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Abstract—This paper considers a periodic boundary value problem for a nonlinear partial
differential equation with a deviating spatial variable. It is called the nonlocal erosion equation
and was proposed as a model for the formation of dynamic patterns on the semiconductor
surface. As is demonstrated below, the formation of a spatially inhomogeneous relief is a
self-organization process. An inhomogeneous relief appears due to local bifurcations in the
neighborhood of homogeneous equilibria when they change their stability. The analysis of this
problem is based on modern methods of the theory of infinite-dimensional dynamic systems,
including such branches as the theory of invariant manifolds, the apparatus of normal forms,
and asymptotic methods for studying dynamic systems.
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1. INTRODUCTION

Since the 1980s, describing the formation of an inhomogeneous (e.g., wavelike) relief on the
surface of semiconductor materials bombarded by an ion flow has always been a topical problem
of micro- and nanoelectronics. The nature of a wavelike relief continues to cause much discussion;
for example, see [1–6]. According to experimental evidence, a wavelike nanorelief is formed on the
surface of semiconductors and dielectrics in a certain range of ion incidence angles. Of course, it
depends on the beam intensity, ion type, and the material of the sample subjected to ion bom-
bardment. The process of nanostructure formation on the silicon surface has been most intensively
investigated at the experimental level.

Almost immediately, mathematical models were proposed to explain the phenomenon of inhomo-
geneous micro- and nano-relief formation. Two approaches were used: stochastic and deterministic.

In terms of applications, a more attractive approach is to treat such a process as dynamic. The
best-known model was introduced by Bradley and Harper [7]. This model involves one version of
the well-known Kuramoto–Sivashinsky equation supplemented with boundary conditions, natural
from a physical point of view. In principle, different variations and modifications of this model gave
a sufficiently convincing description of the process of inhomogeneous (wavelike) relief formation.
At the same time, this model suffers from several drawbacks in its initial formulation. One of them
is that in many cases, the corresponding boundary value problem revealed the possible formation
of an inhomogeneous relief with the leading role of the first possible mode; for example, see [8–11].
In many cases, such a conclusion contradicts the results of experiments.

A possible informal modification is a model known as the nonlocal erosion equation [8–11]. It
covers several nonlocal effects, first of all, the fact that the points of ion penetration (entry) into
the semiconductor material and its exit do not necessarily coincide. This led to the emergence of a
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PATTERN BIFURCATION IN A NONLOCAL EROSION EQUATION 1303

mathematical model with a partial differential equation in which some terms contain an unknown
function with a deviating spatial variable.

This paper considers a nonlocal erosion equation augmented with periodic boundary conditions.
Other problem statements for the nonlocal erosion equation can be found in [11–16].

Below, we study a periodic boundary value problem (BVP) for the nonlocal erosion equation

uτ = duyy − c1wy + c2w
2
y + c3w

3
y, (1.1)

u(τ, y + 2l) = u(τ, y), (1.2)

where u = u(τ, y), w = u(τ, y − h0), and h0 is a positive constant to consider nonlocal effects (this
constant is set proportional to the average distance between the entry and exit points of the ion from
the incident beam); d > 0, c1 > 0, c2, and c3 ∈ R are constants characterizing the bombardment
conditions. For example, d is the diffusion coefficient of the target material, and the coefficient
c1 specifies the intensity (energy) of the ion beam. The deviation h0 > 0 is the main parameter
distinguishing this model from others (e.g., from the Bradley–Harper model). The constant h0 is
proportional to the inclination angle between the beam direction and the normal to the surface,
which is considered flat before the bombardment. From the very beginning, let us emphasize the
following aspect. In principle, the relief deviation from an equilibrium, u(τ, y), must depend on
the second spatial coordinate y1: u = u(τ, y, y1). But in most experiments, the dependence on y1
is rather weak and, therefore, the approximation u = u(τ, y) is considered acceptable.

With the changes of variables

τ =
l

πc1
t, y =

l

π
x,

the BVP (1.1), (1.2) can be written as

ut = auxx − wx + b2w
2
x + b3w

3
x, (1.3)

u(t, x+ 2π) = u(t, x), (1.4)

where u = u(t, x), w = u(t, x− h), and

h =
h0π

l
, a =

dπ

lc1
, b2 =

c2π

c1l
, b3 =

c3π
2

l2c1
.

Note that the BVP (1.3), (1.4) has the solution u(t, x) = α, where α ∈ R. If the BVP (1.3),
(1.4) is supplemented by the boundary conditions

u(0, x) = f(x) (w(0, x) = f(x− h)), (1.5)

where f(x) ∈ H
1
2, the resulting initial boundary value problem will be locally well-posed. This

outcome follows from the results obtained in [17, 18]. Moreover, the initial boundary value prob-
lem (1.3)–(1.5) generates a local smooth semiflow T t : f(x) → u(t, x), t ∈ (0, δ), δ > 0.

Recall that f(x) ∈ H
1
2 if:

1) f(x+ 2π) = f(x).

2) For x ∈ [0, 2π], the inclusion f(x) ∈ W
1
2[0, 2π] holds, where W

1
2[0, 2π] is the space of func-

tions f(x) such that f(x)∈L2(0, 2π) and their generalized derivative f ′(x)∈L2(0, 2π) (for example,
see [19]).

The BVP (1.3), (1.4) has one peculiarity as follows. Let u(t, x) be any solution of this problem;
then α+ u(t, x) is also its solution. Below, we will investigate the structure of the neighborhood of
all solutions u(t, x) = α (spatially homogeneous equilibria). In particular, it is supposed to study
the formation mechanism of local attractors containing spatially inhomogeneous solutions.
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1304 KULIKOV

2. SOME PRELIMINARIES

Consider the nonlinear BVP (1.3), (1.4). We denote by

M(u) =
1

2π

2π
∫

0

u(t, x)dx

the space mean of the function u(t, x). Representing the solution u(t, x) as a Fourier series with
respect to the spatial variable x gives

u(t, x) = u0(t) +
∑

n 6=0

un(t) exp(inx),

where

u0(t) =M(u), un(t) =
1

2π

2π
∫

0

u(t, x) exp(−inx)dx.

Hence, any solution solution of the nonlinear BVP (1.3), (1.4) can be written as

u(t, x) = u0(t) + v(t, x), v(t, x) =
∑

n 6=0

un(t) exp(inx), M(v) = 0.

Therefore, the BVP (1.3), (1.4) takes the form

u0t(t) = b2M(w2
x) + b3M(w3

x), (2.1)

vt = Av + F2(wx) + F3(wx), (2.2)

v(t, x+ 2π) = v(t, x), M(v) = 0. (2.3)

Equations (2.1) and (2.2) employ the following notations:

Av = avxx − wx, w = v(t, x− h),

F2(wx) = b2w
2
x − b2M(w2

x), F3(wx) = b3w
3
x − b3M(w3

x).

When forming the right-hand side of the differential equation (2.2), we take into account that
Au0 = 0 and the right-hand side of the original partial differential equation (1.3) is independent
of u0(t).

The BVP (1.3), (1.4) can be analyzed in two stages. The first stage consists in studying the
BVP (2.2), (2.3). After that, the second stage is to reconstruct u0(t) using equation (2.1). Note
that the function u0(t) is reconstructed within an arbitrary constant without additional conditions
from equation (2.1).

Thus, the main point in investigating the BVP (1.3), (1.4) is to study the auxiliary nonlin-
ear BVP (2.2), (2.3). We emphasize that it has the unique spatially homogeneous equilibrium
v(t, x) = 0.

3. STABILITY OF THE TRIVIAL SOLUTION OF THE AUXILIARY NONLINEAR BVP

To analyze the stability of the trivial equilibrium of the nonlinear BVP (2.2), (2.3), we first
examine its linearized version, i.e., the linear BVP

vt = Av, Av = avxx − wx, (3.1)

v(t, x+ 2π) = v(t, x), M(v) = 0, w = v(t, x− h). (3.2)
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Consider the linear differential operator (LDO)

Ap = A(a, h)p = apxx(x)− px(x− h),

where a sufficiently smooth function p(x) satisfies the periodic boundary conditions p(x+2π) = p(x)
and has the zero mean. This operator possesses a countable set of eigenvalues

λn = λn(a, h) = −an2 − in exp(−inh), n = ±1,±2, . . . ;

the corresponding eigenfunctions {exp(inx)} form a complete orthogonal system of functions in the
space L2,0(0, 2π), i.e., f(x)∈L2,0(0, 2π) if f(x)∈L2(0, 2π) and M(f) = 0.

The following result is true.

Lemma 1. If
Reλn(a, h) < 0

for given values a and h, then all solutions of the linear BVP (3.1), (3.2) are asymptotically stable
in the metric of the initial condition space of the BVP (3.1), (3.2).

A natural choice of the initial condition space is the functional spaceH1
2,0: f(x)∈H

1
2,0 if f(x)∈H

1
2

and M(f) = 0. Indeed, let us consider the initial boundary value problem (3.1), (3.2), (1.5) for
f(x)∈H

1
2,0. Its explicit-form solution is given by

v(t, x) =
∑

n 6=0

fn exp(λnt) exp(inx), (3.3)

where λn denote the eigenvalues of the LDO A and {fn} are the Fourier coefficients of the func-
tion f(x) (f0 = 0 since M(f) = 0).

It is straightforward to verify that:

1) v(t, x) → f(x) in the metric of H1
2 as t→ +0.

2) For t > t0 > 0, the solution (3.3) is an infinitely differentiable function.

Property 2) is immediate from the following result, which can be checked in a fairly standard
way: for t > t0 > 0 the series on the right-hand side of (3.3) converges uniformly together with its
partial derivatives of any order. This result is proved using the fact that

lim
|n|→∞

λn(a, h)

n2
= −a.

Note also that lim|n|→∞(Im(λn(a, h)))/n
2 = 0. Hence, |Imλn(a, h)| 6 K|Reλn(a, h)| if |n| > n0

(n0 ∈N, the set of natural numbers) and K is some positive constant.

In particular, these results allow stating that the LDO A is the generator of the analytic semi-
group of linear bounded operators, and the linear BVP (3.1), (3.2) can be included in the class of
abstract parabolic equations in the sense of the definitions from [17, 18, 20].

If Reλm(a, h) > 0 for some n = m, the solutions of the linear BVP (3.1), (3.2) are, of course,
unstable.

The considerations presented above lead to another result as follows.

Lemma 2. Assume that
Reλn 6 −γ0 < 0

for all n∈Z∗ (the set of integers n 6= 0). Then the trivial solution of the nonlinear BVP (2.2), (2.3)
is asymptotically stable. At the same time, if there exists an integer m∈Z∗ such that Reλm > 0,
then this solution is unstable.
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1306 KULIKOV

Note that the conditions Reλn 6 0, Reλm = 0 for some m∈Z∗ select a critical case in the
stability problem of the trivial solution of the BVP (2.2), (2.3).

The remainder of this section focuses on the following question: under what conditions is the
critical case implemented in the stability problem of the trivial solution of the BVP (2.2), (2.3).
Let us emphasize that, for h = 0,

λn(a, 0) = −an2 − in

and, consequently, Reλn(a, 0) < 0 for all n∈Z∗ (Z∗ = Z\{0}). Therefore, the critical case is possible
only if h > 0 (h > 0 by the problem statement). For all a > 0 we will determine the least positive
value h = h∗(a) implementing the critical case.

First, it is necessary to find hn satisfying

Reλn(a, hn) = 0.

Such values hn should be obtained as the solutions of the equation −an2 − n sinnh = 0 or

sinnh = −an. (3.4)

Equation (3.4) has solutions if |an| 6 1. Without loss of generality, assume that n∈N (the set of
natural numbers) since replacing n with −n does not change equation (3.4).

Thus, an 6 1. Then equation (3.4) possesses two groups of solutions:

1) hn(m) = 1
n(2πm− arcsin(an)),m∈Z,

2) hn(k) =
1
n(π + arcsin(an) + 2πk), k ∈Z.

In the first group of solutions of the trigonometric equation, the least positive root is hn(1) =
(2π − arcsin(na))/n; in the second group of solutions, hn(0) = (π + arcsin(na))/n. Furthermore,
we have the inequality

1

n
(π + arcsin(na)) 6

1

n
(2π − arcsin(na)) (3.5)

for any natural number n (of course, if na 6 1). Inequality (3.5) is equivalent to

2 arcsin(na) 6 π or arcsin(na) 6
π

2
.

The resulting conclusion is that h∗ should be determined as the least element of the sequence

dn = dn(a) =
1

n
(π + arcsin(an)) if n 6

1

a
.

We underline that dn = hn(0). Clearly, in principle, the least value dn can be chosen by linear
search. For example, if a = 1, this sequence contains one element d1 = 3π/2 and h∗ = 3π/2. In
the case a = 1/2, we obtain d1 = 7π/6 and d2 = 3π/4; hence, h∗ = 3π/4. At the same time, the
number of elements in the sequence dn(a) grows when decreasing a. Therefore, linear search should
be improved to select h∗ faster.

For example, suppose that for all a > a0, dk(a) 6 dk−1(a); in other words, the sequence dk(a)
decreases with increasing k. (An appropriate positive constant a0 will be specified below.) This
property of the sequence dk(a) can be checked by analyzing the inequalities

gk(a) = (k − 1) arcsin(ka)− k arcsin((k − 1)a) 6 π;

for k = 1, 2, 3, they are trivial and hold for all admissible a. As is easily established,

dgk(a)

da
= k(k − 1)

(

1
√

1− (ak)2
−

1
√

1− a2(k − 1)2

)

> 0, ak∈ [0, 1).
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Hence, dk(a) 6 dk−1(a) for all admissible a if this inequality is valid for the maximum possible
value a (a = 1/k). The issue under consideration is thereby reduced to checking the inequalities

1

k − 1

(

π + arcsin
k − 1

k

)

>
3π

2k
or arcsin

k − 1

k
>
π(k − 3)

2k
.

As it turns out, the latter inequalities hold for k = 1, . . . , 10.

Well, let a> 1/11. Then the minimum value h∗ is h(a) = (π + arcsin(ka))/k, where k = [1/a],
since this choice of a makes the sequence dk decreasing. For the other numbers k, i.e., k > 11
(a 6 1/11), the choice procedure of h∗ can be alternatively simplified as follows. Consider the
auxiliary function

B(z) =
1

z
(π + arcsin(z)),

which is defined for z ∈ (0, 1]. It is straightforward to verify that this function decreases for z ∈ (0, z∗)
and increases for z ∈ (z∗, 1); naturally, z∗ is its minimum point, i.e., B′(z∗) = 0. We determine
the corresponding value z∗ as the least positive root of the equation B′(z) = 0. As it turns out,
z = z∗ ≈ 0.9761 and dn(a) = aB(na). Therefore, h∗ = min{dm(a), dm+1(a)}, where ma 6 z∗ and
(m+ 1)a > z∗.

The possibility dm = dm+1 will be eliminated from consideration as a special (exceptional) case
not discussed here. This case leads to another bifurcation problem with a codimension of 2. Further
analysis will be restricted to the general case dm 6= dm+1.

Consider now the LDO depending on a small parameter, i.e.,

A(ε)y = ay′′ − y′(x− h(ε)),

where h(ε) = h∗(1 + νε), ν = ±1 or 0, ε∈ (0, ε0), h∗ = (π + arcsin(ma))/m. The definitional do-
main of this operator consists of sufficiently smooth functions satisfying the condition y(x+ 2π) =
y(x), M(y) = 0. For such h = h(ε), the LDO has a countable set of eigenvalues

λk(ε) = −ak2 − ik exp(−ikh(ε)), k = ±1,±2, . . . .

In addition, given k 6= ±m,

Reλk 6 −γ0 < 0,

λ±m(ε) = −am2 ∓ im exp(−i(π + µm)(1 + νε)), where µm = arcsin(ma), and consequently,

λ±m(0) = ±iσm, σm = m cos(µm) = m
√

1− (ma)2.

In other words, for (ma)2 6= 1, the LDO A has a pair of simple pure imaginary eigenvalues; for
(ma)2 = 1, it has double zero eigenvalue. Therefore, the case (ma)2 = 1 needs deeper analysis.
The next section will be restricted to the general case σm 6= 0.

Note also that

λ′m(ε)|ε=0 = τ ′m + iσ′m,

where τ ′m = νm(π + arcsin(ma))
√

1− (ma)2 6= 0 and σ′m = −ν(π + arcsin(ma))m2a 6= 0. For ν = 1,
we obtain the inequality τ ′m > 0, i.e., stability is lost when exceeding the critical value h = h∗; if
ν = −1, then τ ′m < 0 and the trivial solution of the BVP (2.2), (2.3) remains stable. Finally, ν = 0
corresponds to the critical case of a pair of pure imaginary eigenvalues.
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4. LOCAL BIFURCATIONS

This section is devoted to the nonlinear BVP (2.2), (2.3) for h = h(ε) = h∗(1 + νε). With such
a choice of h, the BVP (2.2), (2.3) can be written as

vt = A(ε)v + F2(wx, ε) + F3(wx, ε), (4.1)

v(t, x+ 2π) = v(x), M(v) = 0, (4.2)

where

w = v(t, x− h(ε)), A(ε)v = avxx(t, x)− vx(t, x− h(ε)),

Fj(wx, ε) = Fj(wx), j = 2, 3.

The functions Fj(wx) have been introduced above. Recall that the deviation value h∗ has been
chosen in Section 3. As a result, an almost critical case is implemented for the stability spectrum of
the trivial solution of the BVP (4.1), (4.2) (the spectrum of the LDO A(ε)). The BVP (4.1), (4.2)
has a two-dimensional invariant manifold M2(ε) attracting all solutions from a sufficiently small
neighborhood Q(r0) of the trivial solution of this BVP. In addition, the radius r0 of the ball in
the space H

1
2 is sufficiently small but independent of ε; for example, see [21–23]. As is well known

(e.g., see [23]), bifurcations can be analyzed by studying a system of two differential equations,
commonly called the normal form (NF) according to the terminology originally proposed by A.
Poincaré [23]. In the general case, such an equation can be written in the complex-valued form

z′ = (τ ′m + iσ′m)z + (l1 + il2)z|z|
2, (4.3)

where z = z(s), s = εt denotes “slow” time, the prime indicates the derivative with respect to s, and
l1, l2 ∈R. By an a priori assumption, l1 6= 0 : the first Lyapunov value is nonzero. In equation (4.3),
all vanishing terms as ε→ 0 are discarded. Equation (4.3) represents the principal part of the NF
or the truncated NF. Under l1 6= 0, equation (4.3) plays a determinative role in the analysis of the
BVP (2.2), (2.3), (4.1), (4.2).

The solutions of the BVP (4.1), (4.2) belonging to M2(ε) will be found as the sum

v(t, x, z, z, ε) = ε1/2v1(t, x, z, z) + εv2(t, x, z, z) + ε3/2v3(t, x, z, z) +O(ε2). (4.4)

In addition, of course,

w(t, x, z, z, ε) = ε1/2w1(t, x, z, z) + εw2(t, x, z, z) + ε3/2w3(t, x, z, z) +O(ε2), (4.5)

where

w(t, x, z, z, ε) = v(t, x− h∗(ε), z, z, ε),

wj(t, x, z, z) = vj(t, x− h∗, z, z), j = 1, 2, 3.

Finally,
v1(t, x) = zq + zq, q = q(t, x) = exp(iσmt) exp(imx).

The functions v2 and v3 are v2(t, x, z, z), v3(t, x, z, z)∈Φ. The symbol Φ denotes the class of func-
tions defined above.

We have ϕ = ϕ(t, x, z, z)∈Φ if this function satisfies the following conditions:

1) It smoothly depends on the variables for all t, x∈R, and |z| < δ, where δ is some positive
constant.

2) ϕ(t, x, 0, 0) = 0.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 11 2023
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3) It has periods of 2π/σm and 2π in the variables t and x, respectively.

4) a) M(ϕ) = 0 for all t, z, z under consideration.

b) M±(ϕ) =
σm

(2π)2

2π
∫

0

(

2π/σm
∫

0
ϕq∓dt

)

dx = 0, q+ = q, q− = q.

To analyze the BVP (4.1), (4.2), we formulate an auxiliary statement, often called the solvability
conditions in branches of differential equations. Let A0 = A(0).

Remark 1. Consider the linear inhomogeneous BVP

A0v = g(t, x), v = v(t, x),

v(t, x+ 2π) = v(t, x), M(v) = 0.

Here, g(t, x) is a sufficiently smooth function with periods of 2π/σm and 2π in the variables t and x,
respectively. In addition, suppose that M(g(t, x)) = 0. Then this BVP has periodic solutions in
the variable t if

M±(g(t, x)) = 0.

The conditions M±(v) = 0 highlight one suitable solution of the linear inhomogeneous BVP con-
sidered in Remark 1.

Substituting the sum (4.4) and the related sum (4.5) into the nonlinear BVP (4.1), (4.2) yields
linear inhomogeneous BVPs for determining v2 and v3.

Extracting the terms at ε, we obtain the inhomogeneous BVP

v2t −A0v2 = Φ2(t, x, z, z), (4.6)

v2(t, x+ 2π) = v2(t, x), M(v2) =M±(v2) = 0. (4.7)

When extracting the terms proportional to ε3/2, a similar BVP has the form

v3t −A0v3 = Φ3(t, x, z, z), (4.8)

v3(t, x+ 2π) = v3(t, x), M(v3) =M±(v3) = 0, (4.9)

where A0vj = avjxx − wjx, wj = vj(t, x− h∗), j = 2, 3,

Φ2(t, x, z, z) = b2w
2
1x − b2M(w2

1x),

Φ3(t, x, z, z) = b3w
3
1x − b3M(w3

1x) + 2b2(w1xw2x −M(w1xw2x)) +A1u1 − (z′q + z′q),

w1x = im(Qzq −Qzq), Q = exp(−imh∗).

Note that A1 = A′(ε)|ε=0 and

Q = Q1 + iQ2, Q1 = −
√

1− (ma)2, Q2 = ma.

The solutions v2(t, x, z, z)∈Φ of the BVP (4.6), (4.7) can (and should) be found in the form

v2(t, x, z, z) = ηmz
2q2 + ηmz

2q2.

In our case,

Φ2(t, x, z, z) = b2m
2(Q2z2q2 −Q

2
z2q2),

and quite easy calculations give

ηm = −
b2m

2Q2pm
|pm|2

, pm1
= 4mQ2(1−Q1), pm2

= 2m(Q2
1 −Q2

2 −Q1).
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Now, we pass to the BVP (4.8), (4.9). It has a solution v3(t, x, z, z)∈Φ under the solvability
conditions (see Remark 1), i.e.,

M±(Φ3) = 0. (4.10)

Conditions (4.10) serve to determine the coefficients of the NF (4.3). As it turns out,

l1 = l
(2)
1 + l

(3)
1 , l2 = l

(2)
2 + l

(3)
2 ,

where

l
(3)
1 = −3b3m

3Q2, l
(3)
2 = 3b3m

3Q1,

l
(2)
1 = −

4b22m
4

p2m1
+ p2m2

(

pm1
Q1(Q

2
1 − 3Q2

2) + pm2
Q2(3Q

2
1 −Q2

2)
)

,

l
(2)
2 = −

4b22m
4

p2m1
+ p2m2

(

pm1
Q2(3Q

2
1 −Q2

2)− pm2
Q1(Q

2
1 − 3Q2

2)
)

,

τ ′m = νm(π + µm)
√

1− (ma)2, σ′m = −ν(π + µm)m2a, µm = arcsin(ma).

Note that τ ′m > 0 if ν = 1, and τ ′m < 0 if ν = −1. Thus, the coefficients of the NF (4.3) have been
calculated explicitly.

Let us emphasize that, after clear transformations,

l
(2)
1 = −

8b22m
6a

p2m1
+ p2m2

(
√

1− (ma)2(1 + 4(ma)2) + 1
)

.

Hence,

l1 = −3b3m
4a−

8b22m
6a

p2m1
+ p2m2

(

√

1− (ma)2(1 + 4(ma)2) + 1
)

.

According to this formula, l1 < 0 for b3 > 0. Obviously, the case l1 < 0 is implemented “more
frequently” compared to the one l1 > 0.

To proceed, we investigate the NF (4.3) by letting

z(s) = ρ(s) exp(iϕ(s)).

Transition to the trigonometric form leads to the two real-valued differential equations

ρ′ = τ ′mρ+ l1ρ
3, (4.11)

ϕ′ = σ′m + l2ρ
2. (4.12)

Besides the trivial equilibrium ρ = 0, equation (4.11) may also have the nonzero one

ρ(s) = ξ =

√

−
τ ′m
l1
,

which exists if τ ′m/l1 < 0.

The standard analysis using Lyapunov’s theorem on the first (linear) approximation shows that
the nonzero equilibrium ρ(s) = ξ is asymptotically stable if l1 < 0 (τ ′m > 0 or, equivalently, ν = 1)
and unstable if l1 > 0 (τ ′m < 0 or, equivalently, ν = −1). The trivial equilibrium of the differential
equation (4.11) is asymptotically stable if τ ′m < 0 and unstable if τ ′m > 0.

As is easily observed, for ρ(s) = ξ, equation (4.12) has the solution

ϕ(s) = (σ′m + l2ξ
2)s+ ϕ0, ϕ0 ∈R.

The considerations presented above establish the following result.
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Lemma 3. The differential equation (4.3) has the limit cycle C0 generated by the one-parameter
family of periodic solutions

z(s) = ξ exp(i(σ′m + l2ξ
2)s+ iϕ0), (4.13)

where ξ =
√

−τ ′m/l1. These periodic solutions are stable (orbitally asymptotically stable) if l1 < 0
(τ ′m > 0) and unstable if l1 > 0 (τ ′m < 0).

Lemma 3 was proved in many publications. According to [11–16], we arrive at the following
fact.

Theorem 1. There exists a value ε0 > 0 such that, for all ε∈ (0, ε0), the BVP (2.2), (2.3) with
h = h(ε) = h∗(1 + νε) has a limit cycle C(ε) corresponding to C0 that inherits the stability of C0.
The solutions forming C(ε) satisfy the asymptotic representation

v(t, x, ε, γ) = ε1/2ξ
(

exp(imx+ i(σm + εβm)t+ iγ) + exp(−imx− i(σm + εβm)t− iγ)
)

+ εξ2
(

ηm exp(2imx+ 2i(σm + εβm)t+ 2iγ) + ηm exp(−2imx− 2i(σm + εβm)t− 2iγ)
)

+O(ε3/2),

where ξ =
√

−τ ′m/l1, βm = σ′m − τ ′ml2/l1, γ is an arbitrary real constant, and the constant ηm is
chosen when constructing the NF (see the algorithm above).

5. A SPECIAL CASE OF THE BIFURCATION PROBLEM

As has been mentioned in Section 3, the eigenvalues λk(ε) of the LDO A(ε) are given by

λk(ε) = −ak2 − ik exp(−ikh(ε)), k = ±1,±2, . . . .

In the special case a = 1/m, it is easy to verify Reλk(ε) 6 −γ < 0 for k 6= ±m and ε∈ (−ε0, ε0),
where 0 < ε0 << 1.

For a = 1/m, where m < 11 is some natural number, the following assertions are true:

1) h∗ = 3π/(2m).

2) If h(ε) = h∗ + ε, ε∈ (−ε0, ε0), then λm(ε) = τm(ε) + iσm(ε), where τm(ε) = −m(1− cosmε)
and σm(ε) = −m sinmε.

3) The analytical function τm(ε) is an even function of the variable ε.

4) The analytical function σm(ε) is an odd function of the variable ε.

5) λm(0) = λ−m(0) = 0. For ε = 0, the LDO A0 has the double zero eigenvalue. The corre-
sponding eigenfunctions are exp(±imx).

Hence, in the BVP (4.1), (4.2) with ε∈ (−ε0, ε0), there exists a two-dimensional invariant man-
ifold M2(ε) in the neighborhood of the trivial equilibrium (as before, see Section 4). This manifold
will be a local attractor for the solutions of the BVP (4.1), (4.2) with sufficiently small initial con-
ditions. By analogy with the previous section, the dynamics of the solutions of the BVP (4.1), (4.2)
can be analyzed by investigating the complex-valued differential equation (NF)

z′ = (τ(ε) + iσ(ε))z + ψ(z, z, ε) (5.1)

with a sufficiently smooth function ψ(z, z, ε) such that

ψ(0, 0, ε) =
∂ψ

∂z
|z=0 =

∂ψ

∂z
|z=0 = 0.

Once again, when analyzing the behavior of the solutions of the BVP (4.1), (4.2), we emphasize
the determinative role of both equation (5.1) and its truncated version

z′ = (τ(ε) + iσ(ε))z + ψ0(z, z), (5.2)
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where ψ0(z, z) = ψ(z, z, 0) and a sufficiently smooth function ψ0(z, z) has an infinitesimal order
above 1 at the zero point.

To find the principal part of the function ψ0(z, z), it suffices to consider the BVP (4.1), (4.2)
with ε = 0 and construct the NF for it. The solutions of the BVP (4.1), (4.2) with ε = 0 will be
obtained in the form

v(t, x, z, z) = (qz + qz) + p2(x)z
2 + p0(x)zz + p2(x)z

2

+ r3(x)z
3 + r1(x)z

2z + r1(x)zz
2 + r3(x)z

3 + . . . ,
(5.3)

where the ellipsis indicates the terms of a higher infinitesimal order in the variables z, z. Finally,
q(x) = exp(imx), the functions p2(x), p0(x), r1(x), and r3(x) have a period of 2π in the variable x
and the zero means:

M(pj) = 0, M±(pj) = 0, M(rk) = 0, M±(rk) = 0,

where j = 0, 2, k = 1, 3, q+ = exp(imx), q− = exp(−imx), q = q+, q = q−, and

M(ϕ) =
1

2π

2π
∫

0

ϕdx, M±(ϕ) =
1

2π

2π
∫

0

ϕq∓dx, ϕ = ϕ(x).

Substituting the sum (5.3) into the BVP (4.1), (4.2) with ε = 0 and sequentially extracting the
terms proportional to z2, zz, z2, z3, z2z, zz2, and z3, we get a system of linear inhomogeneous
equations. This system will be analyzed to determine the principal part of the complex-valued
function ψ0(z, z). When forming the BVP, it is necessary to consider the formula

ψ0(z, z) = ψ2z
2 + ψ0zz + ψ2z

2 + ψ3z
3 + ψ1z

2z + ψ1zz
2 + ψ3z

3 + . . . ,

where the ellipsis indicates the terms of a higher infinitesimal order in the variables z and z.

As a result, we arrive at the following inhomogeneous BVPs for determining the periodic func-
tions with the zero means. For example, p2(x) and p0(x) are obtained from the two linear inhomo-
geneous BVPs

A0p2(x) = −b2m
2q2 + ψ2q, (5.4)

p2(x+ 2π) = p2(x), M(p2) =M±(p2) = 0, (5.5)

A0p0(x) = ψ0, (5.6)

p0(x+ 2π) = p0(x), M(p0) =M±(p0) = 0. (5.7)

In the required class of functions, the solutions of the auxiliary linear inhomogeneous BVPs (5.4),
(5.5) and (5.6), (5.7) should be found with ψ2 = 0 and ψ0 = 0, and consequently,

p0(x) = 0, p2(x) = η2Q
2q2, p2(x) = η2Q

2
q2,

where (in this case) Q = exp(−ih∗m), i.e., Q = exp(−i3π/2) = i and Q2 = −1. Finally,

η2 =
b2m

10
(2 + i).

At the third step of the algorithm, we have two BVPs for determining r1(x) and r3(x):

A0r3(x) = ψ3q + b3m
3q3 − 4b2η2im

2q3, (5.8)

r3(x+ 2π) = r3(x), M(r3) =M±(r3) = 0, (5.9)

A0r1(x) = ψ1q + 3b3m
3q − 4b2η2im

2q, (5.10)

r1(x+ 2π) = r1(x), M(r1) =M±(r1) = 0. (5.11)
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From the solvability conditions of the BVPs (5.8), (5.9) and (5.10), (5.11) it follows that ψ3 = 0
and ψ1 = −3b3m

3 + 2
5b

2
2m

3(−1 + 2i).

Thus, the principal part of the NF (5.1) is

z′ =

(

−
ε2

2
m3 − im2ε

)

z + (l1 + il2)z|z|
2, (5.12)

where l1 = −3b3m
3 − 2

5b
2
2m

3 and l2 =
4
5b

2
2m

3.

For analysis, we write this differential equation in the trigonometric form and let

z(t) = ρ(t) exp(iϕ(t)). (5.13)

Then the complex-valued equation (5.12) is replaced by the two real-valued differential equations

ρ′ = −
ε2

2
m3ρ+ l1ρ

3, (5.14)

ϕ′ = −εm2 + l2ρ
2. (5.15)

By analogy with the previous section, we start the analysis of system (5.14), (5.15) with the
differential equation (5.14) for the amplitude ρ(t).

Lemma 4. In addition to the trivial equilibrium S0: ρ = 0, the differential equation (5.14) may
have the equilibrium S∗: ρ∗ =

√

ε2m3/(2l1). The equilibrium ρ∗ of the differential equation (5.14)
exists if l1 > 0. This equilibrium is unstable. The asymptotically stable equilibrium is ρ = 0.

The stability of these equilibria is analyzed using Lyapunov’s theorem on the first (linear)
approximation. Note that the equilibrium S∗ is associated with the solution of the differential
equation (5.15) of the form

ϕ∗(t) =

(

−εm2 +
l2ε

2m3

2l1

)

t+ ϕ0,

where ϕ0 is an arbitrary real constant. Equality (5.13) allows finding the periodic solution of the
NF (5.12) in the variable t:

z(t) = z(t, ε) =

√

ε2m3

2l1
exp(iϕ∗(t)).

According to [11–16], we obtain the following result.

Theorem 2. Let am = 1 (h∗ = 3π/(2m)), where m = 1, . . . , 10. There exists a positive constant ε0
such that, for all ε∈ (−ε0, ε0), h = h∗ + ε, and ε 6= 0, the BVP (4.1), (4.2) has the one-parameter
family of unstable periodic solutions in the variable t :

v∗(t, x, ε, ϕ0) = ρ∗
(

qm(t, x, ϕ0) + qm(t, x, ϕ0)
)

+ ρ2∗
(

η2q
2
m(t, x, ϕ0) + η2q

2
m(t, x, ϕ0)

)

+ o(ε2),
(5.16)

where qm(t, x, ϕ0) = exp(iω(ε)t + imx+ iϕ0) and ω(ε) = −εm2 + l2m
3ε2/(2l1) + o(ε2). The con-

stants l1 and l2 have been specified above. The family of solutions (5.16) exists if the first Lyapunov
value is l1 > 0 (see Lemma 4).

In the case l1 < 0, the trivial solution of the BVP (4.1), (4.2) is asymptotically stable.

Remark 2. The existence of periodic solutions in the special case of the BVP (4.1), (4.2) occurs
rather rarely; if it does, they are unstable. Obviously, the case l1 > 0 is rare as well. The dominating
situation is when l1 > 0. Then the differential equation (5.14), and hence the BVP (4.1), (4.2), has
no small periodic solutions in the variable t.
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6. THE MAIN RESULT

We revert to the analysis of the primary nonlinear BVP (1.3), (1.4) with h = h(ε) = h∗(1 + νε)
provided that am 6= 1.

Let v(t, x, ε, γ) be a periodic solution obtained for the BVP (2.2), (2.3). Then u0(t) is determined
from equation (2.1): v(t, x, ε, γ) is substituted into its right-hand side and the resulting equation is
integrated. In this case, we have

u0(t, ε, γ0) =
(

2b2ξ
2m2ε+ o(ε)

)

t+ γ0,

where γ0 is an arbitrary real constant and ξ2 = −(τ ′m/l1) > 0.

Theorem 3. There exists a positive constant ε0 such that, for all ε∈ (0, ε0) and h = h∗(1 + νε),
the nonlinear BVP (1.3), (1.4) has the two-parameter family V2(ε, γ0, γ) of solutions

u(t, x, ε) = u0(t, ε, γ0) + v(t, x, ε, γ)

if the BVP (2.2), (2.3) possesses the limit cycle C(ε). This family forms the integral manifold of
the nonlinear BVP (1.3), (1.4).

The family V2(ε, γ0, γ) is a local attractor if the limit cycle C(ε) of the auxiliary BVP (2.2), (2.3)
is a local attractor. This family is unstable (saddle) if the same property holds for C(ε).

Assume that the special case is implemented: am = 1 and h∗ = 3π/(2m). Of course, the main
result needs an appropriate correction. In this case, Theorem 2 implies the following result.

Theorem 4. There exists a positive constant ε0 such that, for ε∈ (−ε0, 0)∪ (0, ε0) and h = h∗ + ε,
the nonlinear BVP (1.3), (1.4) has the two-parameter family V∗(ε, γ0, ϕ0) of solutions

u(t, x, ε) = u0(t, ε, γ0) + v∗(t, x, ε, ϕ0),

where v∗(t, x, ε, ϕ0) is the solution (5.16) of the auxiliary BVP (4.1), (4.2) (see Theorem 2) and

u0(t, ε, γ0) =

(

b2
ε2m2

l1,0
+ o(ε2)

)

t+ γ0,

where γ0 is an arbitrary constant and l1,0 = −3b3 − 2b22/5. Recall that in this case, the solution
exists if l1,0 > 0.

Note that the solution family V∗(ε, γ0, ϕ0) is always unstable.

7. CONCLUSIONS

In this paper, we have studied local bifurcations in a periodic boundary value problem for
a nonlocal erosion equation. It represents a partial differential equation with a deviating spatial
variable. It has been demonstrated that proper consideration of the deviating variable is an essential
factor in bifurcation analysis. For the deviation value h = 0, an inhomogeneous relief is not formed.
Increasing h to some threshold values causes nanorelief formation.

In most cases, such a relief is formed as the result of Andronov–Hopf bifurcations with an
appropriate choice of h ≈ h∗ and a. The special case ak ≈ 1 leads to another type of bifurcations
and unstable patterns.

The above analysis of nanorelief formation, a topical physical problem, has turned out quite
effective due to applying modern methods of the theory of dynamic systems, namely, the methods
of invariant manifolds and the theory of normal Poincaré forms, extended to the class of problems
with an infinite-dimensional phase space. We emphasize that the use and development of the
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method of integral (invariant) manifolds is quite productive in the analysis of many problems of
mathematical physics: in many cases, this method reduces an original infinite-dimensional problem
to the analysis of a finite-dimensional dynamic system. Another approach to the analysis of infinite-
dimensional dynamic systems was shown in [24, 25].

Note that the inclusion (consideration) of nonlocal terms in a partial differential equation often
significantly changes the dynamics of its solution towards higher complexity and richness. For ex-
ample, bifurcations may arise on higher modes, which has been repeatedly observed in experiments.

Moreover, considering nonlocal terms in mathematical models reveals new effects in nanoelec-
tronics and in other nonlinear models of physics (for example, see [26–29]).

REFERENCES

1. Sigmund, P., Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets, Phys.
Rev., 1969, vol. 184, no. 2, pp. 383–416.

2. Yamamura, Y. and Shindo, S., An Empirical Formula for Angular Dependence of Sputtering Yields,
Radiat. Effect., 1984, vol. 80, no. 1–2, pp. 57–72.

3. Elst, K. and Vandervorst, W., Influence of the Composition of the Altered Layer on the Ripple Formation,
J. Vacuum Sci. Tech. A., 1994, vol. 12, no. 2, pp. 3205–3216.

4. Sigmund, P., A Mechanism of Surface Micro-Roughening by Ion Bombardment, J. Mater. Sci., 1973,
vol. 8, no. 2, pp. 1545–1553.

5. Smirnov, V.K., Kibalov, D.S., Lepshin, P.A., and Bachurin, V.I., The Influence of Topographic Irreg-
ularities on the Formation of Wavelike Microrelief on the Silicon Surface, Izv. Ross. Akad. Nauk. Ser.
Fiz., 2000, vol. 64, no. 4, pp. 626–630.

6. Rudyi, A.S., Kulikov, A.N., and Metlitskaya, A.V., Self-organization of Nanostructures within the Spa-
tially Nonlocal Model of Silicon Surface Erosion by Ion Bombardment, in Kremnievye nanostruktury.
Fizika. Tekhnologiya. Modelirovanie (Silicon Nanostructures. Physics. Technology. Modeling), Ruda-
kov, V.I., Ed., Yaroslavl: Indigo, 2014, pp. 8–57.

7. Bradley, R.M. and Harper, M.E., Theory of Ripple Topography Induced by Ion Bombardment, J.
Vacuum Sci. Tech. A., 1988, vol. 6, no. 4, pp. 2390–2395.

8. Rudy, A.S. and Bachurin, V.I., Spatially Nonlocal Model of Surface Erosion by Ion Bombardment, Bull.
Russ. Acad. Sci. Phys., 2008, vol. 72, pp. 586–591.

9. Metlitskaya, A.V., Kulikov, A.N., and Rudy, A.S., Formation of the Wave Nanorelief at Surface Erosion
by Ion Bombardment within the Bradley–Harper Model, Russ. Microelectron., 2013, vol. 42, pp. 238–245.

10. Kulikov, A.N. and Kulikov, D.A., Nonlocal Model for the Formation of Ripple Topography Induced by
Ion Bombardment. Nonhomogeneous Nanostructures, Matem. Mod., 2016, vol. 28, no. 3, pp. 33–50.

11. Rudyi, A.S., Kulikov, A.N., Kulikov, D.A., et al., High-mode Wave Reliefs in a Spatially Nonlocal
Erosion Model, Russ. Microelectron., 2014, vol. 43, pp. 277–283.

12. Kulikov, D.A. and Rudy, A.S., Formation of a Warped Nanomodular Surface under Ion Bombardment.
A Nanoscale Model of Surface Erosion, Model. Anal. Inform. Sist., 2012, vol. 19, no. 5, pp. 40–49.

13. Kulikov, D.A., Spatially Nonhomogeneous Dissipative Structures of a Periodic Boundary-Value Problem
for a Nonlocal Erosion Equation, Nonlinear Oscillations , 2014, vol. 17, no. 1, pp. 72–86.

14. Kovaleva, A.M., Kulikov, A.N., and Kulikov, D.A., Stability and Bifurcations of Undulate Solutions
for One Functional-Differential Equation, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2015, no. 2(46),
pp. 60–68.

15. Kovaleva, A.M. and Kulikov, D.A., Bifurcations of Spatially Inhomogeneous Solutions in Two Versions
of the Nonlocal Erosion Equation, J. Math. Sci., 2020, vol. 248, no. 4, pp. 438–447.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 11 2023



1316 KULIKOV

16. Kulikov, D.A., Inhomogeneous Dissipative Structures in the Problem of Nanorelief Formation, Dynamical
Systems , 2012, vol. 2 (30), no. 3–4, pp. 259–272.

17. Sobolevskii, P.E., Equations of Parabolic Type in a Banach Space, Tr. Mosk. Mat. Obshch., 1961, vol. 10,
pp. 297–350.

18. Yakubov, S.Ya., Solvability of the Cauchy Problem for Abstract Quasilinear Second-Order Hyperbolic
Equations and Their Applications, Tr. Mosk. Mat. Obshch., 1970, vol. 23, pp. 37–60.

19. Sobolev, S.L., Nekotorye primeneniya funktsional’nogo analiza v matematicheskoi fizike (Some Applica-
tions of Functional Analysis in Mathematical Physics), Leningrad: Leningrad State University, 1950.

20. Krein, S.G., Lineinye differentsial’nye uravneniya v banakhovom prostranstve (Linear Differential Equa-
tions in a Banach Space), Moscow: Nauka, 1977.

21. Marsden, J.E. and McCracken, M., The Hopf Bifurcation and Its Applications , New York: Springer-
Verlag, 1976.

22. Kulikov, A.N., Inertial Invariant Manifolds of a Nonlinear Semigroup of Operators in a Hilbert Space,
Proceedings of the All-Russian Scientific Conference “Differential Equations and Their Applications”
Dedicated to the 85th Anniversary of Prof. M.T. Terekhin, Yesenin Ryazan State University, Ryazan,
May 17–18, 2019, part 2, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2020, vol 186,
Moscow: VINITI, pp. 57–66.

23. Arnol’d, V.I., Dopolnitel’nye glavy obyknovennykh differentsial’nykh uravnenii (Additional Chapters of
Ordinary Differential Equations), Moscow: Nauka, 1978.

24. Akhmetzyanov, A.V., Kushner, A.G., and Lychagin, V.V., Attractors in Models of Porous Media Flow,
Doklady Mathematics , 2017, vol. 95, no. 1, pp. 72–75.

25. Kushner, A., Lychagin, V., and Rubtsov, V., Contact Geometry and Non-linear Differential Equations ,
Cambridge: Cambridge Univ. Press, 2007.

26. Kulikov, A.N. and Kulikov, D.A., A Possibility of Realizing the Landau–Hopf Scenario in the Problem
of Tube Oscillations under the Action of a Fluid Flow, Theor. Math. Phys., 2020, vol. 203, pp. 501–511.

27. Kulikov, A.N. and Kulikov, D.A., Invariant Varieties of the Periodic Boundary Value Problem of the
Nonlocal Ginzburg–Landau Equation, Math. Meth. Appl. Sci., 2021, vol. 44, no. 3, pp. 11985–11997.

28. Kulikov, A.N. and Kulikov, D.A., Invariant Manifolds and Global Attractor of the Ginzburg–Landau
Integro-Differential Equation, Diff. Equat., 2022, vol. 58, pp. 1499–1513.

29. Kulikov, A.N. and Kulikov, D.A., Invariant Manifolds of a Weakly Dissipative Version of the Nonlocal
Ginzburg–Landau Equation, Autom. Remote Control , 2021, vol. 82, no. 2, pp. 264–277.

This paper was recommended for publication by A.G. Kushner, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 11 2023


