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Abstract—Deterministic continuous finite-dimensional stationary linear dynamic control sys-
tems with many inputs and many outputs are considered. Authors assume that the dynamics
matrix can be both stable and unstable, but its eigenvalues are different, do not belong to the
imaginary axis, and their pairwise sum is not equal to 0. The problems of constructing spectral
solutions of the equations of state and matrices of gramian controllability of these systems, as
well as the associated energy functionals of the degree of stability and reachability with the aim
of optimal placement of sensors and actuators of multi-connected control systems and complex
networks are considered. To solve the listed problems, the article uses various models of the
system in state space: a general representation, as well as a representation in various canoni-
cal forms. To calculate the spectral decompositions of controllability gramians, pseudo-Hankel
matrices (Xiao matrices) are used. New methods have been proposed and algorithms have
been developed for calculating controllability gramians and energy metrics of linear systems.
The research results can be used for the optimal placement of sensors and actuators of multi-
connected control systems or for control with minimal energy in complex networks of various
natures.

Keywords : spectral decompositions of gramians, energy functionals, inverse matrix of gramians,
stability that takes into account the interaction between modes, Lyapunov equation, unstable
control systems
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1. INTRODUCTION

Monitoring the state of control objects and controlling the damping of dangerous vibrations
are important areas of research in various fields of industry (energy, mechanical engineering, avia-
tion and astronautics, robotics). New modeling technologies require the development of tools for
approximating mathematical models of complex systems of various natures. When solving these
problems, an important role is played by the methods of calculating the Lyapunov and Sylvester
matrix equations and the study of the structural properties of solutions to these equations [1–4].
The fundamental properties of linear dynamic systems associated with solutions to these equa-
tions are controllability, observability and stability. Important results in this area were obtained
for methods for calculating the gramians of systems, the models of which are presented in the
canonical forms of controllability and observability. The application of gramians for constructing
simplified models of high-dimensional dynamic systems and for calculating the norms of transfer
functions of linear and bilinear dynamic systems is well known [1, 2, 5–8]. Controllability gramians
play an important role in calculating output deviations caused by Gaussian random disturbances.
In recent years, interest has arisen in the development of methods for calculating various energy
indicators to analyze the stability and degree of controllability and observability of these systems.
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1244 YADYKIN, GALYAEV

Such indicators for linear stable systems and unstable linear systems were proposed in [1, 8–11].
Simplified models for large networks based on output controllability gramians, that allow to cal-
culate the energy indicators, were proposed in [12]. The balanced truncation method, based on
the gramians of stable and anti-stable systems, was proposed in [13]. The important problem of
optimal placement of sensors and actuators based on various energy functionals, including invariant
ellipsoids, and estimation of the degree of controllability was studied in [14–18]. It is important to
note that all these works used the spectrum of the system dynamics matrix.

B.N. Petrov and his students developed methods, based on Lyapunov direct method, for synthe-
sizing adaptation algorithms that guarantee the stability of the movement of a self-adjusting system
relative to the movement of its reference model [19, 20]. He developed the principle of coordinate-
parametric control, which implements double invariance in non-search self-tuning systems (NSTS).
In the theory of NSTS, the concept of a generalized customizable object was used, which was
based on identifying the structures of a specially formed main circuit and a circuit of a customiz-
able controller. Linearized mathematical models of circuits included coordinate, parametric and
coordinate-parametric models, including parametric feedbacks in controller tuning circuits. These
models are called bilinear dynamic models and are used in optimization, identification theory, and
adaptive control. To calculate the gramians of these systems, generalized Lyapunov equations were
developed and spectral methods for solving them were proposed [2, 10, 11]. A significant contribu-
tion was made by the school of B.N. Petrov in the formation of control theory, based on the use of
the structural properties of the reference model, and in other areas of control theory, in particular
in the theory of invariant systems.

2. FORMULATION OF THE PROBLEM

Consider a continuous time-invariant linear dynamic MIMO LTI system with a simple spectrum
with many inputs and many outputs

Σ1:

{
ẋ = Ax (t) +Bu (t) , x(0) = 0,

y (t) = Cx (t) ,
(2.1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rm.

If all eigenvalues sr of matrix A are different, then the linear system can be reduced to diagonal
form using a non-degenerate coordinate transformation

xd = Tx, ẋd = Adxd +Bdu, yd = Cdxd,

Ad = T−1AT, Bd = T−1B, Cd = CT, Qd = T−1BBT(T−1)T,

or

A =
[
u1 u2 . . . un

] ⎡⎢⎢⎢⎣
s1 0 0 0
0 s2 0 0
. . . . . . . . . . . .
0 0 . . . sn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ν∗1
ν∗2
...
ν∗n

⎤⎥⎥⎥⎥⎦ = TΛT−1,

where the matrix T−1 is composed of right eigenvectors ui, and the matrix T is composed of left
eigenvectors ν∗i corresponding to the eigenvalue si.
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Definition [21]. The square matrix Y = [yjη] is called the Xiao matrix (Zero plaid structure)
and has the form:

Y =

⎡⎢⎢⎢⎢⎢⎢⎣

y1 0 −y2 0 y3

0 y2 0 −y3 0

−y2 0 y3 0 . . .

0 −y3 0 . . . 0

y3 0 . . . 0 yn

⎤⎥⎥⎥⎥⎥⎥⎦ ,

its elements are specified using the elements of the Routh table [21]:

yjη =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if j + η = 2k + 1, k=1, . . . , n;

yn =
1

2Rn,1
,

yn−l =
−∑m−1

i=1 (−1)iRn−l,i+1yn−l+i

Rn−l,1
,

if j + η= 2k, k = 1, . . . , n, l = 1, n − 1,

where Ri,j is the Routh table element for the system, located at the intersection of row i and
column j. In [11], a spectral decomposition of the controllability gramian of a continuous linear
system with many inputs and many outputs was obtained based on the method for calculating the
gramian proposed in [21, 22].

Theorem 1 [11, 21]. We consider a continuous linear MIMO LTI system of the form (2.1). Let
us assume that the system is stable and all the roots of its characteristic equation are different.
Then the matrices of its controllability gramian are Xiao matrices, the diagonal elements of which
are defined as

p11 =
n∑

k=1

1

2sk
∏n

ρ=1,ρ�=k

(
s2k − s2ρ

) ,
p22 =

n∑
k=1

(−1)1(sk)
2

2sk
∏n

ρ=1,ρ�=k

(
s2k − s2ρ

) ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

pnn =
n∑

k=1

(−1)n−1 (sk)
2(n−1)

2sk
∏n

ρ=1,ρ�=k

(
s2k − s2ρ

) .
The elements of the side diagonals of the gramian matrices are defined as:

pjη = (−1)
j−η
2 pll, j + η = 2l, l = 1, n.

The remaining elements of the gramian matrix are equal to zero.

Corollary 1. Consider a stable continuous stationary linear dynamic MIMO LTI system with a
simple spectrum with many inputs and many outputs of the form (2.1). Then its controllability
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gramian is a matrix of the form [11]

Pc =
n−1∑
j=0

n−1∑
η=0

Pcj,η, Pcj,η = ω(n, sk, j, η)AjBBTAT
η , (2.2)

ω (n, sk, j, η ) =

⎧⎪⎪⎨⎪⎪⎩
0, if j + η = 2k + 1, k = 1, . . . , n,

n∑
k=1

sjk(−sk)
η

2sk
∏n

ρ=1,ρ�=k

(
s2k − s2ρ

) , if j + η = 2k, k = 1, . . . , n.

We will call spectral decompositions (2.2) the gramian decompositions in the form of Xiao matrices.
In the expansion (2.2) a scalar multiplier function ω (n, sk, j, η) appears, which determines the
structure of the Hadamard matrices [21].

Let us transform the system (2.1) into the upper block-diagonal Schur form with a unitary
transformation matrix U [23,24].

x = UxSch, ẋSch = ASchxSch +BSchu, ySch = CSchxSch,

ASch = UTAU, BSch = UTB, CSch = CU,
(2.3)

ASch =

[
ASch11 ASch12

0 ASch22

]
, BSch =

[
BSch1

BSch2

]
, CSch =

[
CSch1 CSch2

]
.

In order to obtain a block-diagonal representation, it is necessary to transform the equations
(2.3) so that the place of the ASch12 block is replaced by a zero matrix. To do this, we perform a
second transformation

xSch = Wblxbl, ẋbl = Ablxbl +Bblu, ybl = Cblxbl,

Abl = W−1
bl ASchWbl, Bbl = W−1

bl BSch, Cbl = CSchWbl,
(2.4)

Abl =

[
ASch11 0

0 ASch22

]
, Bbl =

[
Bbl1

Bbl2

]
, Cbl =

[
Cbl1 Cbl2

]
,

Wbl =

[
Ir S
0 In−r

]
,W−1

bl =

[
Ir −S
0 In−r

]
.

In order for the block ASch12 to be replaced by a zero matrix, the matrix S must satisfy the Sylvester
equation

−ASch11S + SASch22 +ASch12 = 0. (2.5)

A necessary condition for the existence of a solution to this equation is the following spectral
condition:

λs + λu �= 0, ∀s : s = 1, r,∀u : u = r + 1, n.

In order to transform a system (2.4) with a block diagonal matrix into a system with a diagonal
matrix, it is necessary to perform a third transformation

xbl = Wdxd,

where Wd is the transformation matrix of a system in block-diagonal form, which diagonal blocks
have an upper-triangular shape

ẋd = Adxd +Bdu, yd = Cdxd,

Ad = W−1
d AblWd, Bd = W−1

d Bbl, Cd = CblWd,

Ad =

[
Λ− 0
0 Λ+

]
, Bd =

[
Bd1

Bd2

]
, Cd =

[
Cd1 Cd2

]
, (2.6)
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where Λ− and Λ+ are diagonal matrices consisting of negative and positive eigenvalues, respectively.

After the first transformation we have the relation

P = UPSchU
T. (2.7)

After the second transformation we get

PSch = TPblT
T,

or

P = T2PblT
T
2 , T2 = UT. (2.8)

After the third transformation using (2.7),(2.8) we get

P = UT3PdT
T
3 , T3 = UTWd.

The structured Lyapunov equation after the second transformation has the form

ASch11P1 + P1A
T
Sch11 = −B1B

T
1 , (2.9)

ASch22P2 + P2A
T
Sch22 = B2B

T
2 , (2.10)

Pcm = T−1
2

[
P1 0
0 P2

]
T2. (2.11)

The matrix Pcm is called the mixed controllability gramian [13–17, 25]. The purpose of the article
is to develop a method and algorithm for calculating spectral decompositions of the controllability
gramians of unstable linear systems, based on the method described above, for calculating the
specified gramians using the transformation of the original system into a block-diagonal form [13].

Many applications of spectral decompositions of gramians are associated with energy indicators
of the structural properties of controllability, observability and stability. We consider the problem
of selecting and optimizing the placement of sensors and actuators in complex automatic systems
and complex networks [18, 26–28]. To solve this problem one could use the input and output
energy of the system, traces of the controllability and observability gramian matrices and traces of
their inverse matrices, minimum and maximum eigenvalues of the gramian. Another problem is to
estimate the controllability measure of a dynamic system using controllability gramians [25]. This
measure is defined as the minimum input energy required to move the system from an arbitrary
initial state to an arbitrary final state.

Another goal of the article is to develop a method and algorithms for calculating spectral de-
compositions of energy metrics related to the above problems. It is required to find spectral
decompositions of the following energy metrics from the simple (or paired) spectrum of the system
dynamics matrix and the controllability and observability gramian matrices:

• metric of the input minimum energy of the system [2, 18]

J1 = Emin (Pc) ,

• output energy metric of the system [2, 3]

J2 = Eout,

• trace metric of the gramian matrix [26, 27]

J3 = tr (Pc),
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• trace metric of inverse matrices of controllability gramians [2, 12, 18]

J4 = tr (Pc)
−1,

• reachability metric
J5 = tr (Pcm),

where Pcm is the mixed controllability gramian [18, 25].

2.1. Main Results

Let us consider a finite-dimensional linear stationary continuous system with many inputs and
many outputs of the form (2.1). We suppose that the spectrum of the dynamics matrix contains
r stable eigenvalues λi− ∈ C

− and n− r unstable eigenvalues λi+ ∈ C
+. We will assume that the

spectrum does not contain eigenvalues belonging to the imaginary axis, and the general condition
is satisfied

λi− + λj+ �= 0,∀i : i = 1, r,∀j : j = r + 1, n.

The last condition means that the spectrum does not contain eigenvalues that are mirror images
of each other relative to zero. The simplest way to calculate the spectral decompositions of gramians
in the case of a simple spectrum of the dynamics matrix is to reduce it to diagonal form [1, 11].
If unstable eigenvalues appear in the spectrum, this requires several structural transformations of
the (2.1) equations. Let us introduce the notation

Bd11B
T
d11 = [βd−νη ][r×r],

Bd22B
T
d22 = [βd+νη ][(n−r)×(n−r)].

Theorem 2 [8]. Let us consider a finite-dimensional linear stationary continuous system with
many inputs and many outputs of the form (2.1), reduced to the diagonal form (2.6). Let us
assume that the system has a simple spectrum, the system is unstable, and the eigenvalues of its
dynamics matrix A are not on the imaginary axis, but can be in the left and/or right half-planes
λi− ∈ C

−, i = r; λi+ ∈ C
+, i = n− r.

In addition, assume that the condition is satisfied

λi �= −λj, ∀i, j : i = 1, n, j = 1, n.

Let us define the mixed controllability gramian in the form

Pcm =
1

2π

+∞∫
−∞

(Ijω −A)−1BBT(−Ijω −AT)−1dω. (2.12)

The following statements are valid and equivalent.

• The following separable spectral decompositions of the matrices of solutions to the equation
(2.9), (2.10), corresponding to the stable and anti-stable subsystems, are valid.

p
(μν)
c− = eTμPc−eν, ∀μ, ν = 1, r,

p
(μν)
c− =

−βμν−
λμ− + λν−

,

p
(μν)
c+ = eTμPc+eν, ∀μ, ν = r + 1, n,

p
(μν)
c+ =

βμν+
λμ+ + λν+

;
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• The following separable spectral expansions of the mixed gramian of controllability in the pair
and simple spectra of the matrix A are valid:

Pcm = T−1
3 [P− ⊕ P+]T3. (2.13)

According to the pair spectrum:

P− =
r∑

ν=1

r∑
μ=1

p
(νμ)
c− 1νμ, (2.14)

P+ =
n∑

ν=r+1

n∑
μ=r+1

p
(νμ)
c+ 1νμ.

According to a simple spectrum:

P− =
r∑

ν=1

p
(ν)
c− , p

(ν)
c− =

r∑
μ=1

p
(νμ)
c− 1νμ, (2.15)

P+ =
n∑

ν=r+1

p
(ν)
c+ , p

(ν)
c+ =

n∑
μ=r+1

p
(νμ)
c+ 1νμ.

Proof of Theorem. The Lyapunov equations for the diagonalized system in this case have the form

ΛPcm + PcmΛ∗ = −Qd =
[
−B−BT

− ⊕B+B
T
+

]
.

For a diagonalized system, this equation splits into two equations for stable and antistable subsys-
tems

Λ−Pc− + Pc−Λ∗
− = Qd− = −B−BT

−,

Λ+P c+ + Pc+Λ
∗
+ = Qd+ = B+B

T
+.

Integral formulas for solutions of Lyapunov equations [8]:

Pcm = [P c− ⊕ Pc+],

Pc− =

∞∫
0

eΛ−τ B−BT
−e

Λ∗
−τdτ, Pc+ =

0∫
−∞

eΛ+τ B+B
T
+e

Λ∗
+τdτ. (2.16)

Let’s transform the second integral in the formula (2.16) using the replacing of variables τ = −t :

0∫
−∞

eΛ+τ Qd+e
Λ+τdτ = −

∞∫
0

e−Λ+t Qd+e
−Λ∗

+tdt.

With such a change of variables, the unstable eigenvalues of the antistable subsystem become stable
eigenvalues of the stable subsystem and the calculation of the second integrals is reduced to the
scheme for calculating the first integrals (2.16). This implies

(−Λ+)P c+ + Pc+(−Λ∗
+) = −B+B

T
+.

The matrix [Λ− ⊕ (−Λ+)] is Hurwitz. Spectral expansions of the gramians of a stable subsystem
were previously obtained in [9]. First, we obtain spectral decompositions of the gramians in (2.16),
and then we obtain the spectral decomposition of the gramians of the original system according to
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the formula for transforming the gramians of controllability for a nondegenerate transformation of
states with matrix T

Pcm = T [P− ⊕ P+]T
T. (2.17)

The first step of spectral decompositions is based on transforming the equations of state of a stable
subsystem into a diagonal canonical form. In this case, the Lyapunov equations take on a simple

form and the elements p
(μν)
c− of the solution matrix Pc− can be calculated using the formulas [9]

p
(μν)
c− = eTμPc−eν , ∀μ, ν = 1, r, (2.18)

where eTμ , eν are unit vectors,

eTμQd−eν = βμν−, ∀μ, ν = 1, r,

p
(μν)
c− =

−βμν−
λμ− + λν−

. (2.19)

Since, taking into account the change of variables, the calculation of spectral decompositions of the
solution matrix Pc+ is reduced to considering the approach proposed for calculating the solution
matrix Pc−, we present the final formulas for calculating the spectral decompositions for this case.

This approach is based on transforming the equations of state of an antistable subsystem into a

diagonal canonical form. In this case, the elements p
(μν)
c+ of the solution matrix Pc+ are calculated

using the formulas

p
(μν)
c+ = eTμPc+eν, ∀μ, ν = r + 1, n,

where eTμ , eν are unit vectors,

eTμQd+eν = βμν+,

p
(μν)
c+ =

βμν+
λμ+ + λν+

, ∀μ, ν = r + 1, n. (2.20)

The proof of the validity of spectral expansions for the antistable subsystem completely repeats
the proof for the stable subsystem. The proof of the validity of the spectral decompositions (2.13)–
(2.15) follows from the validity of the formula (2.19) and the transformation of the antistable
subsystem to the form of a stable subsystem, the eigenvalues of which are a mirror image of the
eigenvalues of the first subsystem with respect to the imaginary axis. Theorem 2 is proven.

Corollary 2. If the conditions of the theorem are satisfied, the mixed gramian is positive definite,
since the matrix [Λ− ⊕ (−Λ+)] is Hurwitz. In this case, the trace of the mixed controllability
gramian is equal to

J =
r∑

i=1

βd−ii

−2Re λi
+

n∑
i=r+1

βd+ii

2Re λi
. (2.21)

The coefficients βd−ii, βd+ii are always positive due to the formation of the matrices of the right
sides of the Lyapunov equations. It follows that the diagonal terms of the mixed gramian matrix
are positive. Then the estimates are valid

max
i

βd−ii, βd+ii = βiimax,

J � βiimax

2min
i

|Re λi|n =
βiimax(

2min
i

|Re λi|
n

) .
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Thus, the trace of a mixed gramian is directly proportional to the maximum value of the diagonal

element of the matrix
[
B−BT− ⊕B+B

T
+

]
and is inversely proportional to the doubled average value

of the modulus of the eigenvalue of the spectrum of the matrix [Λ− ⊕ (−Λ+)], which confirms the
research results of [28].

Illustrative example. Consider the problem of controlling a dynamic object with four inputs and
four outputs. The model of the control object can be described by equations of state of the form

Σ1:

⎧⎨⎩
dx

dt
= Ax (t) +Bu (t) , x (0) = 0,

y (t) = Cx (t) .

A =

⎡⎢⎢⎢⎣
−0,33 −2,67 −4 1,33
21,17 −23,33 −30,2 1,5
−14,67 14 17,83 −1,17

2 −1,33 −1,83 −2,17

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
1
2
5
−3

⎤⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ .

Let us transform the system into the upper block-diagonal Schur form. In this case, the unitary
transformation matrix will be expressed as follows:

U =

⎡⎢⎢⎢⎣
0,125 0,943 −0,169 −0,258
0,814 −0,26 −0,056 −0,516
−0,564 −0,178 −0,225 −0,775
0,063 −0,109 −0,958 0,258

⎤⎥⎥⎥⎦ .

The system will take the form

ASch =

⎡⎢⎢⎢⎣
1 37,64 3,255 35,17
0 −4 −0,97 −0,212
0 0 −2 0,436
0 0 0 −3

⎤⎥⎥⎥⎦ , BSch =

⎡⎢⎢⎢⎣
−1,25
−0,137
1,465
−5,939

⎤⎥⎥⎥⎦ .

The next transformation occurs in such a way that the matrix ASch12 becomes zero. We select the
transformation matrix Wbl so that the matrix Abl is divided into two blocks, stable and antistable
subsystems.

Wbl =

⎡⎢⎢⎢⎣
1 −7,53 1,35 −8,25
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ , Abl =

⎡⎢⎢⎢⎣
1 0 0 0
0 −4 −0,97 −0,21
0 0 −2 0,436
0 0 0 −3

⎤⎥⎥⎥⎦ ,

Bbl =

⎡⎢⎢⎢⎣
−53,2
−0,14
1,47
−5,94

⎤⎥⎥⎥⎦ .

Let’s check the execution of Sylvester’s equation (2.5). We transpose all components of the equation

⎡⎢⎣ −7,529
1,35
−8,25

⎤⎥⎦+

⎡⎢⎣ −4 0 0
−0,97 −2 0
−0,212 0,436 −3

⎤⎥⎦×
⎡⎢⎣ 7,529
−1,35
8,25

⎤⎥⎦+

⎡⎢⎣ 37,64
3,255
35,167

⎤⎥⎦ =

⎡⎢⎣ 0
0
0

⎤⎥⎦ .
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For the system in this case, the mixed gramian is given by the equation (2.11)

Pcm = T−1
2

[
P1 0
0 P2

]
T2.

Pcm =

⎡⎢⎢⎢⎣
5,32 −5,32 −7,98 2,66
0,94 −0,26 −0,18 −0,11
−0,17 −0,056 −0,23 −0,96
−0,26 −0,52 −0,78 0,26

⎤⎥⎥⎥⎦×

⎡⎢⎢⎢⎣
1417 0 0 0
0 0,0067 −0,057 0,18
0 −0,057 0,52 −1,72
0 0,18 −1,72 5,88

⎤⎥⎥⎥⎦×

×

⎡⎢⎢⎢⎣
0,13 0 0 −1,29
0,81 −6,39 1,04 −7,23
−0,56 4,07 −0,99 3,87
0,063 −0,58 −0,87 −0,26

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
32 −203 −132,5 11,3

−203 1290 −844 73
−132,5 −844 −349 −50,5
11,3 73 −50,5 5,57

⎤⎥⎥⎥⎦ .

Let’s check the correctness of the gramian calculation. The matrix of the third transformation and
the system itself will take the form

Wd =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 −0,44 0,19
0 0 0,9 −0,39
0 0 0 0,9

⎤⎥⎥⎥⎦ , Ad =

⎡⎢⎢⎢⎣
1 0 0 0
0 −4 0 0
0 0 −2 0
0 0 0 −3

⎤⎥⎥⎥⎦ , Bd =

⎡⎢⎢⎢⎣
−53,2
0,57
−1,25
−6,6

⎤⎥⎥⎥⎦ .

Then the gramian for the diagonalized system becomes equal to

[P− ⊕ P+] =

⎡⎢⎢⎢⎣
1417 0 0 0
0 0,04 −0,12 −0,54
0 −0,12 0,39 1,65
0 −0,54 1,65 7,26

⎤⎥⎥⎥⎦ .

The general expression of the mixed gramian after the third transformation will be written as
follows:

Pcm =

⎡⎢⎢⎢⎣
5,32 −5,32 −7,98 2,66
0,86 −0,29 −0,29 −0,57
−0,31 −0,31 −0,63 −0,94
−0,29 −0,57 −0,86 0,29

⎤⎥⎥⎥⎦×

⎡⎢⎢⎢⎣
1417 0 0 0
0 0,041 −0,12 −0,54
0 −0,12 0,39 1,65
0 −0,54 1,65 7,26

⎤⎥⎥⎥⎦×

×

⎡⎢⎢⎢⎣
0,125 0 0 −1,16
0,81 −6,39 3,73 −8,13
−0,56 4,07 −2,66 4,65
0,063 −0,58 −0,53 0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
32 −203 −132,5 11,3

−203 1290 −844 73
−132,5 −844 −349 −50,5
11,3 73 −50,5 5,57

⎤⎥⎥⎥⎦ .

The mixed gramians coincided. Let us check whether the Sylvester criterion is satisfied for the
gramian of stable and antistable systems. To do this, the matrices P1 and P2 must be positive
definite. For compactness, we write them into one matrix.

[P1 ⊕ P2] =

⎡⎢⎢⎢⎣
1417 0 0 0
0 0,0067 −0,057 0,18
0 −0,057 0,52 −1,72
0 0,18 −1,72 5,88

⎤⎥⎥⎥⎦, λP1 = 1417, λP2 =

⎡⎢⎣ 0,0001
0,018
6,39

⎤⎥⎦.
All eigenvalues are greater than zero. The criterion is met. Let’s calculate the trace using the
formula (2.21)

J =
r∑

i=1

βd−ii

−2Re λi
+

n∑
i=r+1

βd+ii

2Re λi
= 0,0067 + 0,52 + 5,88 + 1417 ≈ 1423.
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Let us compare the value of the spectrum trace with the estimate

J = 1423 � 2834
2∗1
4

= 5668.

The reciprocal of the average value of the modules of the eigenvalues of the dynamics matrix
estimates the degree of dispersion of the real parts of the eigenvalues relative to the imaginary axis.
The smaller this value is, the higher its influence on the trace of the mixed controllability gramian.
The formula for the spectral decomposition of the trace allows us to perform a more refined analysis
of the influence of the distribution of eigenvalues on the energy metric of the degree of reachability
[25, 27].

3. SPECTRAL EXPANSIONS OF ENERGY METRICS OF CONTROLLABILITY AND
OBSERVABILITY GRAMIANS

We consider the application of the obtained results to solve some problems of state estimation
and control. We obtain spectral decompositions of energy metrics.

Theorem 3 [8]. Let us consider a finite-dimensional linear stationary continuous system with
many inputs and many outputs of the form (2.1), reduced to the diagonal form (2.6). Let us
assume that the system has a simple spectrum, the system is completely controllable and unstable,
and the eigenvalues of its dynamics matrix A are not on the imaginary axis, but can be in the left
and/or right half-planes

λi− ∈ C
−, i = r; λi+ ∈ C

+, i = n− r.

In addition, we assume that the condition is satisfied

λi �= −λj, ∀i, j : i = 1, n, j = 1, n.

The following spectral expansions of energy functionals are valid and equivalent [18]:

J1 = Emin (∞) =
[
xf− xf+

]T
(Pcm)−1

[
xf− xf+

]
=

=
[
xf− xf+

]T [
n∑

i=1

V ∗
c |σi|−1

1iiUc

] [
xf− xf+

]
.

J3 (for SISO LTI stable systems) = tr
n∑

k=1

Pc,k =
n∑

k=1

trP c,k =(
1∑n

k=1 Ṅ (sk)N (−sk)
−

∑n
k=1 s

2
k∑n

k=1 Ṅ (sk)N (−sk)
+ . . .

· · ·+ (−1)n−1 ∑n
k=1 s

2n
k∑n

k=1 Ṅ (sk)N (−sk)

)
,

J4 = tr
n∑

i=1

(Pc)
−1
i =

n∑
i=1

tr (Pc)
−1
i =

[
n∑

i=1

tr
[
V ∗
c |σi|−1

1iiUc

]]
,

where N(s) is characteristic polynomial of the system(2.1).

Proof of Theorem. Let us return to stable continuous MIMO LTI systems with a simple spec-
trum and note that the controllability and observability gramians are symmetric complex-valued
matrices. In this case, there are their singular decompositions of the form [1]

Pc = VcΛV
∗
c ,
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where the matrix Vc is formed by the right singular vectors of the matrix Pc, and the matrix Λ is
a diagonal matrix of the form

Λ = diag {|σ1| |σ2| . . . |σn|} .

We define matrices S and U in the form

S = diag {sgnσ1 sgnσ2 . . . sgnσn } , Uc = VcS,

sgnσ =

{
+1, if σ � 0
−1, if σ < 0.

Then

Pc = UcΛV
∗
c , (3.1)

where the matrix Uc is formed by the left singular vectors of the matrix Pc. Since Λ, Uc, Vc are
nonsingular matrices, then

(Pc)
−1= (Uc)

−1Λ−1(V ∗
c )

−1 = V ∗
c Λ

−1Uc. (3.2)

Since the matrix Λ is diagonal, its inverse matrix can be represented as

Λ−1 =
[
|σ1|−1111 + |σ2|−1122 + · · ·+ |σn|−11nn

]
. (3.3)

Substituting (3.3) into (3.1), (3.2), we obtain the following spectral expansions of the inverse
controllability gramians in a simple spectrum:

(Pc)
−1 = (Pc)

−1
1 + (Pc)

−1
2 + · · ·+ (Pc)

−1
n ,

(Pc)
−1
1 = V ∗

c |σ1|−1
111Uc, (Pc)

−1
2 = V ∗

c |σ2|−1
122Uc, . . . , (Pc)

−1
n = V ∗

c |σn|−1
1nnUc.

This implies the following spectral expansions of energy functionals [11]:

J1 = Emin (∞) =
[
xf− xf+

]T
(Pc)

−1
[
xf− xf+

]
=

=
[
xf− xf+

]T [
n∑

i=1

V ∗
c |σi|−11iiUc

] [
xf− xf+

]
,

J2 = tr
n∑

i=1

(Pc)
−1
i =

n∑
i=1

tr (Pc)
−1
i =

[
n∑

i=1

tr [V ∗
c |σi|−11iiUc]

]
,

J3 (for SISO LTI systems) = tr
n∑

k=1

Pc,k =
n∑

k=1

trPc,k =(
1∑n

k=1 Ṅ (sk)N (−sk)
−

∑n
k=1 s

2
k∑n

k=1 Ṅ (sk)N (−sk)
+ . . .

. . . + (− 1)n−1

∑n
k=1 s

2n
k∑n

k=1 Ṅ (sk)N (−sk)

)
,

J5 = tr (Pcm) .

Theorem 3 is proven.
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Theorem 4 [2]. Let us consider a finite-dimensional linear stationary continuous system with
many inputs and many outputs of the general form (2.1). Let us assume that the system has a
simple spectrum, is completely controllable and stable. Then the following spectral expansions of
the energy functionals of the input and output energies Ĵ1 and Ĵ2 are valid and equivalent over the
simple spectrum of the controllability gramian:

Ĵ1 =
n∑

i=1

xT0

[
V ∗
c |σi|−11iiUc

]
x0, (3.4)

or a simple spectrum of the dynamics matrix A:

Ĵ2 =
n∑

i=1

xT0

⎡⎣n−1∑
j=0

n−1∑
η=0

λj
i (−λi)

η

Ṅ (λi)N(−λi)
AT

j C
TCAη

⎤⎦x0. (3.5)

Proof of Theorem. It was proven in [2] that the energy functionals of the input and output energies
Ĵ1 and Ĵ2 are equal

Ĵ1 = inf
u,x

0∫
−∞

‖u (t)‖2dt, Ĵ2 =

∞∫
0

‖y (t) , 0, x0‖2dt.

Under the conditions of the theorem, they can be represented in the form of quadratic forms

Ĵ1 = Ec (x0) = xT0 P
#
c x0, (3.6)

Ĵ2 = Eo (x0) = xT0 Pox0, (3.7)

where P#
c is the Moore-Penrose pseudo-inversion of the gramian controllability matrix, and Po is

the gramian observability matrix. Under the conditions of the theorem, the gramian controllability
matrix is a non-singular matrix, therefore the equality

P#
c = P−1

c .

Substituting the spectral decomposition of the inverse gramian matrix into the formula (3.6),
we obtain the desired spectral decomposition of the input energy functional. In [11], a spectral
decomposition of the observability gramian of system was obtained in the form of Xiao Hankel
matrices [11, 22, 23]

Po =
n∑

i=1

n−1∑
j=0

n−1∑
η=0

λj
i (−λi)

η

Ṅ (λi)N(−λi)
AT

j C
TCAη.

Substituting the spectral decomposition of the gramian matrix Po (3.7), we obtain the desired
spectral decomposition of the output energy functional. Theorem 4 is proven.

The functionals Ĵ1 and Ĵ2 were used in [10] to analyze the degree of stability of a linear system
based on the analysis of anomalies of the square H2 is the norm of the transfer function of the
system, caused by the influence of the following weakly stable modes:

• modes close to the origin of coordinates,

• modes close to the imaginary axis,

• several aperiodic and oscillatory modes close to each other.

As the main tool for anomaly analysis, it was proposed to use asymptotic models of spectral ex-
pansions of the functionals J1 and J2 over the simple and/or pair spectrum of the system dynamics
matrix. A similar approach can be extended to the analysis of anomalies in the spectral decom-
positions of the metrics of the traces of the gramians J3 and J4, as well as to the analysis of the
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degree of reachability of a linear system based on the anomalies of the spectral decompositions of
the metrics of the mixed gramians J5. Note that the spectral decompositions of the metrics depend
on the eigenvalues of the dynamics matrix, which are tied to a specific node in the system graph,
which makes it possible to associate the problem of optimal placement of sensors and actuators
with certain nodes in the system graph.

4. CONCLUSION

The article generalizes the known results of gramian decomposition for unstable continuous linear
systems to calculate their spectral decompositions of the simplest case of decompositions over the
pair spectrum of the dynamics matrix. Most energy metrics associated with the use of gramians
are based on calculating the spectrum of dynamics matrices and measures of the minimum energy
required for the system to transition from the initial to the final point. The paper shows that
spectral decompositions of controllability gramians and their inverse gramians make it possible to
calculate the energy components corresponding to the characteristic eigenvalues of the gramian
matrices, which determine the main contribution to the value of the reachability metric and the
energy metric of stability. These spectral decompositions are presented in the form of formulas
that allow one to analyze the influence of various nodes of the system graph on the formation of
energy metrics of reachability and stability. The results obtained can find application in problems
of localization and optimal placement of sensors and actuators on the graph of a complex multi-
connected control system or in problems of placement of control nodes in the graph of a complex
social, transport, energy or biological network [25].
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