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Abstract—In this paper, interval observers are designed for linear dynamic systems described
by continuous-time models with exogenous disturbances, measurement noises, and parametric
uncertainties. Jordan canonical form-based relations are presented for an interval observer that
estimates the set of admissible values of a given linear function of the system state vector. The
theoretical results are illustrated by a practical example.
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1. INTRODUCTION AND PROBLEM STATEMENT

The problem of constructing interval observers has received much attention in recent years.
Solutions for different classes of systems—discrete- and continuous-time, delayed, and singular—
can be found in [1–11], including practical applications of such observers in various fields. The
corresponding results were thoroughly overviewed in [10, 11]. As a rule, the interval observers
considered therein estimate the set of admissible values of the complete state vector. In practice,
however, it may be of interest to get an interval estimate of admissible values only for some linear
function of this vector. The corresponding interval observer may turn out to be much simpler
than the observer for the full state vector, and the interval width may be noticeably smaller due
to the possibility of minimizing the effect of exogenous disturbances. Moreover, when estimating
a given linear function, the dynamics of the observer can be represented in canonical form, which
simplifies the process of solving the problem and expands the class of systems with the possibility
of constructing an interval observer for them.

In recent years, the Jordan canonical form (JCF) [4, 10] has been actively used to design interval
observers. (Previously, it was employed to analyze the self-correction property of faults [12].) Under
an appropriate choice of the eigenvalues, the system dynamics matrix implemented in the JCF
ensures observer stability and is a Metzler matrix, i.e., its off-diagonal elements are nonnegative.
Due to these properties, at each time instant, the interval observer produces an estimate of the set
of admissible values of the system state vector with uncertainties. According to the analysis results,
in addition to stabilization, the JCF simplifies the procedure of ensuring the observer’s insensitivity
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to disturbances and, in some cases, reduces its dimension due to no need for stabilization by special
means.

This paper is a logical continuation of the works [13, 14], devoted to the problem of constructing
interval observers for systems described by linear continuous-time models with exogenous distur-
bances and measurement noises. As was demonstrated in [14], the JCF-based interval observer
design allows reducing the dimension of observers and, in some cases, the interval width as well.
In this paper, for systems described by continuous-time models with exogenous disturbances, mea-
surement noises, and parametric uncertainties, we construct interval observers estimating the set
of admissible values of a given linear function of the state vector.

Consider a class of systems with the linear model

ẋ(t) = (F +∆F (µ(t)))x(t) +Gu(t) + Lρ(t),

y(t) = Hx(t) + v(t),
(1.1)

where x ∈ R
n, u ∈ R

m, and y ∈ R
l denote the state, control, and output vectors, respectively;

F and G are constant matrices describing the linear dynamics; H and L are given constant matri-
ces; ρ(t) ∈ R

p is an unknown bounded time-varying function describing exogenous disturbances of
the system, ‖ρ(t)‖ 6 ρ∗; v(t) ∈ R

l is an unknown bounded time-varying function describing mea-
surement noises, ‖v(t)‖ 6 v∗; finally, µ(t) ∈ Π ⊂ R

s is a the bounded vector of variable parameters.
By analogy with [10], the values of the vector µ(t) are unmeasurable, the set of admissible values Π
is known, and the matrix function ∆F (µ) is bounded for all µ(t) ∈ Π, i.e., ∆F 6 ∆F 6 ∆F, where
∆F and ∆F are given. As in the paper [2], for arbitrary vectors w1, w2 and matrices A1, A2, the
relations w1 6 w2 and A1 6 A2 are understood elementwise.

It is required to construct a minimum-dimension interval observer that forms the lower z(t) and
upper z(t) bounds of the variable z(t) = Mx(t) with a known matrix M such that z(t) 6 z(t) 6 z(t)
for all t > 0. The problems of considering measurement noises and exogenous disturbances for
continuous-time systems were discussed in detail in [13]. Therefore, this paper focuses on parametric
uncertainties, first assuming that v(t) = 0 and ρ(t) = 0.

2. MODEL BUILDING

This problem is solved using the minimum-dimension model of system (1.1) that estimates the
variable z(t) and some variable y∗(t) determined during the solution process:

ẋ∗(t) = (F∗ +∆F∗(t)− PH∗)x∗(t) + (J∗ + J ′)y(t) + Py∗(t) +G∗u(t),

y∗(t) = H∗x∗(t),

z(t) = Hzx∗(t) +Qy(t),

(2.1)

where x∗(t) ∈ R
k and k < n denotes the model dimension; F∗, G∗, J∗, H∗, Hz, and Q are the

matrices to be found; the matrices ∆F∗ and J ′ are defined below; finally, the choice of the matrix P
is explained in Section 3. In [4], the stable observer designed previously was reduced to the JCF
for the interval estimation of the vector x(t). In contrast, in this paper, the matrix F∗ will be
immediately found in the JCF. Assuming that the eigenvalues λ1, λ2, . . . , λk of this matrix are
different and negative, we obtain the diagonal matrix

F∗ =











λ1 0 0 . . . 0

0 λ2 0 . . . 0
. . . . . . . . . . . .
0 0 0 . . . λk











. (2.2)
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Let us show the correctness of this assumption. According to [13], the matrix F∗ can always be
implemented in the identification canonical form

F∗ =











0 1 0 . . . 0

0 0 1 . . . 0
. . . . . . . . . . . .
0 0 0 . . . 0











.

By introducing the residual signal feedback with the matrix K, it is reduced to the form F∗ −KH∗;
by choosing (different and negative) eigenvalues λ1, λ2, . . . , λk and by determining the correspond-
ing elements of the matrix K, the matrix F∗ −KH∗ can be made stable. Since the eigenvalues
are assumed different, the corresponding eigenvectors v1, v2, . . . , vk form a linearly independent
system, so the matrix T−1 = (v1 v2 . . . vk) will be nonsingular. The matrix T has the form

T =











w1

w2

. . .
wk











,

where the vectors w1, w2, . . . , wk satisfy the condition wivi = 1, i = 1, . . . , k, wivj = 0, i 6= j. By
the definition of eigenvalues and eigenvectors, (F∗ −KH∗)v1 = λ1v1. Multiplying on the left by the
matrix T, we transform this equation into T (F∗ −KH∗)T

−1Tv1 = λ1Tv1. Due to the form of T,
Tv1 = (1 0 . . . 0)T and, consequently,

T (F∗ −KH∗)T
−1(1 0 . . . 0)T = (λ1 0 . . . 0)T .

Therefore, the first column of the matrix T (F∗ − KH∗)T
−1 is (λ1 0 . . . 0)T . Considering the

equation (F∗ −KH∗)vi = λivi, i = 2, 3, . . . , k, by analogy, we finally arrive at the matrix (2.2).

In the absence of noises, disturbances, and uncertainties, let x∗(t) = Φx(t) and y∗(t) = R∗x(t),
where the matrix Φ satisfies the well-known conditions [15]

ΦF = F∗Φ+ J∗H, H∗Φ = R∗H, ΦG = G∗, (2.3)

and an auxiliary condition due to the variable z(t).We derive it below. From z(t) = Mx(t) and (2.1)
it follows that

M = HzΦ+QH = (Hz Q)

(

Φ
H

)

. (2.4)

This equation has a solution if

rank

(

Φ
H

)

= rank







Φ
H
M






. (2.5)

Note that the condition H∗Φ = R∗H can be written as the equation

(H∗ −R∗)

(

Φ
H

)

= 0, (2.6)

which has a solution if

rank

(

Φ
H

)

< rank(Φ) + rank(H). (2.7)
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For the matrix (2.2), the first equation in (2.3) splits into k independent equations:

ΦiF = λiΦi + J∗iH, i = 1, . . . , k.

They can be written as

(Φi − J∗i)

(

F − λiIn
H

)

= 0, i = 1, . . . , k, (2.8)

where Φi and J∗i stand for the ith rows of the matrices Φ and J∗, respectively, and In denotes an
identity matrix of dimensions n× n.

When solving equation (2.8), the values λi < 0 must be set so that the resulting matrix Φ with
the minimum number of rows satisfies conditions (2.5) and (2.7). After that, the matrices Hz and Q
are determined from (2.4), the matrices H∗ and R∗ from (2.6), and the matrix G∗ from (2.3). The
uncertainty ∆F∗(t) figuring in (2.1) is determined from ∆F (µ(t)) as follows. By analogy with (2.3),
formulas (1.1) and (2.1) imply

Φ(F +∆F (µ(t))) = (F∗ +∆F∗(t))Φ + J∗H + J ′H.

Since the matrix F∗ satisfies the condition ΦF = F∗Φ+ J∗H, we obtain

Φ∆F (µ(t)) = ∆F∗(t)Φ + J ′H,

or

Φ∆F (µ)) = (∆F∗ J ′)

(

Φ
H

)

. (2.9)

This equation has a solution if

rank

(

Φ
H

)

= rank







Φ
H

Φ∆F (µ))






. (2.10)

After calculating the matrix Φ, this condition is checked and, if it holds, ∆F∗(t) and J ′ are de-
termined from equation (2.9). The matrices ∆F ∗ and ∆F ∗ are also determined from (2.9). If
condition (2.10) fails, another solution of equation (2.8) is sought. For simplicity, we consider the
case where J ′ is independent of ∆F (µ).

3. INTERVAL OBSERVER DESIGN

3.1. The First Variant

By analogy with [2, 10], we consider two variants of constructing interval observers, namely, a
simple one with constraints on the original system and a more complicated one without them. Let
us begin with the first variant, assuming that ∆F ∗ > 0 and x∗(t) > 0 for all t > 0. In this case,
the observer based on model (2.1) is designed in the form

ẋ∗(t) = (F∗ +∆F ∗ − PH∗)x∗(t) + Py∗(t) + (J∗ + J ′)y(t) +G∗u(t),

ẋ∗(t) = (F∗ +∆F ∗ − PH∗)x∗(t) + Py∗(t) + (J∗ + J ′)y(t) +G∗u(t),

z(t) = Hzx∗(t) +Qy(t),

z(t) = Hzx∗(t) +Qy(t),

x∗(0) = x∗0, x∗(0) = x∗0.

(3.1)
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We introduce the estimation errors

e∗(t) = x∗(t)− x∗(t), e∗(t) = x∗(t)− x∗(t),

ez(t) = z(t)− z(t), ez(t) = z(t)− z(t).
(3.2)

Due to (2.1) and (3.1), these errors satisfy the differential equations

ė∗(t) = (F∗ − PH∗)e∗(t) + ∆F∗x∗(t)−∆F ∗x∗(t),

ė∗(t) = (F∗ − PH∗)e∗(t) + ∆F ∗x∗(t)−∆F∗x∗(t).
(3.3)

Equations (3.1) and (3.3) lead to the following requirements for the matrices P and P : they
are chosen so that F∗ +∆F ∗ − PH∗ and F∗ +∆F ∗ − PH∗ are stable matrices whereas F∗ − PH∗

and F∗ − PH∗ are Metzler matrices. Some recommendations on determining these matrices can be
found in [2]. The matrix P in (2.1) is set equal to P for the first equation in (3.1) and to P for the
second one.

Theorem 1. Assume that 0 6 ∆F ∗ 6 ∆F∗ 6 ∆F ∗, Hz > 0, x∗(t) > 0 for all t > 0, x∗(0) 6
x∗(0) 6 x∗(0), and there exist matrices P and P with the properties specified above. Then the
interval observer (3.3) satisfies the relation z(t) 6 z(t) 6 z(t).

Proof. If x∗(t) > x∗(t), we obtain ∆F ∗(x∗(t) − x∗(t)) > 0 and ∆F ∗x∗(t) > ∆F ∗x∗(t) because
∆F ∗ > 0. Since ∆F∗ > ∆F ∗ and x∗(t) > 0, it follows that (∆F∗ −∆F ∗)x∗(t) > 0 and ∆F∗x∗(t) >
∆F ∗x∗(t). Due to the considerations above, we therefore have ∆F∗x∗(t) > ∆F ∗x∗(t), i.e.,
∆F∗x∗(t)−∆F ∗x∗(t)> 0 in (3.3). By the assumptions made, for t= 0, x∗(0) > x∗(0), i.e., e∗(0)> 0,
and the matrix F∗ − PH∗ in (3.3) is Metzler; hence, e∗(t) > 0 for all t > 0 by induction [2]. Since
z(t) = Hzx∗(t) +Qy(t), from (3.2) it follows that

ez(t) = Hzx∗(t) +Qy(t)− (Hzx∗(t) +Qy(t)) = Hze∗(t),

which yields ez(t) > 0 due to e∗(t) > 0 and the assumption Hz > 0. The inequality ez(t) > 0 is
established by analogy. Obviously, the latter inequalities are equivalent to the desired result. The
stable matrices F∗ + ∆F ∗ − PH∗ and F∗ + ∆F ∗ − PH∗ ensure that the bounds x∗(t) and x∗(t)
(and hence, z(t) and z(t)) are finite. The proof of Theorem 1 is complete.

Remark 1. In the case Hz 6 0, the bounds z(t) and z(t) are given by

z(t) = Hzx∗(t) +Qy(t), z(t) = Hzx∗(t) +Qy(t).

Indeed, in this case,

ez(t) = z(t)− z(t) = Hzx∗(t) +Qy(t)− (Hzx∗(t) +Qy(t)) = −Hze∗(t),

which implies ez(t)> 0 due to e∗(t)> 0 andHz 6 0. The corresponding inequality for the bound z(t)
is proved by analogy.

If the matrix Hz is oscillating, the final result will remain the same but with more complicated
formulas for the upper and lower bounds.

Thus, an interval observer estimating the variable z(t) = Mx(t) is constructed in the following
steps: find solutions of equation (2.8) that give with minimum k a matrix Φ satisfying conditions
(2.5) and (2.7); calculate the matrices J∗, G∗, R∗, and H∗ and choose matrices P and P with the
properties specified above. Such a choice is not always possible; in this case, the second observer
design variant should be used.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 11 2023
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3.2. The Second Variant

Consider a more complex interval observer without constraints on the original system. The
presentation is preceded by an auxiliary result.

Lemma 1. Assume that A 6 A 6 A for some matrices A, A, and A of dimensions k × k and
x∗ 6 x∗ 6 x∗ for some k-dimensional vectors x∗, x∗, and x∗. Then

A+x+∗ −A
+
x−∗ −A−x+∗ +A

−
x−∗ 6 Ax 6 A

+
x+∗ −A+x−∗ −A

−
x+∗ +A−x−∗ ,

where A+ = max(0, A) and A− = A+ −A, and the analogous relations hold for the vector x∗.

The proof was given in [1].

The interval observer based on model (2.1) with P = 0 is designed in the form

ẋ∗(t) =F∗x∗(t) + (∆F+
∗ x

+
∗ −∆F

+
∗ x

−
∗ −∆F−

∗ x
+
∗ +∆F

−
∗ x

−
∗ ) + (J∗ + J ′)y(t) +G∗u(t),

ẋ∗(t) =F∗x∗(t) + (∆F
+
∗ x

+
∗ −∆F+

∗ x
−
∗ −∆F

−
∗ x

+
∗ +∆F−

∗ x
−
∗ ) + (J∗ + J ′)y(t) +G∗u(t),

z(t) =Hzx∗(t) +Qy(t),

z(t) =Hzx∗(t) +Qy(t),

x∗(0) =x∗0, x∗(0) = x∗0.

(3.4)

Here, the equations for the estimation errors take the form

ė∗(t) = F∗e∗(t) + ∆F∗x∗(t)− (∆F+
∗ x

+
∗ −∆F

+
∗ x

−
∗ −∆F−

∗ x
+ +∆F

−
∗ x

−
∗ ),

ė∗(t) = F∗e∗(t) + (∆F
+
∗ x

+
∗ −∆F+

∗ x
−
∗ −∆F

−
∗ x

+
∗ +∆F−

∗ x
−
∗ )−∆F∗x∗(t).

(3.5)

Theorem 2. Assume that ∆F ∗ 6 ∆F∗ 6 ∆F ∗ and x∗(0) 6 x∗(0) 6 x∗(0). Then the interval ob-
server (3.4) satisfies the relation z(t) 6 z(t) 6 z(t).

Proof. Due to (3.2), from x∗(0) 6 x∗(0) 6 x∗(0) it follows that e∗(0) > 0 and e∗(0) > 0. Since
F∗ is a Metzler matrix, by (3.5) and the lemma we have e∗(t) > 0 and e∗(t) > 0 for all t > 0 [2].
The relation z(t) 6 z(t) 6 z(t) is established by analogy with the second part of Theorem 1 and
Remark 1. The proof of Theorem 2 is complete.

Remark 2. Direct comparison shows that the first variant imposes noticeably more constraints
on the system than the second one but has a simpler structure. In particular, the second variant
does not need the matrices H∗ and R∗; hence, condition (2.7) can be ignored when implementing
this variant, and the corresponding interval observer can be constructed for a wider class of systems.
When solving a particular problem, one should therefore begin with the first variant, passing to
the second variant only if the former is impossible to implement.

Remark 3. An essential role in Theorems 1 and 2 is played by the condition x∗(0)6x∗(0)6x∗(0).
Due to the stability of the matrices F∗ +∆F ∗ − PH∗, F∗ +∆F ∗ − PH∗, and F∗, the desired in-
equality z(t) 6 z(t) 6 z(t) will hold for some t > 0 even without the condition x∗(0) 6 x∗(0) 6 x∗(0):
the effect of the initial conditions almost disappears after some time. Indeed, we demonstrate this
fact for the second variant and the first equation in (3.5). Let us denote

v0(t) = ∆F∗x∗(t)− (∆F+
∗ x

+
∗ −∆F

+
∗ x

−
∗ −∆F−

∗ x
+ +∆F

−
∗ x

−
∗ ).

The lemma implies v0(t) > 0. Clearly, the matrices figuring in the expression above, particularly

∆F
+
∗ , can be always chosen so that v0(t) > v0∗ for some v0∗ > 0.

Since the matrix F∗ is diagonal, we consider equation (3.5) for the first component of the
error e∗(t):

ė∗1(t) = λ1e∗1(t) + v01(t).
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It has the solution

e∗1(t) = exp(λ1t)e∗1(0) + exp(λ1t)

t
∫

0

v01(τ)exp(−λ1τ)dτ.

Because λ1 < 0 and v0(t) > v0∗ > 0, the first term will almost vanish and the error e∗1(t) will be
positive after some time T1, despite the possibly negative value e∗1(0). Similar results can be
obtained for the other components of the vector e∗(t) and all components of the vector e∗(t).

Remark 4. The concepts of a confidence interval and a confidence probability from mathemat-
ical statistics can be adapted to interval observers: if ∆F∗ ∈ (∆F ∗,∆F ∗) with some degree of
belonging µ∗, then z(t) ∈ (z(t), z(t)) with the degree µ∗ as well.

4. CONSIDERATION OF EXOGENOUS DISTURBANCES AND MEASUREMENT NOISES

The case v(t) 6= 0, ρ(t) 6= 0 was studied in detail in [13]. Note that the observer is designed
based on model (2.1) with the term J∗y(t) replaced by J∗Hx(t). (It is necessary to consider the
measurement noises according to the relation y(t) = Hx(t) + v(t).) In this case, the first variant of
the interval observer is described by

ẋ∗(t) = (F∗ +∆F∗ − PH∗)x∗(t) + Py∗(t) + (J∗ + J ′)y(t) +G∗u(t)

− (|J∗|+ |J ′|)Ekv∗ − |L∗|Ekρ∗,

ẋ∗(t) = (F∗ +∆F∗ − PH∗)x∗(t) + Py∗(t) + (J∗ + J ′)y(t) +G∗u(t)

+ (|J∗|+ |J ′|)Ekv∗ + |L∗|Ekρ∗,

z(t) =Hzx∗(t) +Qy0(t),

z(t) =Hzx∗(t) +Qy0(t),

x∗(0) =x∗0, x∗(0) = x∗0.

(4.1)

Here, the matrix |A| consists of the absolute values of the corresponding elements of the matrix A,
and Ek is a matrix of dimensions k × 1 composed of unities. The variable y0(t) represents the
components of the output vector y(t) that are not affected by the exogenous disturbances, i.e.,
y0(t) = N1y(t) for some matrix N1. We introduce a maximum-rank matrix L0 such that L0L = 0.
Since the vector x′(t) = L0x(t) is not disturbed, we obtain y0(t) = N2x

′(t) for some matrix N2.
Then the matrices N1 and N2 satisfy the equation N1H = N2L0, which has a solution if

rank

(

H
L0

)

< rank(H) + rank(L0).

Under this condition, the matrices N1 and N2 are determined from the equation

(N1 −N2)

(

H
L0

)

= 0.

If this condition fails, it is necessary to replace the variable y0(t) in (4.1) by y(t), which will extend
the interval (z(t), z(t)).

The equations for the estimation errors take the form

ė∗(t) = (F∗ − PH∗)e∗(t) + ∆F∗x∗(t)−∆F ∗x∗(t)

− (J∗ + J ′)v(t) + (|J∗|+ |J ′|)Ekv∗ − L∗ρ(t) + |L∗|Ekρ∗,

ė∗(t) = (F∗ − PH∗)e∗(t) + ∆F ∗x∗(t)−∆F∗x∗(t)

+ (J∗ + J ′)v(t) + (|J∗|+ |J ′|)Ekv∗ + L∗ρ(t) + |L∗|Ekρ∗.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 11 2023
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The desired result directly follows from the proof of Theorem 1 and the obvious additional inequal-
ities

±(J∗ + J ′)v(t) + (|J∗|+ |J ′|)Ekv∗ > 0, ±L∗ρ(t) + |L∗|Ekρ∗ > 0,

valid for all t > 0.

Remark 5. Due to (4.1), the width of the interval (z(t), z(t)) depends on the exogenous distur-
bances and measurement noises. To reduce this width, the matrices Φ and J∗ should be determined
from the equation

(Si − J∗i)

(

L0(F − λiIn)
H

)

= 0, i = 1, . . . , k, (4.2)

which is derived from (2.8) for Φ = SL0 with some matrix S. (It ensures L∗ = 0, i.e., the insensitivity
of the model to the exogenous disturbances.) As before, here Si denotes the ith row of the matrix S.
If equation (4.2) has no solution, robust methods should be used; see below.

The sensitivity of model (2.1) to the exogenous disturbances ρ(t) is often estimated by the norm
‖ΦL‖F of the matrix ΦL. To minimize this norm for i = 1, . . . , k, we choose an eigenvalue λi < 0

for which equation (2.8) has a solution and then find all solutions in the form Φ
(1)
i , . . . ,Φ

(ni)
i . These

solutions can be written as

Φ∗i =







Φ
(1)
i

. . .

Φ
(ni)
i






, Ji =







J
(1)
∗i

. . .

J
(ni)
∗i






.

The singular-value decomposition of the matrix product Φ∗iL is given by

Φ∗iL = ULΣLVL,

where UL and VL are orthogonal matrices,

ΣL = (diag(σ1, . . . , σci) 0) or ΣL =

(

diag(σ1, . . . , σci)
0

)

depending on the number of rows and columns in the matrix Φ∗iL, ci = min(ni, kp), and
0 6 σ1 6 . . . 6 σci are the singular values of the matrix Φ∗iL arranged in ascending order [16].
The first transposed column of the matrix UL is taken as the weight vector w = (w1 . . . wni

),

and the rows Φi = wΦ∗i and J∗i = wJi are calculated consequently; if ni = 1, then Φi := Φ
(1)
i and

J∗i := J
(1)
i . The resulting rows Φ1, . . . ,Φk and J∗1, . . . , J∗k form the matrices

Φ =







Φ1

. . .
Φk






, J∗ =







J∗1
. . .
J∗k






,

and the feasibility of estimating the variables z(t) and y∗(t) by criteria (2.5) and (2.7) is checked.
If the outcome is positive, the problem is successfully solved; otherwise, for some λi < 0, it is
necessary to find another vector w = (w1 . . . wni

) for a singular value σ > σ1 and calculate a new
matrix Φi.

Theorem 3. This procedure for constructing the matrix Φ yields an optimal solution in terms of
minimizing the norm ‖ΦL‖F .

Proof. The conclusion directly follows from the properties of the singular-value decomposition.
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The determination of the matrices Hz, Q, ∆F∗, J
′, H∗, R∗, G∗ = ΦG, and L∗ = ΦL completes

the design of model (2.1) with the minimum sensitivity to the exogenous disturbances.

By analogy with [13, 14], the above results for estimating the variable z(t) can be applied
to estimate the full state vector x(t). For this purpose, it is necessary to find the solutions of
equation (4.2) with λi < 0 and the maximum possible value k, compile the matrix Φ(1) =: M (1),
and construct an interval estimate for the vector x(1)(t) = M (1)x(t) following one of the variants
if criteria (2.5) and (2.7) hold. Note that this estimate will be independent of the exogenous
disturbance ρ(t). Next, it is necessary to determine a vector x(2)(t) that complements x(1)(t) to x(t)
and a matrix M (2) such that x(2)(t) = M (2)x(t). The interval observer estimating the variable
x(2)(t) is obtained based on equation (2.8). The composition of the two observers yields an interval
(x(t), x(t)) that is narrower compared to the classical one [10].

5. A PRACTICAL EXAMPLE

Consider a three-tank system of the form

ẋ1(t) = b4u1(t)/ϑ1 − (b1 − δ1(t))(x1(t)− x2(t)),

ẋ2(t) = b5u2(t)/ϑ2 + (b1 − δ1(t))(x1(t)− x2(t))− (b2 − δ2(t))(x2(t)− x3(t)),

ẋ3(t) = (b2 − δ2(t))(x2(t)− x3(t))− b3(x3(t)− b6) + ρ(t),

y1(t) =x2(t) + v1(t), y2(t) = x3(t) + v2(t),

(5.1)

where the coefficients b1, . . . , b5 are determined by the geometrical dimensions of the system; x1,
x2, and x3 are the fluid levels in the corresponding tanks (Fig. 1). Fluid flows into the first and
second tanks and flows out of the third tank through a pipe located at a height b6. The parametric
uncertainties δ1(t) and δ2(t) are related to possible clogging of the pipes connecting the tanks
and, consequently, a decrease in their capacity. The exogenous disturbance ρ(t) reflects possible
leaks in the third tank. For simplicity, we take b1 = . . . = b5 = 1 and b6 = 0; 0 6 δ1(t) 6 0.2,
0 6 δ2(t) 6 0.1; |ρ(t)| 6 ρ∗, |v1(t)| 6 v∗1, |v2(t)| 6 v∗2.

u1 u2

Fig. 1. Three-tank system.

This system is modeled by the matrices

F =







−1 1 0
1 −2 1
0 1 −2






, G =







1 0
0 1
0 0






, H =

(

0 1 0
0 0 1

)

, L =







0
0
1






.

Direct comparison of the general model (1.1) and system (5.1) shows that the uncertainties are
described by the matrix functions

∆1F (t) =







δ1(t) −δ1(t) 0
−δ1(t) δ1(t) 0

0 0 0






, ∆2F (t) =







0 0 0
0 δ2(t) −δ2(t)

−δ2(t) δ2(t) 0






.
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Fig. 2. The graphs of the functions x1(t), z(t), and z(t) under different initial conditions.

We construct an interval observer estimating the variable z(t) = x1(t). In this case, M = (1 0 0)

and L0 =

(

1 0 0
0 1 0

)

. Equation (4.2) takes the form

(Si − J∗i)











−1− λi 1 0
1 −2− λi 0
0 1 0
0 0 1











= 0.

Letting λ = −1 gives Si = J∗i = (1 0), Φ = (1 0 0), and G∗ = (1 0). The uncertainty ∆F∗(t) and
the matrix J ′ are determined from equation (2.9); as a result, we obtain ∆1F∗(t) = δ1(t), J

′
1 =

(−δ1(t) 0), ∆2F∗(t) = 0, and J ′
2 = 0. According to physical considerations, x∗(t) > 0 and δ1(t) > 0

for all t > 0; hence, the first variant can be used to design the observer. In view of 0 6 δ1(t) 6 0.2,
we assume that P = 0.

Since the variable x3(t) is affected by the disturbance ρ(t) and, in addition, y2(t) = x3(t) + v2(t),
we take y0(t) = y1(t). Obviously, condition (2.5) holds and Hz = 1, Q = 0. The model becomes

ẋ∗(t) = (δ1(t)− 1)x∗(t) + (1− δ1(t))H1x(t) + u1(t),

z(t) = x∗(t),

where x∗ = Φx(t) = x1(t). The interval observer (4.1) take the form

ẋ∗(t) = (δ1 − 1)x∗(t) + (1− δ1)y1(t) + u1(t)− v∗,

ẋ∗(t) = (δ1 − 1)x∗(t) + (1− δ1)y1(t) + u1(t) + v∗,

z(t) = x∗(t), z(t) = x∗(t).

Due to δ1 − 1 < 0 and δ1 − 1 < 0, the observer is stable.

Numerical simulation was performed for u1(t) = 2sin(t), u2(t) = 2sin(5t), the noises v1(t), v2(t)
and disturbance ρ(t) described by random independent variables with variances 0.1, and the uncer-
tainty δ1(t) = 0.1(1 + sin(10t)) with δ1 = 0 and δ1 = 0.2. The simulation results are presented in
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Fig. 2: the graphs of the functions x1(t), z(t), and z(t) under the initial conditions x(0) = (0 0 0)T ,
x∗(0) =−3, and x∗(0) = 3 (Fig. 2a) and x(0) = (0 0 0)T , x∗(0) = 3, and x∗(0) = −3 (Fig. 2b). As
has been demonstrated in Section 3, the “atypical” initial conditions are rather quickly “forgotten”
and have no effect on the estimation process for t > 2.

6. CONCLUSIONS

In this paper, we have constructed interval observers for linear dynamic systems described by
continuous-time models with exogenous disturbances, measurement noises, and parametric uncer-
tainties. Jordan canonical form-based relations have been presented for a minimum-dimension
interval observer estimating the set of admissible values of a given linear function of the system
state vector. Two observer design variants have been considered and compared. The theoretical
results have been illustrated by a practical example.

FUNDING

This work was supported by the Russian Science Foundation, project no. 23-29-00191,
https://rscf.ru/project/23-29-00191/.

REFERENCES

1. Efimov, D., Raissi, T., Perruquetti, W., and Zolghadri, A., Estimation and Control of Discrete-Time
LPV Systems Using Interval Observers, Proc. 52nd IEEE Conf. on Decision and Control , Florence,
2013, pp. 5036–5041.

2. Chebotarev, S., Efimov, D., Raissi, T., and Zolghadri, A., Interval Observers for Continuous-Time LPV
Systems with L1/L2 Performance, Automatica, 2015, vol. 51, pp. 82–89.

3. Efimov, D., Polyakov, A., and Richard, J., Interval Observer Design for Estimation and Control of
Time-Delay Descriptor Systems, Eur. J. Control , 2015, vol. 23, pp. 26–35.

4. Kolesov, N., Gruzlikov, A., and Lukoyanov, E., Using Fuzzy Interacting Observers for Fault Diagnosis
in Systems with Parametric Uncertainty, Proc. 12th Inter. Symp. Intelligent Systems (INTELS’16),
October 5–7, 2016, Moscow, pp. 499–504.

5. Kremlev, A.S. and Chebotarev, S.G., Synthesis of Interval Observer for Linear System with Variable
Parameters, Journal of Instrument Engineering, 2013, vol. 56, no. 4, pp. 42–46.

6. Mazenc, F. and Bernard, O., Asymptotically Stable Interval Observers for Planar Systems with Complex
Poles, IEEE Trans. Automatic Control, 2010, vol. 55, no. 2, pp. 523–527.

7. Blesa, J., Puig, V., and Bolea, Y., Fault Detection Using Interval LPV Models in an Open-Flow Canal,
Control Engineering Practice, 2010, vol. 18, pp. 460–470.

8. Zheng, G., Efimov, D., and Perruquetti, W., Interval State Estimation for Uncertain Nonlinear Systems,
Proc. IFAC NOLCOS 2013 , Toulouse, 2013.

9. Zhang, K., Jiang, B., Yan, X., and Edwards, C., Interval Sliding Mode Based Fault Accommoda-
tion for Non-Minimal Phase LPV Systems with Online Control Application, Int. J. Control , 2019.
https://doi.org/10.1080/00207179.2019.1687932

10. Efimov, D. and Raissi, T., Design of Interval State Observers for Uncertain Dynamical Systems, Autom.
Remote Control , 2016, vol. 77, no. 2, pp. 191–225.

11. Khan, A., Xie, W., Zhang, L., and Liu, L., Design and Applications of Interval Observers for Uncertain
Dynamical Systems, IET Circuits Devices Syst., 2020, vol. 14, pp. 721–740.

12. Zhirabok, A., Self-correction of Errors in Discrete Dynamic Systems, Autom. Remote Control , 2006,
vol. 67, no. 6, pp. 868–879.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 11 2023



1286 ZHIRABOK et al.

13. Zhirabok, A.N., Zuev, V.V., and Ir, K.C., Method to Design Interval Observers for Linear Time-Invariant
Systems, J. Comput. Syst. Sci. Int., 2022, vol. 61, no. 4, pp. 485–495.

14. Zhirabok, A., Zuev, A., Filaretov, V., Shumsky, A., and Kim Chkhun Ir, Jordan Canonical Form in
Diagnosis and Estimation Problems, Autom. Remote Control , 2022, vol. 83, no. 9, pp. 1355–1370.

15. Zhirabok, A., Shumsky, A., and Pavlov, S., Diagnosis of Linear Dynamic Systems by the Nonparametric
Method, Autom. Remote Control , 2017, vol. 78, no. 7, pp. 1173–1188.

16. Low, X., Willsky, A., and Verghese, G., Optimally Robust Redundancy Relations for Failure Detection
in Uncertain Systems, Automatica, 1996, vol. 22, pp. 333–344.

This paper was recommended for publication by N.N. Bakhtadze, a member of the Editorial
Board

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 11 2023


