L depend nonlinearly from the physical parameters θ in a known way. In
their turn, the parameters ψa, ψb of the characteristic polynomials of the transfer function Wuy (s)
also depend nonlinearly from θ. Therefore, if the following condition is met

det2 {∇θψab (θ)} > 0, ψab (θ) = Labη (θ) ∈ R
nθ , (3.7)

then, owing to the inverse function theorem [17], there exists an inverse mapping θ = F (ψab), and
therefore, it becomes possible to: i) calculate the parameters of the system ΘAB and observer L
using ψab, ii) obtain estimates x̂δ0(t) of the initial conditions of the exosystem (2.2), iii) implement
the adaptive observer (2.4), from which the estimates x̂(t) and δ̂(t) are obtained.

In this paper, to solve the problem of reconstruction of unmeasurable state x(t) and external
perturbation δ(t) when the condition (3.7) is satisfied, the following hypotheses are additionally
adopted with respect to ψab (θ), ΘAB (θ), and ψd (θ).

Hypothesis 1. There exist the heterogeneous in the sense of (1.8) mappings G: Rnθ → R
nθ×nθ ,

S: Rnθ → R
nθ such that:

S (ψab) = G (ψab)F (ψab) = G (ψab) θ,

Πθ (ω)G (ψab) = TG (ΞG (ω)ψab) ,

Πθ (ω)S (ψab) = TS (ΞS (ω)ψab) ,

(3.8)

where ΞG (ω) ∈R
∆G×nθ , ΞS (ω) ∈R

∆S×nθ , det {Πθ (ω)} >ωℓθ(t), rank {G (ψab)} = nθ, ℓθ > 1,
TG : R∆G → R

nθ×nθ , TS : R∆S → R
nθ and all mappings are known.

Hypothesis 2. There exist the heterogeneous in the sense of (1.8) mappings X : Rnθ → R
nΘ×nΘ ,

Z: Rnθ → R
nΘ such that:

Z (θ) = X (θ)ΘAB (θ) ,

ΠΘ (ω)X (θ) = TX (ΞX (ω) θ) ,

ΠΘ (ω)Z (θ) = TZ (ΞZ (ω) θ) ,

(3.9)

where ΞX (ω)∈R
∆X×nθ , ΞZ(ω)∈R

∆Z×nθ , det{ΠΘ(ω)}>ωℓΘ(t), rank{X (θ)} = nΘ, ℓΘ > 1,
TX : R∆X → R

nΘ×nΘ , TZ : R∆Z → R
nΘ and all mappings are known.

Hypothesis 3. There exist the heterogeneous in the sense of (1.8) mappings W : R
nθ → R

n, R :
R
nθ → R

n×n such that:

W (θ) = R (θ)ψd (θ) ,

Πψd (ω)R (θ) = TR (ΞR (ω) θ) ,

Πψd (ω)W (θ) = TW (ΞW (ω) θ) ,

(3.10)

where ΞW(ω)∈R
∆W×nθ , ΞR(ω)∈R

∆R×nθ , det{Πψd(ω)}>ωℓψd (t), rank{R(θ)} = n, ℓψd > 1,
TR : R

∆R → R
n×n, TW : R

∆W → R
n and all mappings are known.
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Hypotheses 1–3 are met if the corresponding mappings are defined using elementary algebraic

functions in a polynomial form. For example, for vectors ΘAB (θ) = col
{

θ22θ
2
1 + (θ2 + θ1)

3, θ2

}

and

ψab (θ) = col
{
θ1θ2 + θ21, θ2 + θ1

}
the mappings from (3.9) and (3.8) are written as follows

TX (ΞX (Mθ) θ) =




M4

θ 0

0 Mθ



, TZ (ΞZ (Mθ) θ) =




M4

θθ
2
2θ

2
1 +M4

θ(θ2 + θ1)
3

Mθθ2



,

S (ψab) =




ψ1ab

ψ2
2ab − ψ1ab



, G (ψab) =




ψ2ab 0

0 ψ2ab



, (3.11)

TG (ΞG (∆)ψab) =




∆ψ2ab 0

0 ∆2ψ2ab



, TS (ΞS (∆)ψab) =




ψ1ab∆

∆2ψ2
2ab −∆2ψ1ab



.

The essence of Hypotheses 1–3 is that, owing to the property Ξ(.) (ω) = Ξ(.) (ω)ω(t), the linear re-
gression equations with respect to the unknown parameters θ, ΘAB (θ) , ψd (θ) can be parametrized
on the basis of the measurable signals Yab(t) = LabY(t) = ∆(t)ψab (θ) and Yθ(t) = Mθ(t)θ, respec-
tively.

For instance, equation (3.11) can be rewritten as:

TZ
(

ΞZ (Mθ)Yθ
)

=




Y2
2θY

2
1θ+Mθ(Y2θ + Y1θ)

3

Y2θ



,

TG
(

ΞG (∆)Yab
)

=




Y2ab 0

0 ∆Y2ab



, TS
(

ΞS (∆)Yab
)

=




Y1ab

Y2
2ab −∆Y1ab



,

and therefore, we directly have the following measurable linear regression equations3

TZ
(

ΞZ (Mθ)Yθ
)

= TX
(

ΞX (Mθ)Yθ
)

ΘAB (θ) ,

TS
(

ΞS (∆)Yab
)

= TG
(

ΞG (∆)Yab
)

θ,

where the signals Yθ(t) and Mθ(t) are calculated in the following way using the second equation:

Yθ(t) = adj
{

TG
(

ΞG (∆)Yab
)}

TS
(

ΞS (∆)Yab
)

,

Mθ(t) = det
{

TG
(

ΞG (∆)Yab
)}

.

The requirement (3.7) and Hypotheses 1–3, despite being seemed as mathematically restrictive,
are practice-oriented and met for a large number of models of real technical systems.

3 A measurable regression equation means that its regressor and regressand are measurable or can be computed,
while its parameters are unknown.
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4. MAIN RESULT

The solvability conditions (3.7)–(3.10) are assumed to be met and the error equations for the
differences between (2.4) and (2.1), δ̂(t) and δ(t) are written:

˙̃x(t) = ΦT
(

x̂, u, δ̂
)

Θ̂AB(t)− L̂(t)ỹ(t)− ΦT (x, u, δ)ΘAB

= ΦT
(

x̂, u, δ̂
)

Θ̂AB(t)− L̂(t)ỹ(t)− ΦT(x, u, δ)ΘAB ± ΦT
(

x̂, u, δ̂
)

ΘAB

= ΦT
(

x̂, u, δ̂
)

Θ̃AB(t)− L̂(t)ỹ(t)− ΦT(x, u, δ)ΘAB +ΦT
(

x̂, u, δ̂
)

ΘAB

= A (θ) x̃(t) +D (θ) δ̃(t) + ΦT
(

x̂, u, δ̂
)

Θ̃AB(t)− L̂(t)ỹ(t)± L (θ) ỹ(t) (4.1)

= Amx̃(t) +D (θ)hTδ Φδ(t)x̃δ0(t) + ΦT
(

x̂, u, δ̂
)

Θ̃AB(t)− L̃(t)ỹ(t)

= Amx̃(t) + φT(t)κ̃(t),

δ̃(t) = hTδ Φδ(t)x̂δ0 − hTδ Φδ(t)xδ0 = hTδ Φδ(t)x̃δ0(t),

where

φT(t) =
[

D (θ)hTδ Φδ(t) ΦT
(

x̂, u, δ̂
)

−ỹ(t)In
]

and Am = A (θ)− L (θ)CT is a Hurwitz matrix in accordance with Assumption 3.

In order to achieve the goal (2.5), using equations (4.1), an estimation law is required to be
designed that ensures exponential convergence to zero of the error κ̃(t) and exponential stability
of the equilibrium point of the state observation error x̃(t). Thus, the problem of reconstruction of
the perturbation δ(t) and unmeasurable state x(t) of the system (2.1) is reduced to the problem of
parametric identification. Such problem, in its turn, can be solved if the assumptions (3.7)–(3.10)
are met. To design an estimation law that is based on Hypotheses 1–3 and the results of Lemma 1,
and ensures achievement of (2.5), we first parameterize the static regression equation with respect
to κ.

Lemma 2. The vector of unknown parameters κ satisfies the linear regression equation

Yκ(t) = Mκ(t)κ,

Yκ(t) = adj {blkdiag {Mxδ0(t)Inδ , MAB(t)InΘ
, ML(t)In}}






Yxδ0(t)
YAB(t)
YL(t)




,

Mκ(t) = det {blkdiag {Mxδ0(t)Inδ , MAB(t)InΘ
, ML(t)In}} ,

(4.2)

where:

1) the regressand and regressor of the regression YAB(t) = MAB(t)Θ (θ), using the auxilary
calculations

Yθ(t) = adj
{

TG
(

ΞG (∆)Yab
)}

TS
(

ΞS (∆)Yab
)

,

Mθ(t) = det
{

TG
(

ΞG (∆)Yab
)}

,

are defined as:

YAB(t) = adj
{

TX
(

ΞX (Mθ)Yθ
)}

TZ
(

ΞZ (Mθ)Yθ
)

,

MAB(t) = det
{

TX
(

ΞX (Mθ)Yθ
)}

.
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2) the regressand and regressor of the regression YL(t) = ML(t)L (θ) are calculated as:

YL(t) = adj
{

TP
(

ΞP (MAB)YAB
)}

TQ
(

ΞQ (MAB)YAB
)

,

ML(t) = det
{

TP
(

ΞP (MAB)YAB
)}

,

TP (ΞP (MAB)YAB) = vec−1
{

MAB adj
{

In ⊗ vec−1 (LATDΦYAB)

−MABΓ
T ⊗ In

}

vec
(

C(LBDΦYAB)
T
)}T

,

TQ (ΞQ (MAB)YAB) = det
{

In ⊗ vec−1 (LATDΦYAB)−MABΓ
T ⊗ In

}

LBDΦYAB.

3) the regression Yxδ0(t) = Mxδ0(t)xδ0, considering the equations

p(t) = ∆(t)q(t)− CT
0 Ω(t)LaY(t)− CT

0 P (t)LbY(t),

Yψd(t) = adj
{

TR
(

ΞR (Mθ)Yθ
)}

TW
(

ΞW (Mθ)Yθ
)

,

Mψd(t) = det
{

TR
(

ΞR (Mθ)Yθ
)}

and filtering

V̇ (t) = AKV (t) +
(

hTδ Φδ(t)⊗ In

)

, V (t0) = 0n×nnδ ,

ṗf (t) = −k2ϕ(t) + ∆(t)(Inδ ⊗ Yψd(t))
TV T(t)C0Mψd(t)p(t), pf (t0) = 0nδ ,

V̇f (t) = −k2Vf (t) + ∆2(t)(Inδ ⊗ Yψd(t))
TV T(t)C0C

T
0 V (t) (Inδ ⊗Yψd(t)) , Vf (t0) = 0nδ×nδ ,

(4.3)

is defined as follows:

Yxδ0(t) = Mxδ0(t)xδ0, Yxδ0(t) = adj {Vf (t)} pf (t), Mxδ0(t) = det {Vf (t)} ,

and, if the conditions ϕ(t)∈PE,
(

hTδ Φδ(t)⊗ In

)

∈PE are met, then for all t > t0 + T it holds that

|Mκ(t)| > Mκ > 0.

Proof of Lemma 2 and definitions of the matrices LAT ,LB,La,Lb are given in Appendix.

Having at hand the regression equation (4.2) with a scalar regressor Mκ(t), which is bounded
away from zero for all t > t0 +T , and using the results from [13, 18], the estimation law is derived,
which ensures that the goal (2.5) is achieved.

Theorem 1. Let the vector Dmax ∈R
n be known such that ‖D (θ)‖ 6 ‖Dmax‖, then, if ϕ(t)∈PE,

(

hTδ Φδ(t)⊗ In

)

∈ PE and γ0 > 0, γ1 > 0, then the estimation law

˙̂κ(t) = ˙̃κ(t) = −γ(t)Mκ(t) (Mκ(t)κ̂(t)− Yκ(t)) = −γ(t)M2
κ(t)κ̃(t),

γ(t): =







0, if ∆(t) < ρ ∈ [∆min; ∆max) ,

γ0λmax

(

φmax(t)φ
T
max(t)

)

+ γ1

M2
κ(t)

otherwise ,

φTmax(t) =
[

Dmaxh
T
δ Φδ(t) ΦT

(

x̂, u, δ̂
)

−ỹ(t)In
]

(4.4)

ensures the following properties:

1) ∀t > t0

[

x̃T(t) κ̃T(t)
]T

∈ L∞;

2) ∀t > t0 + T the error
[

x̃T(t) κ̃T(t)
]T

converges exponentially to zero with the rate, which

minimum value is directly proportional to γ1 > 0.
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Proof of the first part of theorem is similar to the proof of the second part of Theorem 1 from [18],
proof of the second part of theorem coincides up to the notation with the proof of Theorem 1
from [13].

Owing to the boundedness of hTδ Φδ(t), the exponential convergence of the error δ̃(t) follows

from the above-given theorem, which together with the exponential convergence of
[

x̃T(t) κ̃T(t)
]T

means that the goal (2.5) is achieved.

Remark 2. The results of Lemma 2 describe the procedure to transform the regression equa-
tion (3.3) with a scalar regressor with respect to the numerator and denominator parameters of the
transfer function Wuy (s) into a new equation (4.2) with respect to the observer parameters (2.4).
Considering such recalculation, the division operations by time-dependent signals are not used, the
parameters η(θ), ψab(θ) or θ are not identified, and Yκ(t) and Mκ(t) are calculated solely using
the signals Y(t) and ∆(t) that are measurable according to the results of Lemma 1.

Remark 3. The exponential stability conditions from the theorem are conservative. In prac-
tice, the knowledge of Dmax ∈R

n and ρ, as well as the implementation of the procedure to com-

pute the eigenvalue λmax

(

φmax(t)φ
T
max(t)

)

are not required, and the goal (2.5) can be achieved

using any sufficiently large constant coefficient γ >

(

γmin ∼ 1
M2

κ(t)

)

> 0, which is a majorant for

λmax

(

φmax(t)φ
T
max(t)

)

.

5. DISCUSSION

In this section, four additional technical comments on the obtained results are given.

Comment 1. In accordance with the lower bound from (A.48), the regressor Mκ(t) is propor-

tional to a power function ∆ℓθℓΘnΘ+ℓθℓΘn(n
3+n)+n2

δ(2ℓθℓψd+2)(t). Therefore, if ∆(t) ≪ 1 or ∆(t) ≫ 1,
then the computational elimination of the regressor excitation may occur inside a software imple-
mentation of the proposed approach:

∆(t) ≪ 1 ⇒ Mκ(t) → 0 or ∆(t) ≫ 1 ⇒ Mκ(t) → ∞,

i.e. Mκ(t) can become so small or so large that it can not be processed by a computer as its CPU
has a limited registers length (for example, in Matlab/Simulink the numbers that are smaller than
10−309 or larger than 10309 are considered equal to zero and infinity, respectively).

This problem does not concern the theoretical results of the paper, but is related solely to the
shortcomings of the existing computational devices. To prevent computational elimination of the
regressor excitation, a time-varying amplitude modulator k(t) should be used in accordance with
the method of regressor excitation normalization:

k(t) ∼
1

∆(t)
or k(t): =







1, if ∆(t) < ρ ∈ [∆min;∆max) ,

1

∆(t)
otherwise,

or k(t): =







1, if t < te ∈ [t0;∞) ,

1

∆(t)
otherwise.

(5.1)

Moreover, implementing the parameterization (4.2) in practice, it is advisable to apply a mul-
tiplication by an amplitude modulator similar to (5.1) after each multiplication by the adjoint
matrix adj{.}. The problem of computational elimination of the regressor excitation was discussed
in more detail in Section 3.3 of [18].
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Comment 2. The existing identification methods with the relaxed regressor excitation require-
ments do not allow one to ensure parametric convergence if the parameterized regression equation
is affected even by an exponentially decaying perturbation [19].

To solve this problem, in [20] it is proposed to use integral filtering with periodic resetting after a
given time interval. The method from [20] allows one to reduce the upper bound of the steady-state
parametric error iteratively.

An alternative approach is to extend the identification problem via parameterization of the ex-
ponentially decaying perturbation as a linear regression with measurable regressor and unknown
parameters—unmeasurable initial conditions [11–13]. This approach allows one to ensure the ex-
ponential convergence of the parametric error to zero when the relaxed regressor excitation require-
ments are met, but it is applicable only to perturbations that can be reduced to a linear regression
model. The exponentially decaying perturbation ǫ(t) of (3.3) cannot be represented in such a way.

Therefore, in contrast to the results of [11–13], in this paper, to achieve the goal (2.5), instead of
the relaxed conditions, a stricter one of the regressor persistent excitation (1.9) is required. If this
condition is met, then the filters with memory from [11–13] are not required, and the exponential
convergence of the parametric error is guaranteed even in case of existence of an exponentially
decaying perturbation in the parameterization in use.

It is possible to relax the requirement of the regressor persistent excitation by application of the
following filter instead of (3.4):

q̇(t) =

t∫

tǫ

e−k2τϕf (τ)(q(τ)−k1qf (τ)−β
T(Ff (τ)+ lyf (τ)))dτ, q (tǫ) = 02n,

ϕ̇(t) =

t∫

tǫ

e−k2τϕf (τ)ϕ
T
f (τ) dτ, ϕ (tǫ) = 02n×2n,

(5.2)

where tǫ ≫ t0 is a known time instant when the filtering is started.

If the time instant tǫ is chosen so that to satisfy the condition ε(t) = o (ϕ(t)η(θ)) from (A.26)
for all t > tǫ, and the regressor is finitely exciting over [tǫ, te], then the goal (2.5) is achieved under
the relaxed regressor excitation requirement. More detailed properties of the extended observer on
the basis of the parameterization with filtering (5.2) are studied in [21].

Comment 3. According to theorem 1, the proposed observer (2.4) + (4.4) ensures convergence
of the state observation error to zero only if the persistent excitation requirements ϕ(t)∈PE and
(

hTδ Φδ(t)⊗ In

)

∈PE are met. As the signal hTδ Φδ(t)⊗ In is known for all t∈ [t0, ∈ fty), then the

condition
(

hTδ Φδ(t)⊗ In

)

∈PE can be validated offline—before the observer implementation. The

condition ϕ(t)∈PE is, strictly speaking, unverifiable both offline and online, since it depends on all
previous and future values of the regressor ϕ(t). Usually, to meet the regressor persistent excitation
condition in linear systems parametrizations of the form (A.25), the control signal is formed so as
to belong to a class of functions that are sufficiently rich of some order [5, 6], i.e., the functions
that include a sufficient number of spectral lines (harmonics), as far as their Fourier expansion is
considered. Considering the parametrization (A.25), (3.4) from this paper, unfortunately, at this
stage, it is difficult to define the exact number of spectral lines that the control signal is to include
in order to meet the condition ϕ(t)∈PE. This is one of the main disadvantages of the proposed
solution, which significantly reduces its practical value.

However, owing to the implication from Proposition 1

ϕ(t) ∈ PE ⇔ ∃t > te ∈ [t0,∞) ∆(t) > ∆LB > 0 ,
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the proposed observer can be augmented with the following heuristic procedure to obtain the control
signal that ensures ϕ(t) ∈ PE.

Initialization. Set k = 1 and m = 1.

Step 1. Choose

u(t) = ub(t) +
m∑

i=1

aisin (ωit), (5.3)

where ub (t) is a stabilizing component of the control signal, for example, a P-controller, ai stands
for an arbitrary amplitude of the ith harmonic, and the frequencies ωi (t) are such that ωi 6= ωj for
all i 6= j.

Step 2. Apply the control signal u(t) to the system and calculate the value of ∆(t) over [tk−1, tk],
where tk − tk−1 is a sufficiently large value.

Step 3. If there exists ∆LB > 0 such that ∆(t) > ∆LB for all t ∈ [tk−1, tk], then, according to
Proposition 1, it holds that

t+T∫

t

ϕ (τ)ϕT (τ) dτ > αIn (5.4)

for all t ∈ [tk−1, tk].

Assume that the result obtained at [tk−1, tk] can be interpolated to the entire time axis [t0, ∞),
then, based on Proposition 1, a control signal is found that satisfies the condition ϕ(t) ∈ PE.

If there is no ∆LB > 0 such that ∆(t) > ∆LB for all t ∈ [tk−1, tk], then set m = m+ 1 and
k = k + 1, and go to Step 1.

The essence of the above-given algorithm is to increase iteratively the number of harmonics
in the control signal until the scalar regressor ∆ (t) becomes to be bounded away from zero over
a sufficiently large time interval. Assuming that there exists mmax such that, when m = mmax,
then the control signal (5.3) ensures that the condition ϕ(t)∈PE is met, then it can be claimed
that this algorithm, in a finite number of iterations mmax, allows one to generate a control signal
that ensures that the condition ϕ(t)∈PE is met. It should be noted that the above procedure is
not mathematically rigorous because it is designed under the strict assumption that the fact that
the condition (5.4) is met over a sufficiently large time interval means that the condition (5.4) is
satisfied over the entire time axis. Generally speaking, such a conclusion cannot be made. However,
as far as practical scenarios are concerned, the above-mentioned simplification is acceptable, and
the described procedure can be efficient.

Comment 4. If, in addition to Hypotheses 1–3, in the extended system

ẋe(t) = (Ae (θ) +Aδ) xe(t) +Beu(t) = ΦT (xe, u)ΘAB (θ) +Aδxe(t),

y(t) = CT
e xe(t), xe (t0) =

[

x0 xδ0

]T
,

(5.5)

Ae (θ) =

[

A (θ) D (θ)hTδ
0nδ×n 0nδ×nδ

]

, Aδ =

[

0n×n 0n×nδ
0nδ×n Aδ

]

,

Be (θ) =

[

B (θ)
0nδ

]

, xe(t) =

[

x(t)
xδ(t)

]

, Ce =

[

C

0nδ

]

,

ΦT (xe, u) =
[

In+nδ ⊗ xTe (t) In+nδ ⊗ uT(t)
]

DΦ ∈ R
(n+nδ)×nΘ ,

ΘAB (θ) = LΦ

[

vecT
(

AT
e (θ)

)

BT
e (θ)

]T
∈ R

nΘ
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the pair
(

CT
e , Ae

)

is observable, then the extended observer

˙̂xe(t) = ΦT (x̂e, u) Θ̂AB(t) +Aδx̂δ(t)− L̂e(t) (ŷ(t)− y(t)) , (5.6)

which is augmented only with the estimation laws for ΘAB (θ) and Le (θ), (i) does not require to
parametrize (4.3) the regression equation Yxδ0(t) = Mxδ0(t)xδ0, (ii) does not require to identify the
initial conditions xδ0 of the exosystem (2.2), and, (iii) if the condition (1.9) is met in case (3.4) is
used or the regressor finite excitation condition is met in case (5.2) is used, ensures the exponential
convergence to zero of the errors x̃(t), δ̃(t). In (5.5) L̂e(t) is an estimate of the vector Le (θ) ∈R

n+nδ ,
which ensures that the matrix Ae(θ) +Aδ has the desired algebraic spectrum. The linear regression
equation with respect to Le (θ) is parameterised in the same way as YL(t) = ML(t)L (θ), but in
the space n+ nδ. More detailed properties of the alternative version of the extended observer are
given in [21].

6. MATHEMATICAL MODELLING

In Matlab/Simulink the numerical experiments with the proposed adaptive observer have been
conducted. The simulation was done using numerical integration by the explicit Euler method with
a constant discretization step of τs = 10−4 s.

A two-mass elastic mechanical system shown in Fig. 1 was chosen as a plant.

Fig. 1. Two-mass elastic mechanical system.

Here c0 > 0, c1 > 0 denote spring stiffness, d > 0 is a damping coefficient, m1 > 0, m2 > 0 are
reduced masses of the bodies.

The mathematical model of the system under consideration was written as the following system
of differential equations:

ẋ =








0 1 0 0
−θ1 (θ2 + θ3) −2θ1θ4 θ1θ3 θ1θ4

0 0 0 1
θ5θ3 θ5θ4 −θ3θ5 −2θ4θ5















x1
x2
x3
x4







+








0
0
0
θ5







u+








0
θ1
0
0







δ,

y =
[

0 0 1 0
]

x,

(6.1)

where

θ = col
{

m−1
1 , c0, c1, d, m

−1
2

}

,

Θ(θ) = col {1, θ1 (θ2 + θ3) , θ1θ4, θ1θ3, θ3θ5, θ4θ5, θ1, θ5}.
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In the observer canonical form (3.1) the parameters of the system (6.1) were defined as follows:

ψa (θ) =









−2θ4 (θ1 + θ5)

−θ1
(
3θ5θ

2
4 + θ2 + θ3

)
− θ3θ5

−2θ1θ4θ5 (θ2 + θ3)

−θ1θ2θ3θ5









, ψb (θ) =









0

θ5

2θ1θ4θ5

θ1θ5 (θ2 + θ3)









,

ψd (θ) =
[

0 0 θ1θ4θ5 θ1θ3θ5

]T
,

(6.2)

from which it followed that the condition (3.7) was met for

ψab (θ) =











−2θ4 (θ1 + θ5)

−θ1
(

3θ5θ
2
4 + θ2 + θ3

)

− θ3θ5

θ1θ5 (θ2 + θ3)

2θ1θ4θ5

θ5











.

The regression equation (4.2) was parameterised using the transformations introduced in Hy-
potheses 1–3 and Lemma 2.

Step 1. The derivation of the parametrization Yθ(t) = Mθ(t)θ. The following set of the nonlinear
algebraic equations were solved with respect to θ

ψab (θ) =











−2θ4 (θ1 + θ5)

−θ1
(
3θ5θ

2
4 + θ2 + θ3

)
− θ3θ5

θ1θ5 (θ2 + θ3)

2θ1θ4θ5

θ5











=











ψ1ab

ψ2ab

ψ3ab

ψ4ab

ψ5ab











,

and, using such solution, the mappings S (ψab) and G (ψab) from (3.8) were obtained:

S (ψab) =

















ψ4abψ5ab

ψ3abψ5ab (−ψ4ab − ψ1abψ5ab)

+ ψ4ab

(

(ψ2abψ5ab + ψ3ab)ψ5ab +
3
4ψ4ab (−ψ4ab − ψ1abψ5ab)

)

(ψ2abψ5ab + ψ3ab)ψ5ab +
3
4ψ4ab (−ψ4ab − ψ1abψ5ab)

−ψ4ab − ψ1abψ5ab

ψ2
5ab

















,

G (ψab) = diag












−ψ4ab − ψ1abψ5ab

ψ4abψ
3
5ab

−ψ3
5ab

2ψ2
5ab

ψ5ab












.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 11 2023



ADAPTIVE OBSERVER OF STATE AND DISTURBANCES 1367

Then the mappings TS
(

ΞS (∆)Yab
)

, TG
(

ΞG (∆)Yab
)

were defined as follows:

TS
(

ΞS (∆)Yab
)

=

















Y4abY5ab

Y3abY5ab (−∆Y4ab − Y1abY5ab)

+ Y4ab

(

(Y2abY5ab +∆Y3ab)Y5ab +
3
4∆Y4ab (−∆Y4ab − Y1abY5ab)

)

(Y2abY5ab +∆Y3ab)Y5ab +
3
4Y4ab (−∆Y4ab − Y1abY5ab)

−∆Y4ab − Y1abY5ab

Y2
5ab

















,

TG
(

ΞG (∆)Yab
)

= diag













−∆Y4ab − Y1abY5ab

Y4abY
3
5ab

−Y3
5ab

2Y2
5ab

∆Y5ab













,

which allowed one to compute Yθ(t) and Mθ(t).

Step 2. Using the above-obtained equation Yθ(t) = Mθ(t)θ, the following mappings were ob-
tained

TZ
(

ΞZ (Mθ)Yθ
)

= col {Mθ, Y1θ (Y2θ + Y3θ) , Y1θY4θ, Y1θY3θ, Y3θY5θ, Y4θY5θ, Y1θ, Y5θ} ,

TX
(

ΞX (Mθ)Yθ
)

= blkdiag
{

Mθ, M
2
θI5, Mθ, Mθ

}

,

therefore, we could calculate YAB(t) and MAB(t).

Step 3. Having equation YAB(t) = MAB(t)ΘAB (θ) at hand and using equations from the second
statement of lemma 2, the values of YL(t) and ML(t) were computed.

Step 4. Applying equation Yθ(t) =Mθ(t)θ from the first step, the following mappings were ob-
tained:

TW
(

ΞW (Mθ)Yθ
)

= col {0, 0, Y1θY4θY5θ, Y1θY3θY5θ} ,

TR
(

ΞR (Mθ)Yθ
)

= diag
{

Mθ, Mθ, M
3
θ, M

3
θ

}

,

which allowed one to calculate Yψd(t), Mψd(t) and Yxδ0(t), Mxδ0(t) on the basis of equations from
the third statement of Lemma 2.

At this point, having YAB(t),YL(t),Yxδ0(t) at hand, equation (4.2) with measurable regres-
sand Yκ(t) and regressor Mκ(t) could be obtained, and the observer (2.4) with estimation law (4.4)
was going to be implemented.

The unknown parameters of the system (6.1), the disturbance exosystem (2.2) and exosys-
tem (2.3) parameters were picked as:

θ = [1 0.5 0.75 0.25 0.5]T, x0 =
[

0 0 −1 0
]T
, xδ0 =

[

−4 1
]T
,

Aδ =

[

0 1
−5 0

]

, hTδ =
[

1 0
]

, σ {Γ} =
[

−1 −1 −1 −1
]T
.

(6.3)
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Fig. 2. Behavior of x̃(t) and δ̃(t).

Fig. 3. Behaviour of Θ̃AB(t), L̃(t), x̃δ0(t).

The control signal u(t) was obtained from a P-controller with the reference signal that was
chosen by trial and error so as to ensure ϕ(t)∈PE:

u(t) = 50 (r(t)− y(t)) ,

r(t) = 25 sin (10t) + 25 sin (20t) + 100 cos (0.1t) .
(6.4)

The parameters of the filters (3.4)–(3.6), (4.3) and estimation law (4.4) were set as follows

det {sI4 −AK} = (s+ 1)4, G =

[

−4 1
−2 0

]

, l =
[

1 2
]T
,

β =
[

15 −5.5
]T
, k(t) =

{

1, if t < 5
∆−1(t), if t > 5,

k1 = 25, k2 = 0.1,

ρ = 10−4, γ0 = 10−9, γ1 = 1.

(6.5)
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Figure 2 shows the behavior of the state x̃(t) and the external perturbation δ̃(t) observation
errors.

The peaking in x̃(t) over [5, 15] was caused primarily the fact that the error equation (4.1)
with non-zero initial conditions [22] was included in the closed loop with L̂(t) (ŷ(t)− y(t)). The
peaking in δ̃(t) could be explained by the fact that the behavior of x̃δ0(t) was affected by the
perturbation ǫ(t).

Figure 3 depicts the behavior of the parametric errors Θ̃AB(t), L̃(t), and x̃δ0(t).

The oscillations of the obtained transients of the parametric errors Θ̃AB(t), L̃(t), x̃δ0(t) were
caused by the influence of the exponentially decaying perturbation ǫ(t) from the parameteriza-
tion (3.3). In general, the simulation results validated that the goal (2.5) was achieved.

7. CONCLUSION

An adaptive observer of state and perturbations for linear systems with overparameterization
is developed. If the condition of the regressor persistent excitation (sufficient richness of the con-
trol/reference signal) is met, the solution provides exponential convergence to zero of the observa-
tion errors of the system state and the external perturbation generated by a known exosystem with
unknown initial conditions. Unlike the closest analogues [10–12], the proposed observer allows one
to reconstruct not virtual but physical state of the system represented in an arbitrary state space
form.

The scopes of the further research can be:

— an application of the proposed observer to solve control problems with dynamic feedback;
— the relaxation of (1.9) by substituting (3.3) with a parametrization, which does not include ǫ(t)

(a preliminary result for this problem has been obtained in comment 2 and [21]);
— the extension of the obtained results to systems with new, possibly nonlinear, models of the

external perturbations;
— taking into consideration the additive disturbances, which affect the measurable output sig-

nal y(t) directly;
— following [12], to reduce the transients peaking amplitude by estimation of the state x(t) with

the help of an algebraic equation instead of the differential one (a preliminary result for this
problem has been obtained in [23]).
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APPENDIX

Proof of Lemma 1. The parameterization (3.3) is obtained as a combination of the results
from [12, 24] with the dynamic regressor extension and mixing procedure from [14, 19]. The proof
of lemma 1 is derived on the basis of Lemma 1 and Theorem 2 from [24]. To make it easier to
understand the adopted notation and ensure that the results of the paper are self-contained, we next
present the proof of this lemma in accordance with the one in [24]. In contrast to the results [24], in
this paper, owing to Assumption 2, β is known, which allows one not to avoid overparameterization
in (3.3) (see (A.23)).

Step 1. The following error is considered:

ξ̃(t) = ξ(t)− z(t)− Ω(t)ψa (θ)− P (t)ψb (θ) . (A.1)
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The time derivative of (A.1) is written:

˙̃
ξ(t) = A0ξ(t) + ψa(θ)y(t) + ψb(θ)u(t) + ψd(θ)δ(t)−AKz(t)

−Ky(t)− (AKΩ(t) + Iny(t))ψa(θ)− (AKP (t) + Inu(t))ψb(θ)

= A0ξ(t)−AKz(t)−Ky(t)−AKΩ(t)ψa(θ)−AKP (t)ψb(θ) + ψd(θ)δ(t)

= AK ξ̃(t) + ψd(θ)δ(t).

(A.2)

The solution of equation (A.2) is obtained as

ξ̃(t) = eAK(t−t0)ξ̃ (t0) + δ(t), (A.3)

where the external perturbation δ(t) is described as a set of equations
{

δ̇(t) = AKδ(t) + ψd (θ) δ(t),

vf (t) = CT
0 δ(t).

(A.4)

Having substituted (A.3) into (A.1), it is written:

eAK(t−t0)ξ̃ (t0) + δ(t) = ξ(t)− z(t)− Ω(t)ψa (θ)− P (t)ψb (θ) ,

m

ξ(t) = eAK(t−t0)ξ̃ (t0) + δ(t) + z(t) + Ω(t)ψa (θ) + P (t)ψb (θ) .

(A.5)

Equation (A.5) is multiplied by CT
0 to obtain:

y(t) = CT
0 ξ(t) = CT

0 z(t) + CT
0 Ω(t)ψa (θ) + CT

0 P (t)ψb (θ) + vf (t) + CT
0 e

AK(t−t0)ξ̃ (t0) . (A.6)

Considering (A.6), the function q = y(t)− CT
0 z(t) is differentiated:

q̇(t) = CT
0 Ω̇(t)ψa (θ) + CT

0 Ṗ (t)ψb (θ) + v̇f (t) + CT
0 AKe

AK(t−t0)ξ̃ (t0) . (A.7)

Step 2. The next aim is to parametrize the term v̇f (t) of equation (A.7) as a linear regression
equation with a measurable regressor. For this purpose, the system (A.4) is rewritten as a transfer
function:

vf (t) = CT
0 (sIn −AK)−1ψd (θ) δ(t) =Wf [δ(t)] . (A.8)

The derivative of the perturbation δ(t) is represented as:

δ̇(t) = hTδ Aδxδ(t) + δ (t0)Dδ(t), (A.9)

where Dδ(t) is a Dirac delta function.

A virtual signal δd(t) = hTδ Aδxδ(t) is introduced into consideration. Then the following equalities
hold

ẋδ(t) = Aδxδ(t),

δd(t) = h
T
δ xδ(t), h

T
δ = hTδ Aδ.

(A.10)

Equation (A.8) is differentiated, and then (A.9), (A.10) are substituted into the obtained result
to write:

v̇f = sWf [δ(t)] =Wf

[

δ̇(t)
]

=Wf

[

hTδ Aδxδ(t) + δ (t0)Dδ(t)
]

=Wf [δd(t)]
︸ ︷︷ ︸

υf (t)

+Wf [δ (t0)Dδ(t)] . (A.11)
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Thus, owing to the fact that the matrix AK is a Hurwitz one, it is sufficient to parametrize υf (t)
to parameterize v̇f (t). For this purpose, an auxiliary signal ζ(t) =Mδxδ(t) is considered, where the
transformation matrix Mδ is a solution of the Sylvester equation

MδAδ −GMδ = lh
T
δ , (A.12)

which has a unique solution [15, 16, 24] as, owing to Assumption 2, the pair
(

hTδ , Aδ

)

is observable

and, following the premises of this lemma, (G, l) is controllable and σ {Aδ} ∩ σ {G} = 0.

We differentiate ζ(t) to obtain:

ζ̇(t) =MδAδxδ(t) = GMδxδ(t) + lh
T
δ xδ(t) = Gζ(t) + lδd(t), (A.13)

form which, considering xδ(t) =M−1
δ ζ(t), it follows that

δd(t) = h
T
δM

−1
δ ζ = βTζ, β = h

T
δM

−1
δ . (A.14)

Taking into account (A.14), equation (A.11) is rewritten as:

v̇f (t) =Wf

[

βTζ(t)
]

+Wf [δ (t0)Dδ(t)]

= βTWf [ζ(t)] +Wf [δ (t0)Dδ(t)] = βTζw(t) +Wf [δ (t0)Dδ(t)] .
(A.15)

The signal υf (t) is filtered via (A.13) instead of δd(t):

ζf (t) = (sI −G)−1l [υf (t)] + eG(t−t0)ζf (t0) , (A.16)

then, owing to ζ(t) = (sI −G)−1l [δd(t)] + eG(t−t0)ζ (t0), the following equality holds:

ζw(t) =Wf [ζ(t)] =Wf

[

(sI −G)−1l [δd(t)] + eG(t−t0)ζ (t0)
]

= (sI −G)−1lWf [δd(t)] +Wf

[

eG(t−t0)ζ (t0)
]

= (sI −G)−1lυf +Wf

[

eG(t−t0)ζ (t0)
]

= ζf (t)− eG(t−t0)ζf (t0) +Wf

[

eG(t−t0)ζ (t0)
]

.

(A.17)

Having substituted (A.17) into (A.15), it is written:

v̇f (t) = βTζf (t)− βTeG(t−t0)ζf (t0) + βTWf

[

eG(t−t0)ξ (t0)
]

+Wf [δ (t0)Dδ(t)] . (A.18)

The following observer of state ζf (t) is introduced:

ζ̂f (t) = F (t) +H(t)ψb (θ) +N(t)ψa (θ) + ly(t). (A.19)
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Considering equations (A.7), (A.11), (A.16), (A.19), the error is differentiated ζ̃f (t) =

ζf (t)− ζ̂f (t) to obtain:

˙̃
ζf = Gζf (t) + lυf (t)−GF (t) −Gly(t) + lCT

0 ż(t)

−
(

GH(t)− lCT
0 Ṗ (t)

)

ψb (θ)−
(

GN(t)− lCT
0 Ω̇(t)

)

ψa (θ)

− lCT
0 ż(t)− lCT

0 Ω̇(t)ψa (θ)− lCT
0 Ṗ (t)ψb (θ)

− l (υf (t) +Wf [δ (t0)Dδ(t)])− lCT
0 AKe

AK(t−t0)ξ̃ (t0)

= Gζf (t)−GF (t)−Gly(t)−GH(t)ψb (θ)−GN(t)ψa (θ)
︸ ︷︷ ︸

Gζ̂f (t)

− lWf [δ (t0)Dδ(t)]− lCT
0 AKe

AK(t−t0)ξ̃ (t0)

= Gζ̃f − lCT
0 AKe

AK(t−t0)ξ̃ (t0)− lWf [δ (t0)Dδ(t)] .

(A.20)

The set of equations (A.20) is solved:

ζ̃f (t) = ζf (t)− ζ̂f (t) = eG(t−t0)ζ̃f (t0)− H

[

CT
0 AKe

AK(t−t0)ξ̃ (t0) +Wf [δ (t0)Dδ(t)]
]

, (A.21)

which allows one to rewrite (A.18) as follows:

v̇f (t) = βTζ̂f (t) + βTeG(t−t0)ζ̃f (t0)

−βTH
[

CT
0 AKe

AK(t−t0)ξ̃ (t0) +Wf [δ (t0)Dδ(t)]
]

−βTeG(t−t0)ζf (t0) + βTWf

[

eG(t−t0)ξ (t0)
]

+Wf [δ (t0)Dδ(t)]

= βT (F (t) + ly(t)) + βTH(t)ψb (θ) + βTN(t)ψa (θ)

+βTeG(t−t0)ζ̃f (t0)− βTH
[

CT
0 AKe

AK(t−t0)ξ̃ (t0) +Wf [δ (t0)Dδ(t)]
]

−βTeG(t−t0)ζf (t0) + βTWf

[

eG(t−t0)ξ (t0)
]

+Wf [δ (t0)Dδ(t)] ,

(A.22)

where H [.] = (sInδ −G)−1l [.] .

Equation (A.22) is substituted into (A.7) to obtain:

q̇(t) = CT
0 Ω̇(t)ψa (θ) + CT

0 Ṗ (t)ψb (θ)

+ βT (F (t) + ly(t)) + βTH(t)ψb (θ) + βTN(t)ψa (θ)

+ βTeG(t−t0)ζ̃f (t0)− βTH
[

CT
0 AKe

AK(t−t0)ξ̃ (t0) +Wf [δ (t0)Dδ(t)]
]

− βTeG(t−t0)ζf (t0) + βTWf

[

eG(t−t0)ξ (t0)
]

+Wf [δ (t0)Dδ(t)] + CT
0 AKe

AK(t−t0)ξ̃ (t0)

= ϕT(t)η (θ) + βT (F (t) + ly(t)) + ε(t),

(A.23)

where ε(t) are aggregated exponentially vanishing functions.

Step 3. The next aim is to transform the regression equation (A.23) into the form of (3.3) via
application of the dynamic regressor extension and mixing procedure. For this purpose, considering
(A.23), (3.5), the signal χ(t) = q(t)− k1qf (t) is differentiated to obtain:

χ̇(t) = ϕT(t)η (θ) + βT (F (t) + ly(t)) + ε(t)− k1

(

−k1qf (t) + q(t)
)

= −k1χ(t) + ϕT(t)η (θ) + βT (F (t) + ly(t)) + ε(t).
(A.24)
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The solution of the differential equation (A.24) allows one to write:

q(t)− k1qf (t)− βT (Ff (t) + lyf (t)) = e−k1(t−t0)q (t0) + ϕT
f (t)η (θ) + εf (t), (A.25)

where ε̇f (t) = −k1εf (t) + k1ε(t), εf (t0) = 0.

Owing to (A.25), the solution of the first differential equation from (3.4) satisfies the following
equation

q(t) = ϕ(t)η (θ) + ε(t), (A.26)

where ε̇(t) = −k2ε(t) + ϕf (t)
(

εf (t) + e−k1(t−t0)q (t0)
)

, ε (t0) = 02n.

Having multiplied equation (A.26) by k(t)adj {ϕ(t)} and applied the property

adj {ϕ(t)}ϕ(t) = det {ϕ(t)} I2n,

equation (3.3) is obtained with ǫ(t) = k(t)adj {ϕ(t)} ε(t).

In accordance with Lemma 6.8 from [6], when ϕ(t)∈PE, it also holds that ϕf (t)∈PE. Fol-
lowing Proposition 1, when ϕf (t)∈PE, then it holds that ∆(t) > ∆min >0. Since the signals
y(t), u(t) are bounded by Assumption 1, owing to the stability of the filters (3.4)–(3.6), the inequal-
ity ∆max >∆(t) holds for all t > t0. Then for all t > t0 + T it holds that ∆max > ∆(t) > ∆min > 0,
which completes the proof of lemma.

Proof of Lemma 2. According to definition 1 and hypothesis 1 and owing to

ΞS (∆) = ΞS (∆)∆(t), ΞG (∆) = ΞG (∆)∆(t),

Yab(t) = LabY(t) = ∆(t)Labη (θ) = ∆(t)ψab (θ) ,

ΞS (∆)∆(t)ψab (θ) = ΞS (∆)Yab(t),

ΞG (∆)∆(t)ψab (θ) = ΞG (∆)Yab(t)

it follows from (3.9) that

TS
(

ΞS (∆)Yab
)

= TG
(

ΞG (∆)Yab
)

θ. (A.27)

Then, having multiplied (A.27) by adj
{

TG
(

ΞG (∆)Yab
)}

, the following regression equation is

obtained

Yθ(t) = Mθ(t)θ, (A.28)

which is used together with (3.8) to write:

TZ
(

ΞZ (Mθ)Yθ
)

= TX
(

ΞX (Mθ)Yθ
)

ΘAB (θ) , (A.29a)

TW
(

ΞW (Mθ)Yθ
)

= TR
(

ΞR (Mθ)Yθ
)

ψd (θ) . (A.29b)

Having multiplied (A.29a) by adj
{

TX
(

ΞX (Mθ)Yθ
)}

, the regression equation YAB(t) =

MAB(t)ΘAB (θ) is obtained.

The next aim it to parametrize equation with respect to L (θ). If Assumption 2 is met, then,
following the generalized pole placement theory [15, 16], the vector L (θ) can be obtained as a
solution of the following set of equations

{

AT(θ)M −MΓ = CBT(θ),

BT(θ) = LT(θ)M,
(A.30)
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which has a unique solution [15, 16], as, following Assumption 3, the pair
(

AT(θ), C
)

is controllable,

the pair
(

BT(θ), Γ
)

is observable and σ
{

AT(θ)
}

∩ σ {Γ} = 0.

Having vectorized the first equation from (A.30) and considered the property vec (AB) =

(I ⊗A) vec (B) =
(

BT ⊗ I
)

vec (A), it is obtained that:

(

In ⊗AT(θ)− ΓT ⊗ In

)

vec (M) = vec
(

CBT(θ)
)

. (A.31)

As equations (A.30), (A.31) have unique solutions, then

det
{

In ⊗AT(θ)− ΓT ⊗ In

}

6= 0,

and therefore, having multiplied (A.31) by an adjoint matrix adj
{

In ⊗AT(θ)− ΓT ⊗ In

}

, it is
written:

det
{

In ⊗AT(θ)− ΓT ⊗ In

}

vec (M)

= adj
{

In ⊗AT(θ)− ΓT ⊗ In

}

vec
(

CBT(θ)
)

.
(A.32)

The obtained result is devectorized
(

vec−1 {.}
)

and substituted into the second equation of (A.30):

det
{

In ⊗AT(θ)− ΓT ⊗ In

}

B(θ)
︸ ︷︷ ︸

Q(ΘAB)

= vec−1
{

adj
{

In ⊗AT(θ)− ΓT ⊗ In

}

vec
(

CBT(θ)
)}T

︸ ︷︷ ︸

P(ΘAB)

L(θ),
(A.33)

where det {P (ΘAB)} 6= 0.

The following equalities are introduced:

MAB(t)A
T(θ) = vec−1 (LATDΦYAB(t)) ,

MAB(t)B
T(θ) = [LBDΦYAB(t)]

T,

MAB(t)B(θ) = LBDΦYAB(t).

(A.34)

Having multiplied (A.33) by ΠL (MAB) = Mn2+1
AB In, used the properties cndet {A} = det {cA},

cn−1adj {A} = adj {cA}, A∈R
n×n and substituted (A.34), it is obtained:

TP (ΞP (MAB)ΘAB) = ΠL (MAB)P (ΘAB) = Mn2+1
AB P (ΘAB)

= Mn2+1
AB vec−1

{

adj
{

In ⊗AT(θ)− ΓT ⊗ In

}

vec
(

CBT(θ)
)}T

= vec−1
{

MABadj
{

In ⊗ vec−1 (LATDΦYAB)−MABΓ
T ⊗ In

}

vec
(

C(LBDΦYAB)
T
)}T

,

TQ (ΞQ (MAB)ΘAB) = ΠL (MAB)Q (ΘAB) = Mn2+1
AB Q (ΘAB)

= Mn2+1
AB det

{

In ⊗AT(θ)− ΓT ⊗ In

}

B(θ)

= det
{

In ⊗ vec−1 (LATDΦYAB(t))−MAB(t)Γ
T ⊗ In

}

(LBDΦYAB(t)) ,

(A.35)

where ΞP (MAB) = ΞQ (MAB) = MAB(t).
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The following regression equation is written on the basis of equations (A.33) and (A.35):

TQ
(

ΞQ (MAB)YAB
)

= TP
(

ΞP (MAB)YAB
)

L(θ), (A.36)

where ΞP (MAB) = ΞQ (MAB) = 1.

Having multiplied (A.36) by adj
{

TP
(

ΞP (MAB)YAB
)}

, the regression equation YL(t) =

ML(t)L(θ) is obtained.

The next aim is to derive the regression equation with respect to xδ0. Using the properties of
the vectorization operation

vec
(

ψd(θ)h
T
δ Φδ(t)xδ0

)

=
(

xTδ0 ⊗ ψd(θ)
)

︸ ︷︷ ︸

n×nδ

vec
(

hTδ Φδ
)

︸ ︷︷ ︸

nδ

,

vec
((

xTδ0 ⊗ ψd(θ)
)

vec
(

hTδ Φδ(t)
))

=
(

hTδ Φδ(t)⊗ In

)

︸ ︷︷ ︸

n×nnδ

vec
(

xTδ0 ⊗ ψd(θ)
)

︸ ︷︷ ︸

nnδ

,

equation (3.1) is rewritten as follows:

ξ̇(t) = A0ξ(t) + ψa(θ)y(t) + ψb(θ)u(t)

+
(

hTδ Φδ(t)⊗ In

)

vec
(

xTδ0 ⊗ ψd(θ)
)

.
(A.37)

The following error is introduced:

e(t) = ξ(t)− z(t)− Ω(t)ψa(θ)− P (t)ψb(θ)− V (t)vec
(

xTδ0 ⊗ ψd(θ)
)

. (A.38)

Having differentiated (A.38), equation ė(t) = AKe(t) is obtained in a similar way as (A.2). Then,
having multiplied (A.38) by CT

0 , it is written:

q(t) = CT
0 e

AK(t−t0)e (t0) + CT
0 Ω(t)ψa(θ)

+ CT
0 P (t)ψb(θ) + CT

0 V (t)vec
(

xTδ0 ⊗ ψd(θ)
)

.
(A.39)

Using the properties

xTδ0 ⊗ ψd(θ) = ψd(θ)xδ0,

vec (ψd(θ)xδ0) = (Inδ ⊗ ψd(θ))
︸ ︷︷ ︸

nnδ×nδ

xδ0,

equation (A.39) is transformed into

q(t) = CT
0 e

AK(t−t0)e (t0) + CT
0 Ω(t)ψa(θ)

+ CT
0 P (t)ψb(θ) + CT

0 V (t)vec
(

xTδ0 ⊗ ψd(θ)
)

.
(A.40)

To compensate for the unknown terms CT
0 Ω(t)ψa(θ) + CT

0 P (t)ψb(θ), the following auxiliary
signal is introduced

pe(t) = ∆(t)CT
0 Ω(t)ψa(θ) + ∆(t)CT

0 P (t)ψb(θ)

= CT
0 Ω(t)LaY(t) + CT

0 P (t)LbY(t),
(A.41)
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where

LaY(t) = La∆(t)η(θ) = ∆(t)Laη(θ) = ∆(t)ψa(θ),

LbY(t) = ∆(t)Lbη(θ) = ∆(t)ψb(θ).

Having multiplied (A.40) by ∆(t) and subtracted (A.41) from the obtained result, it is written:

p(t) = ∆(t)q(t)− pe(t)

= ∆(t)CT
0 V (t) (Inδ ⊗ ψd(θ)) xδ0 +∆(t)CT

0 e
AK(t−t0)e (t0)

= ∆(t)CT
0 V (t) (Inδ ⊗ ψd(θ))xδ0 +∆(t)CT

0 e
AK(t−t0)e (t0) .

(A.42)

To implement the multiplier ψd(θ) indirectly, equation (A.29b) is multiplied by

adj
{

TR
(

ΞR (Mθ)Yθ
)}

:

Yψd(t) = Mψd(t)ψd(θ),

Yψd(t) = adj
{

TR
(

ΞR (Mθ)Yθ
)}

TW
(

ΞW (Mθ)Yθ
)

,

Mψd(t) = det
{

TR
(

ΞR (Mθ)Yθ
)}

.

(A.43)

The multiplication of (A.42) by Mψd(t) and substitution of (A.43) into the obtained result allow
one to write:

Mψd(t)p(t) = Mψd(t)∆(t)CT
0 V (t) (Inδ ⊗ ψd(θ))xδ0

= ∆(t)CT
0 V (t) (Inδ ⊗ Yψd(t)) xδ0.

(A.44)

Having filtered (A.44) via (4.3) and multiplied the obtained result by adj {Vf (t)}, the regression
equation Yxδ0(t) = Mxδ0(t)xδ0 is obtained, which completes proof of statement that equations (4.2)
can be formed on the basis of the measurable signals.

Following Lemma 1, if ϕ(t)∈PE, then for all t > t0 + T it holds that ∆(t) > ∆min > 0, and,
owing to Hypotheses 1–3 and proved inequalities:

det2 {X (θ)} > 0, det2 {R(θ)} > 0,

det2 {G (ψab)} > 0, det2 {P (ΘAB)} > 0,

det {Πθ (∆)} > ∆ℓθ(t), det {ΠΘ (Mθ)} > MℓΘ
θ (t),

det {Πψd (Mθ)} > M
ℓψd
θ (t), det {ΠL (MAB)} > Mn3+n

AB (t),

we have that, if ϕ(t)∈PE, then for all t > t0 + T the following holds:

|Mθ(t)| =
∣
∣
∣det

{

TG
(

ΞG (∆)Yab
)}∣

∣
∣ = |det {Πθ (∆)} det {G (ψab)}|

> |det {G (ψab)}|∆
ℓθ
min = Mθ > 0,

|MAB(t)| =
∣
∣
∣det

{

TX
(

ΞX (Mθ)Yθ
)}∣

∣
∣ = |det {ΠΘ (Mθ)} det {X (θ)}|

>

∣
∣
∣detℓΘ {G (ψab)}

∣
∣
∣ |det {X (θ)}|∆ℓθℓΘ

min = MAB > 0,

|Mψd(t)| = det
{

TR
(

ΞR (Mθ)Yθ
)}

= |det {Πψd (Mθ)} det {R(θ)}|

>

∣
∣
∣detℓψd {G (ψab)}

∣
∣
∣ |det {R(θ)}|∆

ℓθℓψd
min = Mψd > 0,

|ML(t)| =
∣
∣
∣det

{

TP
(

ΞP (MAB)YAB
)}∣

∣
∣ = |det {ΠL (MAB)} det {P (ΘAB)}|

> |det {P (ΘAB)}|M
n3+n
AB > |det {P (ΘAB)}|M

n3+n
AB = ML > 0.
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To obtain the lower bound for the regressor Mxδ0(t), first of all, such bound needs to be derived

for the solution of the differential equation for Vf (t) in case ϕ(t)∈PE and
(

hTδ Φδ(t)⊗ In

)

∈PE:

Vf (t) =

t∫

t0

e−k2(t−τ )∆2(τ)(Inδ ⊗ Yψd(τ))
TV T(τ)C0C

T
0 V (τ) (Inδ ⊗ Yψd(τ)) dτ

= (Inδ ⊗ ψd(θ))
T

t∫

t0

e−k2(t−τ)M2
ψd
(τ)∆2(τ)V T(τ)C0C

T
0 V (τ)dτ (Inδ ⊗ ψd(θ))

> M2
ψd
∆2

min(Inδ ⊗ ψd(θ))
T

t∫

t0

e−k2(t−τ )V T(τ)C0C
T
0 V (τ)dτ (Inδ ⊗ ψd(θ))

> M2
ψd
∆2

min(Inδ ⊗ ψd(θ))
T






t−kT∫

t0

e−k2(t−τ )V T(τ)C0C
T
0 V (τ)dτ

+
k∑

k=1

t−kT+T∫

t−kT

e−k2(t−τ )V T(τ)C0C
T
0 V (τ)dτ




 (Inδ ⊗ ψd(θ))

> M2
ψd
∆2

mine
−k2t(Inδ ⊗ ψd(θ))

T
k∑

k=1

t−kT+T∫

t−kT

ek2τV T(τ)C0C
T
0 V (τ)dτ (Inδ ⊗ ψd(θ))

> M2
ψd
∆2

min(Inδ ⊗ ψd(θ))
T

k∑

k=1

e−k2kT
t−kT+T∫

t−kT

V T(τ)C0C
T
0 V (τ)dτ (Inδ ⊗ ψd(θ)) ,

where k > k > 1 are integers.

In accordance with Lemma 6.8 from [6], if
(

hTδ Φδ(t)⊗ In

)

∈PE, then the following inequality

holds

t+T∫

t

V T(τ)C0C
T
0 V (τ)dτ > αInnδ , (A.45)

and, using the properties of the Kronecker product, it is obtained that:

(Inδ ⊗ ψd(θ))
T (Inδ ⊗ ψd(θ))
︸ ︷︷ ︸

nnδ×nδ

=
(

ITnδ ⊗ ψT
d (θ)

)

(Inδ ⊗ ψd(θ))

= Inδ ⊗ ψT
d (θ)ψd(θ) = ψT

d (θ)ψd(θ)
︸ ︷︷ ︸

>0

Inδ .
(A.46)

Then for all t > t0 + T it holds that:

Vf (t) > M2
ψd
∆2

minα
k∑

k=1

e−k2kTψT
d (θ)ψd(θ)

︸ ︷︷ ︸

>0

Inδ >
nδ

√

Mxδ0Inδ , (A.47)

from which for all t > t0 + T we have Mxδ0 > Mxδ0 > 0, which allows one to obtain:

∀t > t0 + T |Mκ(t)| =
∣
∣
∣MnΘ

AB(t)M
n
L(t)M

nδ
xδ0

(t)
∣
∣
∣ > MnΘ

ABM
n
LM

nδ
xδ0

= Mκ > 0. (A.48)

This completes proof of Lemma 2.
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