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Abstract—This paper considers a class of systems called density systems. For such systems, the
derivative of a quadratic function depends on some function termed the density function. The
latter function is used to define the properties of the space affecting the behavior of the systems
under consideration. The role of density systems in control law design is shown. Control systems
are constructed for plants with known and unknown parameters. The theoretical results are
illustrated by numerical simulation.
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1. INTRODUCTION

We study a class of dynamic normal-from systems whose right-hand side depends on some
function defining the properties of the space and affecting the system behavior. This function will
be called the density function. All relevant definitions will be provided in the main part of the
paper.

A particular class of such systems was considered in [1–8]. The (in)stability of a system ẋ = f(x)
in the plane was first analyzed by introducing a new system ẋ = ρ(x)f(x) with an auxiliary function
ρ(x) > 0 for all x in the pioneering book [1]. Then, the (in)stability of such systems was studied us-
ing the properties of the divergence and phase velocity vector flow; see [2–8]. The function ρ(x) was
called the density function [4]. In [5–8], a connection was established between the obtained results
and the continuity equation [9], which arises in electromagnetism, wave theory, fluid dynamics,
mechanics of deformable solids, and quantum mechanics.

Several control methods proposed in [10–14] ensure that controlled signals are in given sets. This
goal is achieved by introducing an auxiliary function through an appropriate control law; the form
of this function determines the corresponding properties in the closed loop system. For example,
funnel control and control with prescribed performance were presented in [10, 12] and in [11],
respectively; under these control laws, transients belong to a pipe converging to the neighborhood
of zero. The method proposed in [13, 14] generalizes the results of [10–12], ensuring that the output
variables will be in a given pipe (possibly asymmetric with respect to the equilibrium and without
convergence to a given constant).

This paper is devoted to a class of systems depending, explicitly or implicitly, on a density
function. This function will be used to define the density of the space in the sense of distinguishing
(in)stability domains and forbidden domains (where the system has no solutions). The behavior of
the system under consideration will depend on the value of the density function.
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The presentation has the following distinctive features:

(1) In contrast to [1–8], the density function is not necessarily multiplied by the entire right-hand
side of the system.

(2) In contrast to [10–14], the density function may be present implicitly on the right-hand side
of the system.

(3) In contrast to [10–14], the density function can ensure system solutions in an unbounded set
with forbidden domains and the boundaries of these sets can be defined by continuous (under
some assumptions, even discontinuous) functions in all arguments.

The remainder of this paper is organized as follows. Section 2 presents motivating examples as
well as the definitions of a density function and a density system. Some properties of these systems
are also demonstrated. In Section 3, the theoretical results are applied to design control laws for
plants with known and unknown parameters. In addition, the control schemes are numerically
simulated to confirm theoretical conclusions.

We adopt the following notations: Rn is the n-dimensional Euclidean space with the norm | · |;
R+ (R−) is the set of positive (negative, respectively) real numbers; p = d/dt indicates the differ-
entiation operator; finally, λ stands for the complex variable.

2. MOTIVATING EXAMPLES. DEFINITIONS

Prior to introducing the main definitions, we consider two examples as follows.

Example 1. As is well known, the solutions of the system

ẋ = −x, x ∈ R, (1)

asymptotically vanish. Multiplying the right-hand side of this system by a function ρ(x, t):
R× [0,+∞) → R that is continuous in t and locally Lipschitz in x, we write (1) as

ẋ = −ρ(x, t)x. (2)

Obviously, the behavior of system (2) depends on the properties of ρ(x, t). The function ρ(x, t) can
be used to define some properties and constraints in the space (x, t), thereby affecting the quality
of transients of the original system (1) and changing them qualitatively. In this context, ρ(x, t)
will be called a density function. Here are several examples of this function and the corresponding
behavior of the new system (2).

1. The density function ρ(x, t) = α > 0 allows preserving the single equilibrium x = 0, takes the
same positive value for any x and t, and hence has no qualitative effect on the exponential stability
of the trajectories of the original system (1) (see Fig. 1 on the left) except the rate of convergence
of the solution of (2) to the equilibrium depending on the value α. Indeed, choosing the Lyapunov
function V = 0.5x2 yields V̇ = −αx2 < 0 in the domain DS = R \ {0}.

2. Consider the density function ρ(x, t) = α
w(t)−|x(t)| with a continuous function w(t) > 0. The

function ρ(x, t) takes positive values in the domainDS = {x ∈ R : −w < x < w}, and ρ(x, t) → +∞
as |x− w| → 0 in DS . These properties ensure the uniform asymptotic stability of the equilibrium
x = 0 under the initial conditions x(0) ∈ (−w(0), w(0)). In addition, the system trajectories will
never leave this domain (see Fig. 1 on the right). Choosing the quadratic function V = 0.5x2 yields
V̇ = − α

w−|x|x
2 < 0 in the domain x ∈ DS \ {0}, which confirms the conclusions drawn.

3. Consider the density function ρ(x, t) = α[x(t)− w(t)]arctan (x/ǫ) with a continuous function
w(t) and a sufficiently large positive number ǫ. The function ρ(x, t) takes positive values in the do-
main DS = {x∈R : x∈ (−∞, 0) ∪ (w,+∞) for w > 0 and x∈ (−∞, w) ∪ (0,+∞) for w < 0} and
negative values in the domain DU = {x ∈ R : x ∈ (0, w) for w > 0 and x ∈ (w, 0) for w < 0}, which

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 11 2023



DENSITY SYSTEMS: ANALYSIS AND CONTROL 1319

t

x

0

x(t)

t

x

0

x(t)

w(t)

-w(t)

DS

DS

Fig. 1. Transients in system (2) with the density functions ρ(x, t) = α (left) and ρ(x, t) = α

w(t)−|x(t)|

(right).

t

x

0

x(t)

w(t)

DU

DS

DS t

x

0

DU

DS

Fig. 2. Transients in system (2) with the density functions ρ(x, t) = α[x(t) − w(t)]arctan(x/ǫ) (left)

and ρ(x, t) = α ln w(t)−x(t)
x(t)−w(t) (right).

t

x

0

DU

DU

DS

DS

Fig. 3. Transients in system (2) with the density function ρ(x, t) = α ln(x(t) − g(t)).

ensures tracking of the trajectory w(t) by x(t) (see Fig. 2 on the left). Choosing the quadratic func-
tion V = 0.5x2 yields V̇ = α[x−w]arctan (x/ǫ)x2 < 0 for x ∈ DS and V̇ > 0 for x ∈ DU .

4. Consider the density function ρ(x, t) = −α ln w(t)−x(t)
x(t)−w(t) with continuous functions w(t) >

w(t) > 0. Let us denote w = 0.5[w +w], where ρ(x, t) = 0 for x = w and any t. The function ρ(x, t)
takes positive values in the domain DS = {x ∈ R : w < x < w} and negative values in the domain
DU = {x ∈ R : w < x < w}, which ensures tracking of the trajectory w(t) by x(t). In the shaded
domain, system (2) has no solutions (see Fig. 2 on the right). In addition, the system trajectories
will never leave the domainDS ∪DU since |ρ(x, t)| → +∞ as x approaches the boundaries w and w.
Choosing the quadratic function V = 0.5x2 yields V̇ = α ln w−x

x−w
x2 < 0 for x ∈ DS and V̇ > 0 for

x ∈ DU , which confirms tracking of the trajectory w(t) by x(t).
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5. Consider now ρ(x, t) = α ln(x(t)− g(t)) with a continuous function g(t) > 0. Let us denote
w = 1 + g, where ρ(x, t) = 0 for x = w and any t. The function ρ(x, t) takes positive values in the
domainDS = {x ∈ R+:w<x<+∞} and negative values in the domainDU = {x∈R+: g <x<w},
which ensures tracking of the trajectory w(t) by x(t) (see Fig. 3). In addition, the system trajectories
will never enter the shaded domain: when approaching the boundary g(t), we have ρ(x, t) → −∞
and, consequently, x(t) moves along the surface (see Fig. 3). Choosing the quadratic function
V = 0.5x2 yields V̇ = −α ln(x− g)x2 < 0 for x ∈ DS and V̇ > 0 for x ∈ DU .

Remark 1. Here, we study the possibility of analyzing dynamic systems with a discontinuous
right-hand side in t and x, including the density function ρ(x, t).

Consider first a nonautonomous system of the general form ẋ = f(x, t) with x ∈ R
n. Let the

function f(x, t) be defined in some open domain D of the variables (x, t). The function f(x, t) is
said to satisfy the Carathéodory condition [15] if it is continuous in x for almost all t and piecewise
continuous in t for all x (assuming measurability in t is sufficient) and, for any compact set G ⊂ D,
there exists a nonnegative integrable function m(t) such that |f(x, t)| 6 m(t) for all (x, t) ∈ G.

If the function f(x, t) satisfies the Carathéodory condition, then by Theorems 1.1.1.1 and 1.1.4
of [15], for any initial conditions from the domain D, there exists a locally absolutely continuous
solution x(t) of the system ẋ = f(x, t). The equation ẋ(t) = f(x(t), t) holds for almost all t. The
derivative of x(t) may not exist for those t at which the function f(x, t) suffers a jump in t.
Furthermore, either the solution x(t) is defined on [0,+∞), or for some finite t0, the solution x(t)
tends to the boundary of the domain D as t → t0. If the function f(x, t) is locally Lipschitz in x,
then by Theorem 1.1.2 of [15] the solution is unique.

Consider now system (2) from Example 1. If the function ρ(x, t) satisfies the Carathéodory
condition, then this system has a locally absolutely continuous solution; if the function ρ(x, t) is
also locally Lipschitz in x, then this solution is unique.

We proceed to case 2 of Example 1. As the domain D, we define the set of all those (x, t) not
belonging to the closures of the graphs of the functions w(t) and −w(t). For example, let w(t) = 2
for t ∈ [0, 1] and w(t) = 1 for t > 1; in this case, then not only the graph of w(t) but also the
point (1, 1) must be excluded from the domain D. The function ρ(x, t) satisfies the Carathéodory
condition and is locally Lipschitz in x. Therefore, the equation ẋ = −ρ(x, t)x has a unique locally
absolutely continuous solution that is either defined on the entire axis or, for some finite t0, the
distance from (x(t), t) to the boundary of D will vanish as t → t0.

Consider the Lyapunov function V (x) = 0.5x2. We take the solution x(t) and examine the
function V (x(t)) that is locally absolutely continuous. By the differentiability theorem of a complex
function, V̇ = −ρ(x(t), t)x(t)2 6 0 for almost all t. Due to absolute continuity, V (t)− V (0) =
∫ t
0 V̇ (s)ds 6 0 for any t. (An absolutely continuous function can be reconstructed through the
integral over its derivative; see the proof of this result in [16].) The inequality V (t) 6 V (0) implies
that the equilibrium is stable. Its asymptotic stability can be established using LaSalle’s theorem for
nonautonomous systems (Theorem 1 of [17]) if the set {x : |x| < w(t)} contains a pipe of constant
nonzero width and the function w(t) is not infinitely increasing. If w(t) → 0 as t → ∞, then
asymptotic stability simply follows from the fact that the solution remains in the domain DS .

Here, however, a reserve concerning the piecewise continuity of w(t) is required. It may happen
that the solutions from the domain DS will leave this domain. For example, let w(t) = 2 for
t ∈ [0, t0] and w(t) = 1 for t > t0. If t0 is small enough and the initial condition x(0) is close to 2
or −2, as t → t0, the trajectory x(t) will simply smash into the wall formed by the jump of the
function w(t). The existence theorem guarantees that this solution is continuable further, but the
stability analysis is not applicable in this case. Such a solution will jump out of the domain DS

and increase infinitely.
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Under a continuous function w(t), it is easy to show that the solutions with initial conditions
from DS will not leave the domain DS . However, for a piecewise continuous function w(t), this
property generally fails. If the function w(t) has many jumps, it may turn out that some solutions
starting in DS will jump out of this domain when smashing into the walls formed by jumps of the
function w(t). If the solution remains in the domain DS , it will tend to the equilibrium.

When considering differential equations with a discontinuous right-hand side in x (or in t as
well [18, 19]), it is necessary to understand the solutions of such systems in the Filippov sense [15].
In case 2 of Example 1, we can then consider the function ρ(x, t) = α[x(t)−w(t)]sgn(x), where sgn(·)
is the sign function. The stability of discontinuous nonautonomous systems was studied in detail,
e.g., in [18–21].

Thus, it is possible to examine below dynamic systems with a discontinuous right-hand side,
including discontinuous functions ρ(x, t). However, such systems complicate the analysis due to
justifying the choice of initial conditions, the frequency and magnitude of jumps of the function, etc.
Recall that this paper is devoted to studying the behavior of dynamic systems depending on the
properties of the density function. For the sake of simplicity, all theoretical results will be therefore
formulated for dynamic systems with a right-hand side continuous in t and locally Lipschitz in x.
Still, for illustration purposes, some examples may contain discontinuous right-hand sides.

Well then, Example 1 has demonstrated how a density function ρ(x, t) defined in the space (x, t)
can qualitatively affect the transients of the original system (1). The next example shows that the
density function need not be multiplied by the entire right-hand side, as in Example 1 (see (1)
and (2)) but can be explicitly or implicitly present on the right-hand side of the system.

Example 2. Consider the system

ẋ1 = x2 − ρ1(x, t)x1,

ẋ2 = −x1 − ρ2(x, t)x2,
(3)

where ρ1(x, t) and ρ2(x, t) are continuous functions in t and x on R
2 × [0,+∞). We choose the

quadratic function
V = 0.5(x21 + x22). (4)

Taking the total time derivative of this function along the solutions of (3) yields

V̇ = −ρ1x
2
1 − ρ2x

2
2. (5)

1. Let ρ1 = ρ2 = ρ = ln g−|x1|β−|x2|β

|x1|β+|x2|β−g
, where β > 0 (for 0 < β < 1, see Remark 1) and g(t) >

g(t) > 0 are continuous functions. We have ρ = 0 for |x1|β + |x2|β = g, where g = 0.5(g + g). Then

V̇ < 0 for ρ(x, t) > 0, i.e., in the domain DS = {x ∈ R
2 : g < |x1|β + |x2|β < g}, and V̇ > 0 for

ρ(x, t) < 0, i.e., in the domain DU = {x ∈ R
2 : g < |x1|β + |x2|β < g}. In this case, the density

function ρ(x, t) is explicitly present in system (3) but is not multiplied by the entire right-hand
side, as in Example 1. Figure 4 shows the simulation results for β = 1, g = 3, g = 2 (left) and
β = 0.6, g = 30.6, g = 1 (right) under x(0) = col{0, 2, 5}.

Hereinafter:

• The gray domains in the figures mean that the density function is chosen so that there are
no solutions of the system in these domains. (At the boundary of such a domain, the density
value increases to infinity.)

• The point curve corresponds to the zero value of the density function and, accordingly, this
curve is the boundary separating the stable DS and unstable DU domains.

2. Let ρ1 = 1− x21 and ρ2 = −x21. Then V̇ = −ρ(x, t)x21 < 0 for ρ(x, t) = x21 + x22 − 1 > 0 in
the domain DS = {x ∈ R

2 : x21 + x22 > 1 and x1 6= 0}, and V̇ > 0 for ρ(x, t) < 0 in the domain

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 11 2023
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DU = {x ∈ R
2 : x21 + x22 < 1 and x1 6= 0}. In this case, unlike the previous one, the density func-

tion ρ(x, t) is implicitly present in (3). However, in contrast to the previous case, the value of
the density function does not affect system (3) everywhere (i.e., V̇ = 0 for x1 = 0 regardless of the
value of ρ). Figure 5 demonstrates the simulation results under x(0) = col{2, 1}.

3. Let ρ1 = α ln(|x1|β + |x2|β − 1), α > 0, β > 0 (for 0 < β < 1, see Remark 1), and ρ2 = 0.
Then V̇ = −ρ(x, t)x21 < 0 for ρ(x, t) = α ln(|x1|β + |x2|β − 1) > 0 in the domain DS = {x ∈ R

2 :
|x1|β + |x2|β > 2 and x1 6= 0}, and V̇ > 0 for ρ(x, t) < 0 in the domain DU = {x ∈ R

2 : 1 < |x1|β+
|x2|β < 2 and x1 6= 0}. In this case, the density function ρ(x, t) is present in just one of equa-
tions (3), in contrast to cases 1 and 2. However, as in case 2, the density function has no effect on
system (3) everywhere. Figure 6 demonstrates the simulation results for β = 1 (left) and β = 0.5
(right) under α = 20 and x(0) = col{2, 2}.

Consider now the dynamic system

ẋ = f(x, t), (6)

where t > 0, x ∈ D ⊂ R
n denotes the state vector, and f : D × [0,+∞) → R

n is a function contin-
uous in t and locally Lipschitz in x on D × [0,+∞). The possibility of studying systems (6) with
a discontinuous right-hand side has been discussed in Remark 1.

Definition 1. System (6) is called a density system with a density function ρ(x, t) : D×[0,+∞) →
R if there exists a continuously differentiable function V (x, t) : D × [0,+∞) → R such that:

(a) w1(x) 6 V (x, t) 6 w2(x),

(b) V̇ 6 ρ(x, t)W1(x) 6 0 or V̇ > ρ(x, t)W2(x) > 0

for any t > 0 and x ∈ D. Here, ρ(x, t) is a function continuous in t and locally Lipschitz in x, w1(x)
and w2(x) are positive definite functions, and W1(x) and W2(x) are continuous nonzero (except
the equilibrium) functions in D.

Definition 2. If the functions W1(x) and W2(x) in Definition 1 are continuous in D, then sys-
tem (6) is called a weak density system.

Definition 3. If V̇ 6 ρ(x, t)W1(x) < or V̇ > ρ(x, t)W2(x) > 0 in condition (b) of Definition 1,
then system (6) is called a strict density system.

Definition 4. If V̇ 6 ρ(x, t)W1(x) 6 0 in the domain DS × [0,+∞), then the density function
ρ(x, t) and the domainDS are said to be stable. If V̇ > ρ(x, t)W2(x)> 0 in the domainDU × [0,+∞),
then the density function ρ(x, t) and the domain DU are said to be unstable.

Proposition 1. Assume that system (6) is a strict density system in the domains DS and DU .
If for each t, V (xs, t)− V (xu, t) > 0, where xs ∈ DS and xu ∈ DU , then the system trajectories are

attracted to the separation boundary of the domains DS and DU . If system (6) satisfies the condi-

tion V (xs, t)− V (xu, t) < 0 for each t, then the system trajectories move away from the separation

boundary of the domains DS and DU .

Proof. Let V (xs, t)− V (xu, t) > 0 for each t > 0, where xs ∈ DS and xu ∈ DU . Since the system
is a strict density system, by Definition 3 we have V̇ 6 ρ(x, t)W1(x) < 0 in the domain DS and
V̇ > ρ(x, t)W2(x) > 0 in the domain DU . Hence, the separation boundary of the domains DS and
DU is a set attracting the system trajectories.

Now let V (xs, t)− V (xu, t) < 0 for each t > 0, where xs ∈ DS and xu ∈ DU . According to
Definition 3, we have V̇ 6 ρ(x, t)W1(x) < 0 in the domain DS and V̇ > −ρ(x, t)W2(x) > 0 in the
domain DU . Hence, the separation boundary of the domains DS and DU is a set left by the system
trajectories.

Remark 2. In Proposition 1 and its proof, the attraction of trajectories to some set covers the
cases where trajectories approach this set over time or belong to some neighborhood of this set.
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Note that the neighborhood size can remain constant or increase with time. It depends on the
value of the space density. Here are some limiting cases:

• If in the neighborhood of the boundary separating the domains DS and DU the value of the
density function decreases to zero, the system trajectories will not approach this boundary.
Therefore, they can be in the neighborhood of this boundary or move far from it.

• If in the neighborhood of the boundary separating the domains DS and DU the value of the
density function increases infinitely, the system trajectories will approach this boundary.

To illustrate Proposition 1 and Remark 2, we give another example as follows.

Example 3. Consider system (2) again but with x ∈ R+.

Choosing the quadratic function V = 0.5x2 yields V̇ = −ρ(x, t)x2. Hence, V̇ < 0 in the domain
DS = {x, t ∈ R+ : ρ(x, t) > 0} and V̇ > 0 in the domain DU = {x, t ∈ R+ : ρ(x, t) < 0}.

By Definition 3, system (2) is a strict density system for x ∈ R+. Analyzing Proposition 1, we fix
an arbitrary time instant t = t1. Then V (xs(t1))− V (xu(t1)) > 0, and this inequality is obviously
valid for any fixed t. According to Proposition 1, the system trajectories will be attracted to the
separation boundary of the domains DS and DU .

Let the density function be ρ(x, t) = x− w, where w(t) = et. In this case, limt→∞(w(t)−x(t)) =
const (see Fig. 7 on the left). If w(t) = ee

t

, the difference between w(t) and x(t) increases with time
(see Fig. 7 on the right). This fact can be explained as follows: w(t) is an unbounded function,
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whereas the density |ρ(x, t)| decreases for x approaching w. As a result, x(t) “tries to approach”
w(t) but fails due to the low density of the space in the neighborhood of w(t) and a high rate of
change of w(t).

Let the density function be ρ = w arctanx−w
ǫ

(or ρ = w sgn(x− w) due to Remark 1), ǫ > 0 be a

sufficiently large number, and w(t) = et or w(t) = ee
t

. In this case, the density of the space in the
neighborhood of w(t) grows with increasing w(t), which ensures the approach of x to w as t → ∞
(see Fig. 8).

When studying density systems, we will also distinguish special domains. They have been
considered earlier as gray domains in the figures. Here is a rigorous definition.

Definition 5. If V̇ 6 ρ(x, t)W1(x) < 0 in the neighborhood of a domain Dbh × [0,+∞), there
are no solutions of (6) in this domain, and the value of the density function grows infinitely when
approaching it, then the domain Dbh is said to be absolutely stable.

Definition 6. If V̇ > ρ(x, t)W2(x) > 0 in the neighborhood of a domain Dwh × [0,+∞), there
are no solutions of (6) in this domain, and the value of the density function grows infinitely when
approaching it, then the domain Dwh is said to be absolutely unstable.
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Example 4. Consider system (3) with ρ1(x, t) = ρ2(x, t) = ρ(x). Choosing the quadratic func-
tion (4) yields V̇ = −ρ(x)(x21 + x22).

If ρ(x) = e(x
2

1
+x2

2
−1)−0.98

, then all trajectories tend to the domain Dbh = {x ∈ R
2 : x21 + x22 6 1}

(see Fig. 9 on the left). That is, from any initial conditions, the system trajectories will be attracted
to Dbh, where the value of the density function grows to infinity when approaching the boundary of
this domain. If ρ(x) = − ln(x21 + x22 − 1), the trajectories with initial conditions from the domain
x21 + x22 >

√
2 will remain in this domain, but all trajectories with initial conditions from the domain

1 6 x21 + x22 6
√
2 cannot leave this region and will be attracted to the domain Dbh = {x ∈ R

2 :
x21+x22 6 1} (see Fig. 9 on the right), where the density function grows to infinity when approaching
the boundary of Dbh.

If ρ(x) = −e(x
2

1
+x2

2
−1)−0.98

, all trajectories will move away from the domainDwh = {x ∈ R
2 : x21+

x22 6 1} (see Fig. 10 on the left) without approaching its boundary, where the density function will
grow to minus infinity when approaching the boundary of Dwh. If ρ(x) = ln(x21 + x22 − 1), the
trajectories with initial conditions from the domain x21 + x22 >

√
2 will remain in this domain, but

all trajectories with initial conditions from the domain 1 6 x21 + x22 6
√
2 will move away from the

domain Dwh = {x ∈ R
2 : x21 + x22 6 1} (see Fig. 10 on the right).

Remark 3. Let us explain the physical meaning of the systems under consideration. If the
density function is explicitly present on the right-hand side of the system equation, e.g., in the
form ẋ = ρ(x, t)f(x, t), then the value of the space density directly affects the phase flow velocity.
For example, for ρ(x, t) = 1, we have the original system ẋ = f(x, t). If ρ(x, t) > 0, the presence
of the density function possibly does not qualitatively affect the equilibria, but it may affect the
phase portrait. Under 0 < ρ(x, t) < 1, the value of the phase velocity vector decreases because the
space density does so. In the case ρ(x, t) > 1, on the contrary, the value of the phase velocity vector
increases because the space density does so. When the density function changes its sign, the phase
portrait varies qualitatively.

Condition (b) of Definition 1 can be interpreted as the rate of change of the phase volume given
by the function V (x, t) considering the space density.

We now provide some models of real processes:

• The pendulum equation has the form ẋ1 = x2, ẋ2 = − g
l
sinx1 − k

m
x2, where x1 is the devia-

tion angle of the pendulum from the vertical axis, x2 is the angular velocity of the pendulum,
g is the acceleration of gravity, l is the pendulum length, and k is the friction coefficient [22].
Choosing the Lyapunov function V = g

l
(1− cos x1) + 0.5x22 (the total energy of the system)

yields V̇ = − k
m
x22. Introducing the density function ρ(x, t) = k, we obtain persistent oscilla-

tions in the case of no friction (ρ(x, t) = 0) and damped oscillations otherwise (ρ(x, t) 6= 0).

• The types of reproduction models in [25] can be written as ẋ = ρ(x)x, where x denotes the
biological population size. For ρ(x) = k > 0, we have the normal reproduction model; for
ρ(x) = kx, the explosion model; for ρ(x) = 1− x, the logistic curve model.

• Absolutely stable and absolutely unstable domains from Definitions 5 and 6 can be found
as the simplest models of black holes and white holes, respectively, [26], which possess high
density and gravity. Therefore, density systems can also be treated as gravitational systems,
where ρ(x, t) is a gravity function. In other words, the behavior of systems can be affected not
by the density of the space but by the gravitational field produced by a dense body. In this
regard, the control design principles based on the density function in the following sections
can be considered control using the gravity function. All the mathematical descriptions and
conclusions remain valid regardless of the name of the function ρ(x, t) and the corresponding
systems.
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Remark 4. As has been noted in the Introduction, the concepts of density functions and density
systems proposed in Section 2 and their properties generalize the results of [1–8, 10–14]. Let us
discuss these issues in detail.

• In [1–8], the stability of an original system ẋ = f(x) was analyzed by introducing a new
system of the form ẋ = ρ(x)f(x), which was (in turn) investigated using either divergent
methods or the method of Lyapunov functions. In this section, we analyze systems of the form
ẋ = f(x) using the dependencies V̇ 6 ρ(x, t)W1(x) or V̇ > ρ(x, t)W1(x) (see Definition 1 and
Example 2), which does not require multiplying the entire right-hand side of the system by
the density function.

• In [10–14], the stability of systems ẋ = f(x, ρ(x, t)) with the density function explicitly ap-
pearing on the right-hand side was analyzed. The results proposed in this paper allow for the
implicit presence of the density function on the right-hand side of the system (see case 2 in
Example 2).

• In [10–14], the solutions of a system were placed into a given bounded set without forbidden
domains by a special choice of the density function. Note that the boundaries of such sets
were specified by functions continuously differentiable in t and x. In this paper, we allow for
unbounded sets (see case 5 in Example 1 and case 3 in Example 2) with forbidden domains (see
cases 4 and 5 in Example 1 as well as cases 1 and 3 in Example 2). Moreover, the boundaries
of these sets can be specified by functions continuous in t and locally Lipschitz in x. If the
solutions of systems are understood in the Filippov sense, then we can consider systems even
with discontinuous right-hand sides; see Remark 1.

Thus, the new concepts of a density function and a density system introduced above provide a
novel look at a certain class of dynamic systems, which is broader than those considered in [1–8,
10–14]. Also, the evolution of dynamic systems can now be considered and influenced by the density
of the space.

The results obtained in this section can be used to analyze dynamic systems and, moreover, to
design control laws. The next section will be devoted to this issue.

3. DENSITY CONTROL

We present several examples of designing control laws to obtain closed loop systems described
by density systems.

3.1. Plants with Known Parameters

Consider a plant of the form

Q(p)y(t) = R(p)u(t), (7)

where y ∈ R and u ∈ R denote the output and control signals, respectively, Q(p) and R(p) are
linear differential operators with known constant coefficients, and R(λ) is a Hurwitz polynomial.

If the relative degree of the plant (7) is 1 (i.e., degQ(p)− degR(p) = 1), then the control law

u(t) = − Q(p)

pR(p)
ρ(y, t)y(t) (8)

transforms system (7) into

ẏ(t) = −ρ(y, t)y(t), (9)

which is structurally a density system. In particular, some density functions ρ(y, t) have been
defined in Example 1.
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If the relative degree of the plant (7) exceeds 1 (i.e., degQ(p)− degR(p) = γ > 1), we write the
control law (8) as

u(t) = − Q(p)

pR(p)(µp+ 1)γ−1
ρ(y, t)y(t) (10)

where µ > 0 is a sufficiently small number. The resulting system takes the form

ẏ(t) = − 1

(µp+ 1)γ−1
ρ(y, t)y(t). (11)

For µ = 0, system (11) has the density system structure (9). If the solutions of the density system (9)
with an appropriately chosen density function ρ(y, t) are asymptotically stable, then [22, 24] there
exists a sufficiently small number µ > 0 such that, for 0 < µ < µ, the solutions of system (11) are
sufficiently close to the solution of system (9).

3.2. Plants with Unknown Parameters

Consider the plant (7) with the unknown parameters of the operators Q(p) and R(p) but a
known value k. Assume that the relative degree of this plant is 1. All the results obtained can
be extended to the plants with a relative degree above 1, e.g., using the schemes of [23]. In this
paper, we focus on the plants with a relative degree of 1 only to avoid cumbersome considerations
for overcoming the high relative degree problem.

Let the operators Q(p) and R(p) be written as Q(p) = Qm(p) + ∆Q(p) and R(p) = Rm(p)+
∆R(p), where Qm(λ) and Rm(λ) are arbitrary Hurwitz polynomials of degrees n and n− 1, respec-
tively, and the polynomials ∆Q(p) and ∆R(p) have degrees n− 1 and n− 2, respectively. Choos-

ing Qm(λ)/Rm(λ) = λ+ a with a known value a > 0 and taking the integer part of ∆Q(λ)
Qm(λ) = k0y +

∆Q̃(λ)
Rm(λ) , we transform (7) into

ẏ(t) = −ay(t) + k

(

u(t) +
∆R(p)

Rm(p)
u− ∆Q̃(p)

Rm(p)
y − k0yy

)

. (12)

We introduce c0 = col{c0y , c0u, k0y} as the vector of unknown parameters, where ∆Q̃(p) =
cT0y [1 p . . . pn−2] and ∆R(p) = cT0u[1 p . . . pn−2], and the regression vector w = col{Vy, Vu, y} con-
structed using the filters

V̇y = FVy + by,

V̇u = FVu + bu.
(13)

Here, F is the Frobenius matrix with the characteristic polynomial Rm(λ) and b = col{0, . . . , 0, 1}.
With these notations, equation (12) can be written as

ẏ(t) = −ay(t) + k[u(t)− cT0 w(t)]. (14)

Let the control law be given by

u(t) = cT(t)w(t) +
a

k
y(t) + ρ(y, t). (15)

Substituting (15) into (14) yields the closed loop system

ẏ(t) = ρ(y, t) + k(c(t) − c0)
Tw(t). (16)
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Theorem 1. The control law (15) with the adaptation algorithm

ċ = −αyw (17)

transforms the plant (7) into a density system. If we have a stable density ρ(y, t) with a stable limit

set in the neighborhood of zero as t → ∞, then all signals in the closed loop system are bounded.

Proof. Let us choose the quadratic function

V =
1

2
y2 +

k

2α
(c(t)− c0)

T(c(t) − c0). (18)

Calculating the total time derivative of (18) along the solutions of (16), (17), we write the result
as

V̇ = ρ(y, t)y. (19)

This is a density system.

If we have a stable density ρ(y, t) with a stable limit set in the neighborhood of zero as t → ∞,
then ρ(y, t) is chosen so that ρ(y, t)y < 0. Hence, lim

t→∞
y(t) = 0. From (16) it then follows that

lim
t→∞

(c(t) − c0)
T(t)w(t) = 0. The ultimate boundedness of Vy(t) is immediate from the first equa-

tion of (13), the ultimate boundedness of y(t), and the Hurwitz property of the matrix F . Substi-
tuting (15) into the second equation of (13) yields

V̇u = FVu + bcT0 w + b(c− c0)
Tw + b

a

k
y(t) + bρ(y, t)

= (F + bc0u)Vu + b

[

cT0yVy + k0yy + b(c− c0)
Tw +

a

k
y(t) + ρ(y, t)

]

.

The matrix F + bc0u has a Hurwitz characteristic polynomial R(λ) by the problem statement.
So, under bounded terms in square brackets, the function Vu(t) is ultimately bounded. Then
the regression vector w(t) is also ultimately bounded. The condition lim

t→∞
y(t) = 0, the ultimate

boundedness of w(t), and (17) imply lim
t→∞

ċ(t) = 0. Hence, c(t) is an ultimately bounded function.

From (15) it then follows that the control law is bounded. As a result, all signals in the closed loop
system are bounded.

Example 5. Consider the plant (7) with unknown parameters of the operators Q(p) = (p− 1)3

and R(p) = (p+ 1)2, k = 1 (known value), and the unknown initial conditions p2y(0) = 1,
py(0) = 1, and y(0) = 4.

We define F =

[

0 1
−1 −2

]

for the filters (13). Also, we choose α = 0.1 in the adaptation algo-

rithm (17) and a = 1 in the control law (15).

Consider different density functions ρ(y, t) in (15).

1. For ρ(y, t) = −αy, the closed loop system (16) has the equilibrium y = 0. Substituting ρ(y, t)
into (19) yields V̇ = −αy2 6 0 in the domain DS = R. This is an active stabilization problem,
described in detail in [23]. Figure 11 shows the transient for α = 1, p2y(0) = py(0) = 0, and y(0) = 4
(see the curve intersecting the grey domain).

2. For ρ(y, t) = α ln g−y
g+y

, where g(t) > 0, the closed loop system (16) has the equilibrium y = 0.

Substituting ρ(y, t) into (19) yields V̇ = α ln g−y
g+y

y < 0 in the domain DS = {y ∈ R : −g < y < g}.
Moreover, ρ(y, t) → −∞ as y → g and ρ(y, t) → +∞ as y → −g. This is a stabilization prob-
lem with the symmetric constraints −g and g. Figure 11 demonstrates the transients for α = 1
(the curve inside the pipe with dashed boundaries), p2y(0) = py(0) = 0, y(0) = 4, and g(t) =
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Fig. 12. Transients in the adaptive control system with the density function ρ(y, t) = −α ln g−y

y−g
.

{

−4.6t+ 5, t 6 1

0.4, t > 1.
Clearly, in contrast to the classical adaptive control scheme [23] (the curve

corresponding to ρ(y, t) = −αy), the density function ρ(y, t) = α ln g−y
g+y

ensures a transient inside
the pipe at any time instant.

3. Consider ρ(y, t) = α ln g−y
y−g

, where g(t) > g(t) for all t. Let us denote y = w =
g+g

2 . Then

ρ(y, t) = 0 for y = w and any t. Substituting ρ(y, t) into (19) yields V̇ = α ln g−y
y−g

y < 0 in the domain

DS = {y ∈ R+ : w < y < g} ∪
{

y ∈ R− : g < y < w
}

and V̇ > 0 in the domain DU =
{

y ∈ R+ :

g < y < w
}

∪ {y ∈ R− : w < y < g}. In addition, ρ(y, t) → −∞ as y → g and ρ(y, t) → +∞ as

y → g if y ∈ R+; ρ(y, t) → +∞ as y → g and ρ(y, t) → −∞ as y → g if y ∈ R−. This is a sta-
bilization problem with asymmetric constraints g and g. Figure 12 shows the transient for α = 5,
g = 4e−0.1t + 0.1, g = 3e−0.1t − 0.1, p2y(0) = py(0) = 0, and y(0) = 4.

4. Let ρ(y, t) = −α(y − ym). Then ρ(y, t) = 0 for y = ym and any t. Substituting ρ(y, t)
into (19) yields V̇ = −α(y − ym)y < 0 in the domainDS = {y ∈ R+ : y > ym} ∪ {y ∈ R− : y < ym}
and V̇ > 0 in the domain DU = {y ∈ R+ : y < ym} ∪ {y ∈ R− : y > ym}. This is a tracking prob-
lem of ym by y. Figure 13 demonstrates the transient for α = 50, ym = e−0.1t sin(t)P (t), where
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Fig. 14. Transients in the adaptive control system with the density function ρ(y, t) = −α ln(y − g).

P (t) ∈ [0, 1.25] is a generator of triangular pulses (with isosceles triangles) with a period of 5 s,
p2y(0) = py(0) =0, and y(0) = 1.

5. Consider ρ(y, t) = −α ln(y − g), where g(t) > −1. Then ρ(y, t) = 0 for y = g + 1 and any t.
Substituting ρ(y, t) into (19) yields V̇ = −α ln(y − g)y < 0 in the domainDS = {y ∈ R+ : y > g+1}
and V̇ > 0 in the domain DU = {y ∈ R+ : y > g + 1}. In addition, ρ(y, t) → −∞ as y → g. This is
a descent problem of x(t) long a surface with the boundary g(t). Figure 14 shows the transient for
α = 10, g = 2e−0.1t − 1, p2y(0) = py(0) = 0, and y(0) = 4.

3.3. Comparing the Control Laws Proposed with Some Existing Ones

In this subsection, we compare the control laws (8), (10) and (13), (15), (17) with the control
laws obtained using the method of barrier Lyapunov functions [27, 28], the method of funnel
control [10, 12], and control methods with prescribed performance [11, 13, 14, 29].

• By the method and type of defining the target (admissible) set (a desired domain for the
transients of the output signal in a closed loop system), the methods of [10–14, 27–29] and the
proposed approach differ as follows:

— In [27, 28], the boundaries of the admissible set were constant whereas the reference
signal was required to be smooth enough.
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— In [10–12], the boundaries of the target set were defined by continuously differentiable
functions symmetric with respect to the time axis. Only bounded target sets were
considered therein.

— In [13, 14, 29], the boundaries of the target set were defined by continuously differentiable
asymmetric functions. Only bounded target sets were considered therein.

— Within the approach proposed in this paper, target sets can be defined by continuous
(or discontinuous, see Remark 1), asymmetric functions (see case 5 in Example 5). The
target set may be unbounded (see cases 2, 3, and 5 in Example 5). The reference signal
may be defined by continuous (see case 4 in Example 5) or piecewise continuous (see
Remark 1) functions.

• By the control law design and stability analysis of the closed loop system, the methods of [10–
14, 27–29] and the proposed approach differ as follows:

— The methods [27, 28] involve special-form Lyapunov functions existing on a certain subset
of the definitional domain of the system (an admissible set).

— The methods [10–12] involve special-form density functions.
— The approaches [11, 13, 14, 29] consider a nonlinear coordinate transformation reducing

the original problem with constraints to an unconstrained problem. However, this trans-
formation leads to the analysis of an extended system containing the variables of the
original and new systems, which complicates the control law structure and the stability
analysis of the closed loop system. Moreover, the nonlinear coordinate transformation
leads to the study of the system ε̇(t) = ρ(ε, t)f(ε, t), where ε is a new variable and
ρ(ε, t) > 0 is a density function depending on the derivative of the coordinate replace-
ment function with respect to the variable ε. Hence, this system is a particular case of
the systems considered in Section 2.

— The approach proposed in the paper involves no coordinate transformation, which elim-
inates the need to consider additional variables and additional dynamic systems. The
sign of the density function can be arbitrary. The Lyapunov function may exist in the
entire definitional domain of the system.

4. CONCLUSIONS

This paper has considered a class of dynamic systems called density systems. Such systems
contain on the right-hand side a density function defining the properties of the space. It is possible
to affect the behavior of the system under study by determining the properties of the density
function. This conclusion has been used to design control laws. As has been demonstrated above,
different definitions of the density function lead to classical control laws and new ones with new
target requirements for the system. In particular, an adaptive control law ensuring transients in a
given set has been constructed as one example; classical adaptive control provides only the ultimate
boundedness of system trajectories. In this case, the parameters of the set are specified using the
density function, which defines the density of the space under consideration. The simulation results
have confirmed the theoretical outcomes.

Also, it has been demonstrated how some existing control algorithms can be modified using the
density function to obtain new transient quality. In the future, the properties of density systems
can also be employed to design more complex control algorithms, e.g., output-feedback control with
any relative degree of the plant, control using observers, sliding mode control, etc.
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