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Abstract—This paper considers linear differential-algebraic equations (DAEs) representing a
system of ordinary differential equations with an identically singular matrix at the derivative
in the domain of its definition. The matrix coefficients of DAEs are assumed to depend on
the uncertain parameters belonging to a given admissible set. For the parametric family under
consideration, structural forms with separate differential and algebraic parts are built. As is
demonstrated below, the robust stability of the DAE family is equivalent to the robust stabil-
ity of its differential subsystem. For the structure of perturbations, sufficient conditions are
established under which the separation of DAEs into the algebraic and differential components
preserves the original type of functional dependence on the uncertain parameters. Sufficient
conditions for robust stability are obtained by constructing a quadratic Lyapunov function.
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1. INTRODUCTION

Consider a system of differential-algebraic equations (DAEs) of the form

A(γ)x′(t) +B(γ)x(t) = 0, t ∈ T = [0,+∞), (1.1)

where γ = col (γ1, . . . , γl) denotes an uncertain vector parameter belonging to a given admissible set

Γ =
{

γ ∈ R
l : ‖γ‖Rl 6 a

}

; A(γ) and B(γ) are known real matrices of dimensions (n× n); finally,

x(t) is the desired n-dimensional function. By assumption, detA(γ) ≡ 0.

A crucial characteristic of DAEs is the unsolvability index, which reflects the complexity of the
internal structure of the system. The higher value this index takes, the more difficult it will be to
divide DAEs into differential and algebraic components. Without such separation, it is impossible
to analyze the stability of nonstationary systems. See Subsection 2.1 for the exact definition of
the index used in this paper. The closest concept to this definition is the differentiation index [1],
introduced for unperturbed nonstationary systems of DAEs. If the unsolvability index exists, it is
equal to the differentiation index.

This paper discusses the issue of asymptotic stability for the parametric family (1.1). Robust
stability analysis is much more complicated for DAEs than for systems of ordinary differential equa-
tions resolvable with respect to the derivative; for example, see [2, pp. 186–225]. The explanation
is that even in the simplest case of index 1, an arbitrarily small perturbation of the coefficients may
violate the internal structure of the system and, consequently, change the properties and type of
the general solution [3, p. 61].
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There are relatively few publications on the robust stability of DAEs; in particular, we refer
to [4–14]. The papers [4, 5] are considered to be the pioneering studies on this subject. Most authors
investigated systems with the perturbed matrix coefficient at x(t) [5–9]. Only a few works supposed
perturbations of the matrix at the derivative of the desired vector function [4, 10–12]. Separate
research was devoted to robust stability and estimation of the stability radius of nonstationary
DAEs of index 1; see [6, 7, 13].

Robust stability is also analyzed when studying the admissibility of linear DAEs; for example,
we mention [15–21]. In addition to stability, admissibility implies that the system possesses the
properties of regularity and either causality (for discrete-time systems) or impulse freeness (in the
continuous-time case).

Presently, it is still topical to investigate the robust stability of parametric families of the
form (1.1) of an arbitrarily high unsolvability index with perturbations in all matrix coefficients.

For the family (1.1) with the vector and scalar parameters, we prove below the existence of
structural forms with separated algebraic and differential subsystems as well as propose algorithms
for building these forms. In our previous works (e.g., [22, 23]), the dimension of the solution
space and the structure of the general solution of perturbed DAEs were ensured the same as those
of the nominal system by imposing some finite relations on the perturbations. In this paper,
the structural forms are defined simultaneously for the entire family (1.1), and their existence is
established without additional constraints on the perturbations.

Unfortunately, the reduction of the DAEs (1.1) to a certain structural form generally complicates
the original type of functional dependence on uncertain parameters. Under the sufficient conditions
derived below, the system is separated into algebraic and differential parts while preserving the
original type of this dependence in the differential subsystem.

Under the assumptions accepted here, the stability of system (1.1) is equivalent to the stability
of its differential part, which represents a parametric family as well. Sufficient conditions for
robust stability follow from the required existence of a general quadratic Lyapunov function for the
differential subsystem.

2. SUFFICIENT CONDITIONS FOR ROBUST STABILITY

2.1. The Structural Form for DAEs with Parametric Uncertainty

For system (1.1) we define the following matrices:

Br [B(γ)] = col (B(γ), O, . . . , O) ,

Ar [A(γ), B(γ)] = col (A(γ), B(γ), O, . . . , O) (2.1)

of dimensions (n(r + 1)× n),

Λr [A(γ), B(γ)] =





















O O . . . O O
A(γ) O . . . O O
B(γ) A(γ) . . . O O
...

...
. . .

...
...

O O . . . A(γ) O
O O . . . B(γ) A(γ)





















(2.2)

of dimensions (n(r + 1)× nr), and

Dr [A(γ), B(γ)] =
(

Br [B(γ)] Ar [A(γ), B(γ)] Λr [A(γ), B(γ)]
)

(2.3)

of dimensions (n(r + 1)× n(r + 2)).
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Assume that

rankΛr [A(γ), B(γ)] = c = const ∀γ ∈ Γ (2.4)

for some r (0 6 r 6 n) and the matrix Dr [A(γ), B(γ)] ∀γ ∈ Γ has a nonsingular minor of or-
der n(r + 1) containing c columns of the matrix Λr [A(γ), B(γ)] and all columns of the matrix
Ar [A(γ), B(γ)]. It will be called the resolving minor .

We denote by Mr [A(γ), B(γ)] a square submatrix of the matrix Dr [A(γ), B(γ)] that has order
n(r + 1) and the resolving minor as its determinant.

Definition 1. The unsolvability index of the parametric family (1.1) is the smallest value r for
which condition (2.4) holds and there exists the resolving minor in the matrix Dr [A(γ), B(γ)] .

According to Lemma 1 below, the definition of the unsolvability index implies the permanent
internal structure of system (1.1) for all γ ∈ Γ.

Let us introduce the notation

(A1(γ) A2(γ) ) = A(γ)Q, (B1(γ) B2(γ) ) = B(γ)Q, (2.5)

where Q is a column permutation matrix such that all columns of the matrix

B2,r(γ) = col (B2(γ), O, . . . , O) (2.6)

belong to the resolving minor and those of col (B1(γ), O, . . . , O) do not. The blocks B2(γ) and A2(γ)
from (2.5), (2.6) have dimensions n× d, where d = nr − c. The construction of the matrix Q was
described in [22]. Thus, d is the number of columns of the matrix Br[B(γ)] that belong to the
resolving minor of the matrix (2.3).

Lemma 1. Assume that:

1) A(γ), B(γ) ∈ C
1(Γ).

2) Condition (2.4) holds.

3) The matrix Dr [A(γ), B(γ)] has the resolving minor.

Then there exists an operator

Rγ = R0(γ) +R1(γ)
d

dt
+ . . .+Rr(γ)

(

d

dt

)r

, (2.7)

where Rj(γ) ∈ C
1(Γ) (j = 0, r) are matrices of dimensions (n× n), such that

Rγ

[

A(γ)Qξ′(t) +B(γ)Qξ(t)
]

=

(

O O
En−d O

)

ξ′(t) +

(

J1(γ) Ed

J2(γ) O

)

ξ(t) (2.8)

for all t∈T and γ ∈Γ and any n-dimensional vector function ξ(t)∈C
r+1(T ). Here, Ed stands for an

identity matrix of order d; Q is the permutation matrix given by (2.5); finally, J1(γ), J2(γ)∈C
1(Γ)

are some matrices of compatible dimensions.

In addition,

(R0(γ) R1(γ) . . . Rr(γ) ) = (En O . . . O ) M−1
r [A(γ), B(γ)] . (2.9)

Lemma 2. Consider the DAEs (1.1) and assume that:

1) All the hypotheses of Lemma 1 are satisfied.

2) The matrix Dr+1 [A(γ), B(γ)] has an invertible submatrix Mr+1 [A(γ), B(γ)] of order n(r + 2)
for all γ ∈Γ that includes the matrix Mr [A(γ), B(γ)] and also n columns of the matrix

Λr+1 [A(γ), B(γ)].

Then the operator Rγ possesses the left inverse operator Lγ = L0(γ) + L1(γ)
d
dt
, where

L0(γ), L1(γ)∈C1(Γ) are matrices of dimensions (n× n).

The proofs of these lemmas are provided in the Appendix.
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2.2. Robust Stability Conditions

Due to Lemma 1, the operator Rγ reduces the family (1.1) to the form

Ã(γ)

(

x′1(t)

x′2(t)

)

+ B̃(γ)

(

x1(t)

x2(t)

)

= 0, (2.10)

where

Qcol (x1(t), x2(t)) = x(t), (2.11)

Q is the row permutation matrix (see (2.5) and (2.6)), and

Ã(γ) =

(

O O
En−d O

)

= (R0(γ)A(γ) +R1(γ)B(γ))Q, (2.12)

B̃(γ) =

(

J1(γ) Ed

J2(γ) O

)

= R0(γ)B(γ)Q. (2.13)

The component x1(t) of the solution of the DAEs (2.10) satisfies the equation

x′1(t) + J2(γ)x1(t) = 0. (2.14)

In turn, x2(t) = −J1(γ)x1(t). The matrix J1(γ) is constant for each fixed value γ ∈Γ. Therefore,
the family (2.10), (2.12), (2.13) is asymptotically stable if and only if the same property holds for
system (2.14).

Under the hypotheses of Lemma 2, the operator Rγ has the left inverse operator. Moreover,
the solutions of systems (1.1) and (2.10), (2.12), (2.13) are related through the row permutation
matrix Q (see (2.11)). Based on these facts, we conclude that the DAE family (1.1) is asymptotically
stable if and only if system (2.14) is asymptotically stable.

Let the entire family (2.14) have a general quadratic Lyapunov function

W (x1) = x⊤1 V x1 (2.15)

with a positive definite time derivative along the trajectories of system (2.14). Here, the matrix V
of dimensions (n− d)× (n − d) is symmetric and positive definite. As is known [2, p. 198; 21,
p. 210], the family (2.14) is asymptotically stable if there exists a solution of the system of linear
matrix inequalities (LMIs)

J2(γ)
⊤V + V J2(γ) > 0, γ ∈Γ. (2.16)

In this case, the DAE family (1.1) is asymptotically stable as well. Thus, we arrive at the
following result.

Theorem 1. Under the hypotheses of Lemma 2, assume the existence of a symmetric and positive

definite constant matrix V satisfying the LMIs (2.16).

Then the parametric DAE family (1.1) is asymptotically stable.

We formulate another useful fact based on a known result from perturbation theory [2, p. 198].

Theorem 2. Under the hypotheses Lemma 2, assume that all eigenvalues λi(0) of the matrix J2(0)
in system (2.10)–(2.13) are different and let αi and βi be the corresponding right and left eigenvec-

tors:

J2(0)αi = λi(0)αi, β∗i J2(0) = λi(0)β
∗
i ,

‖αi‖Rn−d = ‖βi‖Rn−d = 1, i = 1, n − d.
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Then the eigenvalues of the matrix J2(γ) can be written as

λi(γ) = λi(0) +
l
∑

j=1

β∗i Θjαi

β∗i αi
γj + o(γ),

where

Θj =
∂J2(γ)

∂γj

∣

∣

∣

γ=0
.

Example. Consider the DAEs











1 −γ2 1 0
0 1 0 0

−ϕ(γ3) 0 0 ϕ(γ3)
0 0 ψ(γ3) 0











x′(t) +











2 0 0 γ1 − 1
0 2− γ2 0 0
0 0 1 0
−1 0 0 1











x(t) = 0, (2.17)

where

Γ =

{

col (γ1, γ2, γ3) :
√

γ21 + γ22 + γ23 6 1/2

}

.

The functions ϕ(γ3) and ψ(γ3) are infinitely differentiable with respect to the parameter
γ3 ∈ [−1/2, 1/2] and given by the rule ψ(γ3) = 0 if ϕ(γ3) 6= 0. Since φ(γ3) and ψ(γ3) vanish ei-
ther simultaneously or in turn, the matrix at the derivative has variable rank in the domain Γ.

The matrix D2 [A(γ), B(γ)] has the resolving minor indicated by the dashed line:



















































2 0
0 f2
0 0
−1 0

0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0

0 f1 1 −γ2 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
1 0 −ϕ 0 0 ϕ 0 0 0 0 0 0
0 1 0 0 ψ 0 0 0 0 0 0 0

0 0 2 0 0 f1 1 −γ2 1 0 0 0
0 0 0 f2 0 0 0 1 0 0 0 0
0 0 0 0 1 0 −ϕ 0 0 ϕ 0 0
0 0 −1 0 0 1 0 0 ψ 0 0 0

0 0 0 0 0 0 2 0 0 f1 1 −γ2
0 0 0 0 0 0 0 f2 0 0 0 1
0 0 0 0 0 0 0 0 1 0 −ϕ 0
0 0 0 0 0 0 −1 0 0 1 0 0

0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0

1 0
0 0
0 ϕ
ψ 0



















































.

Here, the dependence of ϕ and ψ on the parameter γ3 is omitted, f1 = γ1 − 1, and f2 = 2− γ2.
The matrix Λ2[A(γ), B(γ)] is located to the right of the double vertical line and has rank 6.

We construct the matrix D3 [A(γ), B(γ)] by supplementing D2 with four zero columns on the
right and four rows at the bottom:











0 . . . 0 0 . . . 0 0 . . . 0 2 0 0 f1 1 −γ2 1 0

0 . . . 0 0 . . . 0 0 . . . 0 0 f2 0 0 0 1 0 0

0 . . . 0 0 . . . 0 0 . . . 0 0 0 1 0 −ϕ 0 0 ϕ

0 . . . 0 0 . . . 0 0 . . . 0 −1 0 0 1 0 0 ψ 0











.

There is the submatrix M3 [A(γ), B(γ)] in D3 : it includes all columns corresponding to the re-
solving minor and four more columns with the framed units. Thus, all the hypotheses of Lemma 2
are satisfied, d = 2, and Q = E4.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 11 2023
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The operator

Rγ = R0(γ) +R1(γ)
d

dt
+R2(γ)

(

d

dt

)2

,

where

R0(γ) =











0 0 1 0
0 0 0 1
1 γ2 0 1− γ1
0 1 0 0











, R1(γ) =











0 0 0 −ϕ(γ3)
0 0 −ψ(γ3) 0
0 0 (γ1 − 1)ψ(γ3)− 1 0
0 0 0 0











,

R2(γ) =











0 0 0 0
0 0 0 0
0 0 0 ϕ(γ3)
0 0 0 0











,

transforms system (2.17) into











0 0 0 0
0 0 0 0

1 0 0 0
0 1 0 0











x′(t) +











0 0 1 0
−1 0 0 1

1 + γ1 γ2 (2− γ2) 0 0
0 2− γ2 0 0











x(t) = 0.

In addition, J2(γ) =

(

1 + γ1 γ2 (2− γ2)
0 2− γ2

)

.

Let V =

(

2 0
0 2

)

in the matrix inequality (2.16). Then

J2(γ)
⊤V + V J2(γ) =

(

4 (1 + γ1) 2γ2 (2− γ2)
2γ2 (2− γ2) 4 (2− γ2)

)

.

This matrix is positive definite due to the positive definiteness of all its principal minors for
any γ1 and γ2 from the segment [−1/2, 1/2]. In particular, the determinant of this matrix is
4(2 − γ2){4(1 + γ1)− γ22(2− γ2)}. Obviously, 2− γ2 > 0 ∀γ2 ∈ [−1/2, 1/2]. The expression in curly
brackets achieves a minimum of 11/8 > 0 for γ1 = −1/2 and γ2 = −1/2.

By Theorem 1, this means that the family (2.17) is asymptotically stable.

3. ROBUST STABILITY CONDITIONS FOR DAES WITH A SCALAR PARAMETER

Consider the DAEs

A(γ0)x
′(t) +B(γ0)x(t) = 0, t∈T, (3.1)

where γ0 ∈G0 denotes a scalar parameter and G0 = {γ0 ∈R : |γ0| 6 a} is a given admissible set.

Theorem 3. Assume that:

1) A(γ0), B(γ0)∈C
A(G0).

2) rankΛr[A(γ0), B(γ0)] = const ∀γ0 ∈G0.

3) The matrix Dr[A(γ0), B(γ0)] has a resolving minor.

Then there exist matrices P (γ0), S(γ0) ∈ C
A(G0) invertible for all γ0 ∈G0 such that, with mul-

tiplication on the left by P (γ0) and the change of variable

x(t) = S(γ0)col (z1(t), z2(t)) ,

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 11 2023
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system (3.1) is transformed into

(

En−d O

O N(γ0)

)(

z′1(t)

z′2(t)

)

+

(

J(γ0) O

O Ed

)(

z1(t)

z2(t)

)

= 0, t∈T, (3.2)

where N(γ0) is an upper triangular matrix with r square zero blocks on the principal diagonal,

N r(γ0) ≡ O, and J(γ0) is some matrix of dimensions (n−d)×(n−d).

The proof of this theorem is omitted. It involves the step-by-step zeroing of linearly dependent
rows in the matrix at x′(t) and the differentiation operator applied to the corresponding rows of
the matrix at x(t).

The structural form (3.2) is an analog of the strong standard canonical form introduced in [25]
for the system A(t)x′(t) +B(t)x(t) = f(t) under the analytical solvability assumption.

Under the hypotheses of Theorem 3, the solutions of systems (3.1) and (3.2) are related by the
identity

x(t) = S(γ0)col (z1(t), z2(t)) (3.3)

with the matrix S(γ0) invertible for all γ0 ∈G0.

Consider the DAEs (3.2). Due to the structure of the matrix N(γ0), the subsystem

N(γ0)z
′
2(t) + z2(t) = 0

has only the trivial solution z2(t) ≡ 0 for all γ0 ∈G0.

In turn, the component z1(t) satisfies the subsystem

z′1(t) + J(γ0)z1(t) = 0. (3.4)

Therefore, the DAEs (3.2) are asymptotically stable if and only if the same property holds for
system (3.4).

For each fixed value γ0, the matrix S(γ0) in (3.3) is constant. Hence, the DAE family (3.1)
possesses asymptotic stability if and only if system (3.4) does so.

Let
W0(z1) = z⊤1 V0z1

be a general Lyapunov function for system (3.4) with a symmetric and positive definite matrix V0
of dimensions (n− d)× (n− d) that satisfies the matrix inequality

J⊤(γ0)V0 + V0J(γ0) > 0, γ0 ∈G0. (3.5)

In this case, the family (3.4) is asymptotically stable, and hence the parametric family (3.1)
possesses the same property.

Thus, the following result holds.

Theorem 4. Under the hypotheses of Theorem 3, the DAE family (3.1) is asymptotically sta-

ble if there exists a constant, symmetric, and positive definite matrix V0 that satisfies the matrix

inequality (3.5) for all γ0 ∈G0.

4. CONDITIONS FOR PRESERVING THE TYPE OF FUNCTIONAL DEPENDENCE
ON UNCERTAIN PARAMETERS

In the previous sections, we have considered the reduction of parametric families of DAEs to
some structural forms. As it has been demonstrated above, under certain conditions, the robust
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stability of the original family is equivalent to the robust stability of its differential subsystem.
Unfortunately, in the process of such transformations, the original type of the functional dependence
of the system coefficients on the uncertain parameters generally becomes more complicated.

Consider the family of DAEs with an affine uncertainty:


A0 +
l
∑

j=1

γjAj



x′(t) +



B0 +
l
∑

j=1

γjBj



x(t) = 0, t∈T, (4.1)

where Aj and Bj (j = 0, l) are given real matrices of dimensions (n × n); detA0 = 0 and γ =
col (γ1, . . . , γl) ∈Γa = {γ ∈R

l : |γj| 6 a, j = 1, l}.

This section presents sufficient conditions on the structure of the coefficients Aj and Bj (j = 1, l)
under which the robust stability of the family (4.1) is equivalent to the robust stability of a system
of ordinary differential equations resolvable with respect to the derivative, with affine uncertainty.

4.1. Conditions Based on the Canonical Kronecker–Weierstrass Form

Definition 2. A matrix pencil µA0 + B0 is said to be regular if there exists µ∈R such that
det (µA0 +B0) 6= 0.

Lemma 3 [26, p. 313]. Assume that a matrix pencil µA0 +B0 is regular. Then there exist in-

vertible matrices P and S of dimensions (n× n) such that

PA0S =

(

En−d O
O N

)

, PB0S =

(

J0 O
O Ed

)

, (4.2)

where J0 is some square matrix of order n− d and N is an upper triangular matrix with r square

zero blocks on the principal diagonal such that N r = O.

The system PA0Sz
′(t) + PB0Sz(t) = 0, z(t) = S−1x(t), with property (4.2) is called the canon-

ical Kronecker–Weierstrass form for the DAEs A0x
′(t) +B0x(t) = 0.

Let the matrix pencil µA0 +B0 in (4.1) be regular. Then, by Lemma 4, there exist invertible
matrices P and S with property (4.2). Assume that

PAjS =

(

O O
Aj,1 O

)

, PBjS =

(

Bj,1 O
Bj,2 O

)

, j = 1, l, (4.3)

where Aj,1, Bj,1, and Bj,2 are some matrices with possibly nonzero elements. Note that Aj,1 and
Bj,2 have dimensions d× (n− d), whereas the square block Bj,1 is of order (n− d).

We multiply (4.1) on the left by the matrix P and change the variable: x(t) = Scol(x1(t), x2(t)).
In view of (4.2), (4.3), the resulting system has the form







En−d O

l
∑

j=1
γjAj,1 N







(

x′1(t)

x′2(t)

)

+











J0 +
l
∑

j=1
γjBj,1 O

l
∑

j=1
γjBj,2 Ed











(

x1(t)

x2(t)

)

= 0. (4.4)

Denoting

Y1(γ) = J0 +
l
∑

j=1

γjBj,1, (4.5)

Y2(γ) =
l
∑

j=1

γj (Bj,2 −Aj,1Y1(γ)) , (4.6)
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from the first equation of system (4.4) we find

x′1(t) = −Y1(γ)x1(t) (4.7)

and consequently,

(

d

dt

)i

x1(t) = (−1)iY i
1 (γ)x1(t), i = 2, l. (4.8)

Considering (4.5)–(4.7), the second equation of system (4.4) can be written as

Nx′2(t) + x2(t) + Y2(γ)x1(t) = 0. (4.9)

Applying the operator

Ed +
r−1
∑

k=1

(−1)kNk

(

d

dt

)k

(4.10)

to (4.9) and using formulas (4.7) and (4.8), we obtain

x2(t) =

(

Y2(γ) +
r−1
∑

k=1

NkY2(γ)Y
k
1 (γ)

)

x1(t). (4.11)

Obviously, the inverse of the operator (4.10) has the form Ed +N d
dt
.

Following the same considerations as in the previous sections, we can demonstrate that the DAE
family (4.1) is asymptotically stable for all γ ∈Γa if and only if the same property holds for the
family (4.7) or, equivalently, for the DAEs

x′1(t) +



J0 +
l
∑

j=1

γjBj,1



x1(t) = 0. (4.12)

In system (4.12), the affine structure of uncertainty is preserved, being violated in equation (4.11).

Remark. If the dependence on the parameters in the original family were not affine (e.g., mul-
tilinear or polynomial), conditions (4.3) would ensure the same type of uncertainty in an equation
analogous to (4.12).

The family (4.12) is asymptotically stable for all values γ ∈Γa if there exists a general Lyapunov
function (2.15) with a positive definite time derivative along the trajectories of system (4.12).

Theorem 5. Consider system (4.1) under the assumptions that the matrix pencil µA0 + B0 is

regular and equalities (4.3) hold. If there exists a symmetric and positive definite matrix V of

dimensions (n − d)× (n− d) that satisfies the inequality

Y ⊤
1 (γ)V + V Y1(γ) > 0 (4.13)

for all γ ∈Γa, then the family (4.1) is asymptotically stable for all γ ∈Γa. In this case, the matrix

Y1(γ) is calculated by formula (4.5).

Since the affine structure of the dependence on the uncertain parameters is preserved in (4.12),
it suffices to solve inequalities (4.13) only at a finite number of points for which |γj | = a (j = 1, l)
[2, p. 199].

For the same reason, Theorem 2 can be used to estimate the stability radius of system (4.12).
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Suppose that all eigenvalues λk of the matrix J0 have positive real parts: Re (λk)> 0, k =
1, n − d. We denote by λ the eigenvalue of this matrix with the least real part. Let α and β be the
corresponding right and left eigenvectors. By Theorem 2, λ turns into the eigenvalue λ(γ) of the

matrix J0 +
l
∑

j=1
γjBj,1 :

λ(γ) ≈ λ+
l
∑

j=1

β∗Bj,1α

β∗α
γj

for small γ. Therefore, for

ā = Reλ/
l
∑

j=1

∣

∣

∣

∣

Re
β∗Bj,1α

β∗α

∣

∣

∣

∣

at least one eigenvalue of the matrix (4.5) has zero real part. In other words, the value ā provides
an estimate for the stability radius of system (4.12) [2, p. 198].

4.2. Conditions Based on the Differential Operator

Note that for a regular pencil µA0 + B0, the construction of matrices P and S with the prop-
erty (4.2) is generally a nontrivial problem. Therefore, we will obtain other, more constructive,
conditions for preserving the type of functional dependence on the parameters for the family (4.1).
In this case, some constraints will be imposed on the coefficients of the system under consideration,
different from those adopted in Section 4.1.

Assume that the matrices A0 and B0 in system (4.1) satisfy the following conditions:

A1) There is a resolving minor in the matrix Dr[A0, B0].

A2) rankΛr+1[A0, B0] = rankΛr[A0, B0] + n.

Then, by Lemma 2, there exist an operator

R = R0 +R1
d

dt
+ . . . +Rr

(

d

dt

)r

such that

R
[

A0x
′(t) +B0x(t)

]

=

(

O O
En−d O

)(

x′1(t)
x′2(t)

)

+

(

J1 Ed

J2 O

)(

x1(t)
x2(t)

)

,

where Qcol (x1(t), x2(t)) = x(t) and Q is the corresponding row permutation matrix (see (2.5)
and (2.6)). In addition, R has the left inverse operator L = L0 + L1

d
dt

and

(R0 R1 . . . Rr ) = (En O . . . O )M−1
r [A0, B0],

where the determinant of the matrix Mr[A0, B0] is the resolving minor.

Applying the operator R to (4.1) yields the system
(

O O

En−d O

)(

x′1(t)

x′2(t)

)

+

(

J1 Ed

J2 O

)(

x1(t)

x2(t)

)

+
r+1
∑

i=0





l
∑

j=1

γjRi,j





(

d

dt

)i
(

x1(t)

x2(t)

)

= 0, (4.14)

where

R0,j = R0BjQ; Ri,j = (Ri−1Aj +RiBj)Q, i = 1, r;

Rr+1,j = RrAjQ, j = 1, l.
(4.15)
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Suppose that the matrix coefficients (4.15) have the structure

R0,j =

(

Bj,1 O

Bj,2 O

)

, Ri,j =

(

A
[i]
j O

O O

)

, j = 1, l, i = 1, r + 1, (4.16)

where Bj,1, Bj,2, and A
[i]
j are some matrices: Bj,1 and A

[i]
j have dimensions d × (n − d), and the

square block Bj,2 is of order (n− d).

Due to (4.16), system (4.14) takes the form

(

O O

En−d O

)(

x′1(t)

x′2(t)

)

+













J1 +
l
∑

j=1
γjBj,1 Ed

J2 +
l
∑

j=1
γjBj,2 O













(

x1(t)

x2(t)

)

+









r+1
∑

i=1

[

l
∑

j=1
γjA

[i]
j

]

(

d

dt

)i

x1(t) O

O O









= 0.

Following the same considerations as in the previous case, under Assumptions A1 and A2, we
can demonstrate that system (4.1) is asymptotically stable for each γ ∈Γa if and only if the same
property holds for the subsystem

x′1(t) +



J2 +
l
∑

j=1

γjBj,2



x1(t) = 0.

Thus, the following analog of Theorem 5 is true.

Theorem 6. Consider system (4.1) under Assumptions A1 and A2 and equalities (4.16). If there

exists a symmetric and positive definite matrix V of dimensions (n− d)× (n− d) that satisfies the

inequality


J2 +
l
∑

j=1

γjBj,2





⊤

V + V



J2 +
l
∑

j=1

γjBj,2



 > 0

for all γ ∈Γa, then the family (4.1) is asymptotically stable for all γ ∈Γa.

5. CONCLUSIONS

In this paper, the robust stability of differential-algebraic equations (DAEs) with norm-bounded
vector and scalar uncertain parameters has been analyzed by proposing algorithms for building
structural forms with separated differential and algebraic subsystems (Lemma 1 and Theorem 3,
respectively).

The approach based on a linear differential operator has a constructive nature: the coefficients
of this operator are determined by inverting the matrix whose determinant is the resolving minor.
Moreover, the system obtained by such a transformation is equivalent to the original system in the
sense of solutions (Lemma 2).

When investigating the stability of DAEs, the main difficulty is that even in the simplest cases,
the internal structure of the system (and, consequently, the form of the general solution) may
change under an arbitrarily small perturbation of the coefficients. As a result, the structure and
properties of the unperturbed system may lose any significance for analysis.
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A distinctive feature of the results presented above is that the stability analysis involves no
information about the internal structure of the nominal system. The structural forms are built for
the entire family (Subsections 2.1 and 3.1). For this reason, there is no need to introduce additional
structural constraints on the perturbations that would ensure the coinciding internal structures of
the nominal and perturbed DAEs.

It has been demonstrated that the stability of the parametric family (1.1) is equivalent to the
robust stability of its differential subsystem, which also depends on the uncertain parameters. The
sufficient condition for robust stability follows from the existence of a general quadratic Lyapunov
function (2.15) for the differential subsystem (Theorems 1 and 4).

On the other hand, reducing the system to one or another structural form may appreciably
complicate the type of functional dependence on the uncertain parameters of this subsystem com-
pared to system (1.1). In this regard, for DAEs with affine uncertainty, sufficient conditions have
been established under which the differential subsystem is also an affine family (Section 4). This
approach is also applicable to systems with other types of parametric uncertainty.

APPENDIX

Proof of Lemma 1. Let QΛ be a column permutation matrix such that

Λr [A(γ), B(γ)]QΛ = (Λr,1(γ) Λr,2(γ)) ,

where the block Λr,1(γ) belongs to the resolving minor and consists of c columns, rankΛr,1(γ) = c
∀γ ∈Γ.

Consider the matrix Dr [A(γ), B(γ)] . Multiplying it on the right by the column permutation
matrix Qr = diag {Q,Q,QΛ}

1 and on the left by M−1
r [A(γ), B(γ)] yields

M−1
r [A(γ), B(γ)]Dr [A(γ), B(γ)]Qr =











J1(γ) Ed O O O Φ1(γ)
J2(γ) O En−d O O Φ2(γ)

J3(γ) O O Ed O Φ3(γ)
J4(γ) O O O Ec Φ4(γ)











,

where Ji(γ) and Φi(γ) (i = {1, 2, 3, 4}) are some matrices of compatible dimensions. Due to (2.4),

Φ1(γ) ≡ O, Φ2(γ) ≡ O, Φ3(γ) ≡ O, γ ∈Γ.

In this case,

(En O . . . O ) M−1
r [A(γ), B(γ)]Dr [A(γ), B(γ)]Qrcol

(

ξ(t), . . . , ξ(r+1)(t)
)

=

(

J1(γ) Ed O O O . . . O

J2(γ) O En−d O O . . . O

)

col
(

ξ(t), . . . , ξ(r+1)(t)
)

, (A.1)

which obviously implies formulas (2.9) and (2.8).

Proof of Lemma 2. Note that identity (A.1) remains in force for

Qr = diag {Q, . . . , Q} .

1 The matrix Qr is quasi-diagonal: the blocks listed in curly brackets stand on the principal diagonal and all other

elements are zero.
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Let ξ(t)∈C
r+2(T ) be an arbitrary n-dimensional vector function. In view of the representa-

tion (2.9), differentiating (A.1) with respect to the variable t gives

(O R0(γ) R1(γ) . . . Rr(γ) )Dr+1 [A(γ), B(γ)]Qr+1col
(

ξ(t), . . . , ξ(r+2)(t)
)

=

(

O O J1(γ) Ed O O O . . . O

O O J2(γ) O En−d O O . . . O

)

col
(

ξ(t), . . . , ξ(r+2)(t)
)

. (A.2)

From (A.1) and (A.2) it follows that

(

R0(γ) R1(γ) . . . Rr(γ) O

O R0(γ) . . . Rr−1(γ) Rr(γ)

)

Dr+1 [A(γ), B(γ)]Qr+1

=













J1(γ) Ed O O O O

J2(γ) O En−d O O O

O O J1(γ) Ed O O

O O J2(γ) O En−d O













. (A.3)

According to assumption 2 of Lemma 2, the matrix

Dr+1 [A(γ), B(γ)] =
(

Br+1 [B(γ)] Ar+1 [A(γ), B(γ)] Λr+1 [A(γ), B(γ)]
)

has an invertible submatrix Mr+1 [A(γ), B(γ)] of order n(r + 2) on Γ. In addition, d columns of
the matrix Br+1 [B(γ)] are included in Mr+1 [A(γ), B(γ)] , namely, those of the matrix

B2,r+1(γ) = col (B2(γ), O, . . . , O)

(see (2.5) and (2.6)); (c+ n) columns of the matrix Λr+1 [A(γ), B(γ)] are included in Mr+1.

Consider a matrix that eliminates in Dr+1 [A(γ), B(γ)]Qr+1 the columns not included in
Mr+1 [A(γ), B(γ)] . Multiplying both sides of equality (A.3) on the right by this matrix yields

(

R0(γ) R1(γ) . . . Rr(γ) O

O R0(γ) . . . Rr−1(γ) Rr(γ)

)

Mr+1 [A(γ), B(γ)] = ( E(γ) O ) , (A.4)

where

E(γ) =













Ed O O O
O En−d O O

O J1(γ) Ed O

O J2(γ) O En−d













. (A.5)

In addition, the block column

col (O,O,O,En−d) (A.6)

of the matrix on the right-hand side of identity (A.3) completely enters the matrix E(γ). Indeed,
Dr+1 [A(γ), B(γ)] and the matrix on the right-hand side of (A.3) have full row rank for all γ ∈Γ;
therefore, due to (A.3), the same property holds for the matrix

(

R0(γ) R1(γ) . . . Rr(γ) O

O R0(γ) . . . Rr−1(γ) Rr(γ)

)

. (A.7)
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Assume on the contrary that the transformation of (A.3) into (A.4) eliminates some columns of
the matrix (A.6). In this case, the matrix E(γ) will no longer be invertible, which contradicts the
full row rank of the matrix (A.7).

From (A.4) it follows that

(

R0(γ) R1(γ) . . . Rr(γ) O

O R0(γ) . . . Rr−1(γ) Rr(γ)

)

= ( E(γ) O )M−1
r+1 [A(γ), B(γ)] . (A.8)

The desired result of this lemma will be established by demonstrating that the system

(L0(γ) L1(γ) )

(

R0(γ) R1(γ) . . . Rr(γ) O

O R0(γ) . . . Rr−1(γ) Rr(γ)

)

= (En O . . . O ) (A.9)

has a solution (L0(γ) L1(γ) ) ∈C
1(Γ).

Considering the representation (A.8), a necessary and sufficient condition for the point-wise
solvability of equation (A.9) can be written as

rank E(γ) = rank

(

( E(γ) O )

(En O . . . O )Mr+1 [A(γ), B(γ)]

)

. (A.10)

Obviously, see (A.5), rankE(γ) = 2n. By construction,

(En O . . . O )Mr+1 [A(γ), B(γ)] =
(

B2(γ) A1(γ) A2(γ) O
)

. (A.11)

In view of (A.5) and (A.11), it is straightforward to verify (A.10) for all γ ∈Γ.

The solution L0(γ), L1(γ)∈C
1(Γ) of system (A.9) is given by the formula

(L0(γ) L1(γ) ) = (En O . . . O )Mr+1 [A(γ), B(γ)]

(

E−1(γ)
O

)

.

The proof of Lemma 2 is complete.
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