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TOPICAL ISSUE

To the 110th Anniversary of the Birth of Boris N. Petrov,

Vice President of the USSR Academy of Sciences

In 2023, the scientific community celebrates the 110th anniversary of the birth of Boris Petrov,
a great scholar in automatic control, theoretician of rocket and space technology, science organizer,
and Vice President of the USSR Academy of Sciences.

Boris Petrov, in full Boris Nikolaevich Petrov, was born on March 11, 1913, in Smolensk. Having
graduated from a high school in 1930, he left for Moscow. After studying at a factory apprentice
school, from October 1932 to September 1933, he worked as a turner. In 1933, Boris entered
Moscow Power Engineering Institute (MPEI) at the Electromechanical Department. In 1939, he
graduated with honors from MPEI. Petrov’s graduation work entitled Automatic Regulation of
Boilers with Pulverized Coal Furnace was written under the guidance of his teacher, Academician
Victor S. Kulebakin. The work was recognized as outstanding. In 1939, by Kulebakin’s suggestion,
Boris entered the Commission for Automation and Remote Control, the USSR Academy of Sciences.
The same year, based on the Commission, the Institute of Automation and Remote Control (IARC)
was established. (Nowadays, it is known as the Trapeznikov Institute of Control Sciences, the
Russian Academy of Sciences (ICS RAS).) Petrov worked at the Institute all his life and made
a career from Junior Researcher to Director. In October 1940, Boris entered the postgraduate
program of IARC; his scientific supervisor was Vadim A. Trapeznikov. During the Great Patriotic
War, IARC was evacuated to Ulyanovsk, where Petrov actively studied the problem of automatic
product rejection. In 1945, Boris submitted for defense his candidate’s dissertation in engineering
entitled Analysis of Automatic Copying Systems and was immediately awarded the higher degree
of Dr. Sci. (Eng.). After the dissertation defense, he led active R&D and educational activities.
Petrov early earned a great reputation among leading scientists and had outstanding organizational
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1142 GLUMOV

skills. It was noticed by the USSR Academy of Sciences: in 1947, on the recommendation of the
Bureau of the Section of Engineering, he was appointed Acting Director of IARC. In 1949, Boris
became Head of the Department of Aircraft Automatic Control Systems at Ordzhonikidze Moscow
Aviation Institute (MAI). He headed the Department until the end of his life and trained many
famous scientists and experts in aerospace technology.

Petrov’s main scientific works were devoted to the theory of dynamic objects control, particularly
the theory of invariance of automatic control systems, the theory of adaptive and terminal systems,
nonlinear servomechanisms and variable structure systems, automatic control systems for aircraft
and spacecraft, and the design of high-precision measuring devices.

Petrov’s fruitful activities were highly appreciated in the USSR and abroad. He was entitled
the Hero of Socialist Labor and was awarded the Lenin Prize and two State Prizes as well as many
other domestic and foreign orders. Boris was Full member of the International Academy of Astro-
nautics and Foreign Member of the Czechoslovak, Hungarian, Bulgarian, and Polish Academies of
Sciences. The Lenin Prize (1966) was awarded for his participation in the design and manufacture
of Voskhod-1 and Voskhod-2 multi-manned spacecraft, their launches, and the implementation of
the world’s first human walk in open space; for his participation in the design and manufacture
of Luna-9 and Luna-10 automatic interplanetary stations, their launch, and soft landing on the
surface of the Moon, the transmission of photographic data of the lunar panorama to Earth, and
the injection of the world’s first artificial satellite of the Moon into lunar orbit.

Petrov was an active organizer of IFAC International Symposiums on Automatic Control in
the Peaceful Uses of Spaces, held in Norway (1965), Austria (1967), France (1970), Italy (1973),
the USSR (1974), German Federal Republic (1975), and England (1979). From 1966 to 1980, he
was Chairman of the Interkosmos Council for International Cooperation and Use of Outer Space.
As Chairman of Interkosmos at the USSR Academy of Sciences, Academician Petrov took an
active part in the organization and implementation of the Apollo–Soyuz Test Project, the joint
experimental manned flight of Soyuz-19 spacecraft (the USSR) and Apollo spacecraft (USA). He
was a leading scholar and an outstanding science organizer. Since 1963, Petrov was permanent
Academician-Secretary of the Section of Mechanical Engineering and Control, the USSR Academy
of Sciences; in 1979, he was elected Vice President of the USSR Academy of Sciences.

Petrov’s entire scientific life was connected with IARC (ICS). Nowadays, the Institute develops
the main modern theoretical branches in the control of space objects, aircraft, and dynamic objects
that were initiated by him. They include the theory of terminal and adaptive control of space
objects under normal and abnormal operating conditions with different levels of a priori and current
information. In the 1970s, Petrov posed the problem of developing formal models and methods
for designing information and control systems of spacecraft and their software. Based on a unified
methodology, formalization methods and means as well as algorithms and programs were developed
to design optimal modular real-time data processing systems. The theory of optimal control with
a vector criterion was further developed to design algorithms for implementing the desired motion
trajectories of dynamic objects. In addition to classical methods, the theory of anisotropic control
and filtering for linear discrete-time stochastic systems is used to suppress the effect of exogenous
disturbances on control systems. The method of spatial and angular relative positioning was
proposed for the information support of aircraft control systems. It involves the parameters of the
magnetic induction gradient as measuring information. This method is currently being developed
further.

The thematic issue contains several papers presenting recent results in the theoretical branches
mentioned above.

Glumov, V.M., Dr. Sci. (Eng.)
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Abstract—The paper is devoted to solving the problem of determining the relative spatial ar-
rangement and orientation of objects. The task was set: to show the fundamental possibility
of spatial and angular relative positioning when using the parameters of the magnetic field
gradient in tensor form and in the form gradient of an absolute value vector as measurement
information for the magnetic field of a local dipole source. The solution of the problem is
presented along with the features and limitations for both forms of representation are consid-
ered. The principles of construction of magnetic gradiometry measurement systems are briefly
described, the limitations of technical implementation are considered, and the benefits of using
an alternating magnetic field source is outlined. The results of modelling are presented, proving
the possibility of using the proposed positioning method for various engineering problems.

Keywords : relative positioning, magnetic field vector, magnetic field gradient, gradient tensor
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1. INTRODUCTION

The solution to many engineering problems is in one way or another connected with the need
to determine the relative position of objects during their interaction. For example, high-precision
control is necessary to control movement during mid-air refueling; mooring a vessel to a pier,
loading terminal or drilling platform; landing an aircraft on a limited area, docking spacecraft and
underwater vehicles [1–3]. Solving the relative positioning problem assumes that in the coordinate
system associated with one of the objects, it is necessary to determine the radius vector of the
location point of another object, as well as their mutual angular orientation. Usually, to solve
such problems, gyroinertial systems, multi-antenna GNSS receivers, optical systems, etc. are used,
but in many cases the technical solution is significantly complicated by the special aspects of
the application conditions, thus becoming excessively large. In many cases, positioning accuracy
is insufficient. The possibility of using magnetic gradient measurements provides possibility to
develop relative positioning methods. The basis of the idea is the fact that the direction and
absolute magnitude of the magnetic field vector of a point dipole transmitter at a certain point in
space is fully determined by the magnitude and direction of the source dipole magnetic moment
vector and the position of the measurement point. A type of the dependence of the field strength
allows, from the data obtained by receiver of the local transmitter, to simultaneously determine
their relative spatial and angular location.
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1144 VOLKOVITSKY et al.

2. PROBLEM STATEMENT

Let a local dipole magnetic field transmitter with an arbitrary direction of the dipole magnetic
moment vector M be located at the origin and let the field be measured at an arbitrary point in
space determined by the radius vector r in this coordinate system (Fig. 1).

For the magnetic field potential UB of a local dipole transmitter in the associated coordinate
system, the following relation is valid:

UB =
μμ0r

TM

4π (rTr)3/2
. (1)

Here μ and μ0 are the magnetic permeability of the medium and the magnetic constant in the
international system of units (SI), respectively.

Differentiating (1), we obtain the values for the field vector:

∇UB =
μμ0 |M|
4π|r|5

⎛⎜⎝3y21 − |r|2
3y1y2
3y1y3

⎞⎟⎠ , (2)

and gradient tensor:

U=∇∇TUB =
3μμ0 |M|
4π|r|7

⎛⎜⎝−2y31 +3y1y
2
2 +3y1y

2
3 − 4y21y2+ y32 + y2y

2
3 − 4y21y3+ y22y3 + y33

−4y21y2+ y32 + y2y
2
3 y31 − 4y1y

2
2 + y1y

2
3 − 5y1y2y3

−4y21y3+ y22y3+ y33 − 5y1y2y3 y31 + y1y
2
2 − 4y1y

2
3

⎞⎟⎠. (3)

The parameters of the magnetic field at the observation point are determined by a tensor gradio-
metric receiver, the coordinate system of which is oriented arbitrarily relative to the field source.
Determining the parameters of the gradient tensor consists of measurement the field values at
several points in space near the point with the radius vector r [5].

The problem is by knowing the magnitude and direction of the vector of the dipole magnetic
moment of the field source in the coordinate system associated with it, and also having the results
of parameter measurement of the field gradient tensor in the area where the observation point is
located in the coordinate system of the receiver to determine the parameters of the radius vector
between the source and the field receiver, as well as the direction of the vector of the dipole magnetic
moment of the transmitter in the coordinate system of the receiver.

y2

�

y1

r

M

B

Fig. 1. The vector of the dipole magnetic moment and the vector of field in the coordinate system associated
with the transmitter.
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DETERMINATION OF THE RELATIVE POSITIONONG 1145

3. POSITIONING BASED ON MAGNETIC FIELD GRADIENT TENSOR MEASUREMENTS

The tensor parameters (3), which are important for solving the positioning problem, can be
obtained by measurement the field at spatially separated points, but close enough as compared to
the distance to the transmitter (so that one can limit ourselves to a linear approximation of the
dependence of the field change on the distance).

Magnetic field potential is a harmonic function. Therefore, the tensor (3) is symmetric, and its
trace is equal to zero. Thus, it contains not nine, but only five independent components. Moreover,
by orthogonal transformations the coordinate system of the transemitter can be brought to the
principal axes of the tensor. In this system, only its diagonal elements are nonzero.

The angular divergence α of the coordinate systems of the principal axes of the tensor y′ and
the y system is determined by the angle ϕ between the vector of the dipole magnetic moment and
the radius vector r (Fig. 2). Knowing the angle ϕ between the radius vector r and the direction of
the vector M from (3) it follows that the values of the angles α and ϕ are related to the relations
of the main components of the tensor (Fig. 3). It also follows from (3) that when the coordinate

y2

y' 2

y' 1

�

�

r

y1M

B

Fig. 2. To the parameters of the field gradient tensor of a point dipole: the principal axes of the tensor at the
field measurement point.
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Fig. 3. Dependence of the tensor parameters on the value of the angle ϕ: (a) angular divergence of coordinate
systems (angle α), (b) values of the main components of the tensor U′.
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Fig. 4. Uncertainty in determining the DMM from measurements of the magnetic field gradient tensor.

system of the receiver is rotated around the y3 axis by 180◦, the tensor value remains unchanged,
only its main components change places and change sign. Figure 3 clearly shows this.

The fact that the values of the angles α and ϕ are determined by the same ratios of the values of
the main components of the tensor (the angle α is determined up to rotation for 180◦) gives grounds
for determining the directions of the radius from the data of magnetic gradiometry measurements
vector r and dipole moment vector M. With a known absolute value of the dipole magnetic moment,
the distance between the transmitter and the receiver can be determined, which constitutes the
solution to the relative positioning problem.

Unfortunately, the solution to the positioning problem is ambiguous. Having the results of
measurements of the components of the tensor U′ at a certain point in space, the problem of
positioning the dipole-transmitter in the system of the principal axes of the tensor can be considered
as follows:

On the interval from 0◦ to 90◦ in ϕ, the U′
11 component, corresponding to the value of the

second derivative with respect to the first component, is maximum in amplitude and negative.
Having determined direction of the first axis, it is necessary to choose the direction of the third so
that the minimum amplitude of the gradient corresponds to it. The second axis complements the
vector tripod to the right.

On the interval from 90◦ to 180◦ in ϕ, the component U′
22, corresponding to the second deriva-

tive with respect to the second component, is maximum in amplitude and positive. Having deter-
mined direction of the second axis, it is necessary to choose the direction of the third axis so that
the minimum amplitude of the gradient corresponds to it. The direction of the first axis should set
the right tripod.

In the interval from 360◦ to 180◦ in ϕ the tensor components behave in the same way as in the
interval from 0◦ to 180◦. Thus, the angle ϕ can only be determined up to sign. Moreover, if for ϕ
from 0◦ to 180◦ the angle α is determined, then for ϕ from 360◦ to 180◦ this angle is α.

Due to their insensitivity to 180◦ rotation, the components of the gradient tensor determine
two possible directions of the location of the transmitter dipoles that could create the measured
gradient—M and M′. These possible transmitters are located opposite to the observation point,
identical in size and opposite in direction. In addition, two more dipoles M′′ and M′′′ also corre-
spond to the measurement results due to symmetry with respect to the dipole axis (Fig. 4 ).

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023



DETERMINATION OF THE RELATIVE POSITIONONG 1147

Thus, the problem of determining the position of the transmitter from measurements of the
gradient tensor is uniquely solved only if the quadrant of its location is known. It is also clear from
Fig. 4 that additional information about the direction cosines of the field vector B will allow us
to immediately reject incorrect hypotheses, and if we assume that the absolute value of the dipole
magnetic moment of the transmitter is known, then according to (2) and (3) we can also determine
the distance to the dipole, i.e. obtain the necessary information to solve the relative positioning
problem.

Note, however, that the result of measurement the parameters of the field gradient tensor of
a point transmitter is invariant to the rotation of the coordinate system associated with the field
source around an axis whose direction coincides with the direction of the dipole magnetic moment
vector. This means that the measurements taken are not enough to determine the relative angular
orientation of objects.

To solve this problem, additional information can be used, which for some conditions is quite
natural. Thus, when the ship approaches the berth, the directions of the vertical axes in the
systems associated with the field source and the transemitter can be considered coincident. If the
field source is located on the cone of the refueling hose, and the dipole moment vector is directed
along it, then the effect of rotating the coordinate system around the moment vector does not
change anything from the point of view of the docking process during air refueling.

A complete solution to the positioning problem can be obtained by placing not one, but several
dipole transmitters on one of the interacting objects. The technical capacity of performing correct
measurements in this option is discussed below.

4. POSITIONING USING A VECTOR MAGNETOGRADIOMETER

It is important to note that at the hardware level, measurement tensor components (3) involves
the use of three spatially separated vector sensors—field induction meters. Today, such devices are
characterized by low accuracy rates.

Scalar magnetically sensitive sensors that directly measure the absolute value of the field induc-
tion are somewhat more accurate. Their operation is based on the quantum effects of precession
of atoms in polarized light (optically pumped quantum magnetometer) or protons (proton and
Overhauser magnetometers) [6]. In this regard, it is interesting to consider the possibility of deter-
mining the spatial location and orientation of the field source based on the results of determining
the gradient vector of the absolute value of the magnetic field induction vector. The components of
this vector can be measured by a system composed of four spatially separated scalar sensors. The
value of the gradient vector of the absolute value of the field and the gradient tensor are related by
the equation

∇ |B| =
(
∇BT

)
(B/ |B|) . (4)

This equation is obtained by differentiating |B| =
√
BTB. It turns out that to solve the posi-

tioning problem using vector gradiometry data during measurements, it is necessary to determine
not only the scalar field values at four points, but also the direction of the field vector (the ratio
B/ |B| in (4)).

Calculations show that the gradient vector is directed predominantly towards the source (Fig. 5).
The magnitude of the angular discrepancy β between the gradient vector and the direction to the
transmitter depends on the angle ϕ between the directions of the radius vector r and the dipole
moment vector M. The maximum discrepancy is about 15◦.

The dependence of the angular divergence of the β radius vector and the gradient vector on the
direction to the dipole is shown in Fig. 6. It is clearly seen that even with direct measurements of

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023
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Fig. 5. Measurement of the field and gradient vector of the absolute value of the magnetic vector.
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Fig. 6. Divergence of the directions of the radius vector and the gradient vector.

the gradient vector, the problem of determining the direction to the dipole-transmitter is solved,
although roughly, but without the ambiguity inherent in tensor measurements.

From the measurement data of the vector with a known value of the dipole magnetic moment, the
distance to the transmitter can be calculated, but additional information is needed to determine the
radius vector. This additional information can be obtained from a series of measurements as objects
move relative to each other. It is also possible to use readings from several spaced gradiometers.
Since the symmetry axes of equivalent solutions are lines drawn through the measurement point
parallel and perpendicular to the dipole axis, then for three gradiometers that do not lie on the
same line, the result of determining the source position will be a single point. Note that such a
scheme, although technically complex, does not require specifying the value of the dipole moment
of the source, i.e. makes it possible not only to get rid of ambiguity, but also to localize the source,
while determining the value of its dipole moment.

5. LIMITATIONS OF TECHNICAL IMPLEMENTATION

The choice of the form of presentation of magnetic gradient information, and therefore the
method of measurement, and the structure of the magnetic measurement installation for solving the
problem of relative positioning is largely determined by the working conditions. A significant role is
played by the functioning of sensors, the dynamics of object movement, the presence of interference
in the application area, and much more. However, it is important that in addition to the field caused
by the operation of an artificial dipole-transmitter, the receiver inevitably registers the natural
magnetic field of the earth, which is very large in magnitude, usually has a significant gradient,
and also unpredictably changes in time under the influence of natural geomagnetic disturbances.

This fact, however, should not be considered a significant hindrance to the implementation of the
methods and algorithms discussed above, since an inductor (loop dipole) powered by an alternating
current of a certain shape can be used as a field source. This approach allows the use of a two-

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023
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and three-dipole transmitter, thereby overcoming the ambiguity in determining the direction to
the source in the case of using a tensor receiver. The task of isolating the field vector of each
transmitter individually is not significantly difficult.

Another kind of difficulty in the application of the considered algorithms turns out to be related
to the perfomance features of magnetically sensitive sensors and, first of all, the influence of mag-
netic interference during the measurement process. The use of an alternating magnetic field allows
the use of narrowband filtering algorithms, which significantly reduces this negative impact. More-
over, this approach allows the use of induction magnetometers as recievers, which are not capable
of measurement the constant component of the field, but have a significantly higher sensitivity in
relation to other types of sensors.

It is also important to note that the considered algorithms are basic and do not take into account
fundamentally important aspects of a possible technical implementation. Thus, the field source is
assumed to be local, or more precisely, a point dipole transmitter. However, a technically feasible
transmitter inevitably has a non-zero size, and therefore its field differs from the field of an ideal
dipole. The degree of difference decreases with distance, however, with a significant distance,
the amplitude of the measured field decreases significantly, the limitations of the sensitivity and
accuracy of the sensors, and the negative influence of various external interferences are fully manifest
themselves.

Similar difficulties in technical implementation are typical for gradient field receivers. The
definition of the gradient as the second derivative of the potential assumes that the increments
of the field induction vector along the selected directions are measured at a point at infinitesimal
distance increments. In the technical implementation, even at small distances between the field
measurement points, the discrepancy between the values of the derivative ∂B

∂x and the ratio �B
�x

is also present due to the essentially nonlinear dependence of the field magnitude on distance
(|B| ∼ 1/ |r|3) inevitably increases as approach the field source. In the same context, consideration
of the possibility of using scalar sensors to construct a vector gradiometer deserves special attention.
High-precision and highly sensitive scalar quantum magnetometers with optical pumping could be
used with a small distance between them in the structure of the installation, but their design
is such that bringing the sensors closer to each other than 1.5 m radically distorts the readings.
No less important factors that can destroy the harmonious scheme of basic algorithms are other
imperfections of various magnetically sensitive sensors and the measurement system as a whole:
orientation errors, various types of nonlinearities, temperature drift of zeros and scale factors, etc.

6. EXPERIMENTS TO EVALUATE THE ACCURACY
OF DETERMINING THE RELATIVE POSITION

The above features of the technical implementation make the possibility of putting the basic
algorithms into action not entirely obvious and explain the desire to conduct experiments on the
actually achievable capabilities of the system in terms of: the required characteristics of the sensors
and the measurement system as a whole, the available range of distances between the source and
the field reciever, the degree of influence of various types of interference, the potentially achievable
accuracy of determining geometric parameters, and speed of operation. To assess the technical
feasibility and confirm the effectiveness of the considered algorithms, a series of experiments was
carried out, the task of which was to assess the accuracy of determining distances and directions
in real conditions, taking into account natural magnetic interference and the limited accuracy of
magnetically sensitive sensors, as well as the limited accuracy of monitoring the dipole magnetic
moment of the emitter.

A loop transmitter was used as a field source—a flat inductor with a diameter (500 mm,
100 turns), fed by a meander-shaped current with a frequency of 4 Hz. The amplitude of the

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023
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Fig. 7. Calculating the distance to the field source.

dipole magnetic moment was about 35 Am2; to simplify control, the direction of the vector was set
horizontal. The tensor-type magnetic gradiometry reciever was composed of three vector fluxgate
magnetometers HB0302 [7], having a sensitivity of 1.0–5.0 nT. The sensors were installed on a
rotating platform in a horizontal plane along the vertices of an equilateral triangle with an edge
length of 1.0 m. The experiments were preceded by a series of calibration procedures, the coverage
of the theoretical foundations and technology of which is beyond the scope of this article. The se-
quence of measurement procedures in the final experimental design was presented in the following
series.

At a known distance from the center of the triangle of the magnetic gradiometry system to the
field source (this distance ranged from 5 m), a series of measurements were performed in which
the magnetic gradiometry measurement installation remained stationary, and the loop transemit-
ter, maintaining its location in space, sequentially changed the direction of the dipole moment in
azimuth. Then the measurement installation, remaining in place, changed its position in azimuth.
This series made it possible to evaluate the accuracy of determining the direction to the source and
the direction of the vector of its dipole moment. Measurements in this sequence were performed
twice. The first part were as the basis for calibration procedures, and according to the data of the
other, accuracy control was carried out.

The second series of experiments consisted of monitoring the accuracy of determining the dis-
tance to the field source for different directions of the dipole magnetic moment vector. The magnetic
measurement installation remained stationary, and the loop transmitter with a step of 2.0 m moved
away from the reciever at a distance of 5 to 13 m. At each position, four measurements were per-
formed at different directions of the dipole magnetic moment vector. In this series, the accuracy of
determining the distance to the source was assessed at various distances and for various directions
of the dipole moment vector.

During the experiments, the following results were obtained.

Figure 7 shows the results of an experiment to determine the distance to the source from gradient
measurements. The specified values of the distance between the dipole-transmitter and the mea-
surement installation are plotted horizontally, and calculated values are displayed vertically. The
curve shows the calculated value, the horizontal segments—averaged for each of the time intervals
corresponding to the distance of the dipole from point to point with a step of 1.0 m.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023
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Fig. 8. Calculation of angular orientation parameters.

It can be seen from the figure that the distance to the source in the presented experimental
design is generally calculated reliably. The small discrepancy is explained by the imperfection of the
experimental conditions: the significant influence of magnetic interference in the measurement area,
as well as the error in the placement of the transmitter dipole relative to the measurement system.
The resulting accuracy in this experiment was 4–9% depending on the value of the determined
distance.

Figure 8 shows two graphs showing the possibility of determining the parameters of the mutual
angular orientation of the receiving system and transmitter from magnetic gradient measurements.
The graphs show the results of changes over time in determining the values of the angles of the
azimuthal orientation of the dipole magnetic moment vector (direction of the moment vector)
and the selected axis of the measurement installation (orientation of the meter). The calculated
values are plotted along the vertical axis. Line segments in the graphs show preset values. It is
clearly seen from the figure that in this experiment the direction to the dipole-transmitter was
determined based on the results of magnetic gradiometry measurements in general more accurately
than the direction of the dipole moment vector, however, taking into account the simplicity of
the measurement scheme, in general, sufficient reliability of the operation of the algorithms for
determining both directions is shown.

The resulting accuracy in determining the orientation of the reciever was 3–10◦ depending on the
distance. The resulting accuracy in determining the direction of the dipole moment vector depends
not only on the distance, but also on the orientation of the reciever. It was 10–30◦ depending on
the distance.

7. CONCLUSION

The research presented in the paper made it possible to formulate the basic principles of a
promising method of relative angular and spatial positioning of objects. The above calculations
show the fundamental possibility of constructing structurally and functionally simple high-precision
systems useful for solving problems of controlling the movement of objects during their interaction:
mooring, docking, refueling in the air, monitoring the position of the ship relative to the anchor,
etc. The experiments presented in this work confirmed the perfomance capabilities of constructing
systems operating on the principles of the algorithms discussed in the work.
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Abstract—The article considers the problem of combinatorial optimization of interception of
rectilinearly moving targets as a modification of the traveling salesman problem. New macro
characteristics and definitions for this problem are introduced and used to classify the obtained
solutions. Vector criteria composed of several important for applications functionals are de-
scribed. The principles of no-waiting and maximum velocity are proved for two types of criteria.
An intelligent brute-force algorithm with dynamic programming elements for finding optimal
plans according to the introduced intercept criteria is proposed and implemented. Statistics of
solutions of the developed algorithm is collected for a set of different initial parameters and the
proposed macro characteristics are investigated. The conclusions about their applicability as
local rules for the greedy algorithm for finding a suboptimal intercept plan are drawn.

Keywords : moving targets traveling salesman problem, combinatorial optimization, simple mo-
tion model
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1. INTRODUCTION

A recent development of intelligent technologies in the field of unmanned autonomous vehicles
makes it possible to use them cooperatively in a vast variety of applications and scenarios that were
considered impossible before. One such application is the problem of preventing moving targets
from infiltration of a given point in space by intercepting each one. The problem of optimal choice
of the traverse order of targets is found to be crucial in the formalization and further solution of
the problem of intercepting a set of targets. An optimal choice in terms of one criterion may turn
out to be poor when another criterion is used. For example, if the optimal choice of the traverse
order of moving targets is related to the requirement that targets should be intercepted in the
shortest possible time at the greatest possible distance from the defended point, then an internal
contradiction of such requirement can be shown. Let us consider a situation in which one defender
faces two enemy targets, one of them is fast and the other is slow, and the defender’s starting point
is attacked from diametrically opposite directions. For the fastest execution time it is needed to
intercept the slow target first, letting the fast target get closer, but if the fast target is intercepted
first, then the shortest distance to the defended point will be greater than in the first case.

The Moving Targets Traveling Salesman Problem (MTTSP) [1–4] is the closest problem state-
ment to the problem of constructing an optimal plan for intercepting moving targets studied in
this paper. The MTTSP is a generalization of the traveling salesman problem (TSP). In 1972, the
NP-completeness of the Hamiltonian cycle problem was shown to imply NP-completeness of the
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MTTSP [5]. One of the first MTTSP statements for rectilinearly moving targets was in paper [1]
where it was found that the dynamic programming apparatus could be used to construct an efficient
algorithm for finding the optimal intercept plan.

In MTTSP, it is generally assumed that the control object movement is subject to simple motion
model (the controlled input is a velocity vector). For some conditions [1, 4] such an assumption
makes it possible to switch from a discrete-continuous optimization problem to a discrete opti-
mization problem. The model where the controlled input is a velocity vector can be a sufficiently
rough approximation for constructing reference trajectories of a real control object, but using more
accurate models that take into account, for example, the maneuverability of the control object,
do not allow to switch from a discrete-continuous problem to a discrete one to obtain an accurate
solution even in the case of stationary targets [6, 7]. In this case, if the control object is sufficiently
maneuverable and the distances between targets are large (in comparison to the minimum turning
radius of the object), then taking into account maneuverability in the problem of target traverse
planning does not affect the structure of the optimal plan.

Methods for solving MTTSP can be categorized as follows:

• with time sampling [3, 8, 9] or without [1, 4, 8, 10, 11];

• giving an optimal solution [3, 4, 8] or suboptimal [9–11];

• deterministic [1, 3, 4, 8, 9, 12] or random [10, 11, 13].

In [4] an algorithm for constructing a guaranteed intercept plan based on the notion of target
danger is proposed for the problem of preventing intrusion of targets into a given point with the
traveling salesman (TS) returning to it after each encounter with the target.

This paper considers the problem of optimizing an intercept plan for a vector criteria. The
concepts of danger, convenience and complexity of intercept are formalized. The preference is
given to deterministic methods without time discretization that give an optimal solution (without
guarantees of fast completion).

The paper consists of an introduction, four sections and a conclusion and has the following
structure. In Section 2, a new formulation of the problem of finding an optimal plan for intercepting
targets moving rectilinearly to one protected point is formalized, the set of acceptable plans, vector
criteria of the problem are introduced, and the definition of a guaranteed intercept plan is given. In
Section 3, the theorems of guaranteed intercept and the principle of non-optimality of no-waiting
are proved, and new notions of danger, convenience and complexity of intercept plan are introduced.
Section 4 is devoted to an intelligent algorithm for brute-force search that significantly reduces the
number of computations. Later in 5 the results of simulation based on the proposed algorithm are
presented and the properties of the optimal plans are statistically investigated. In the 6 plans for
further work are presented.

2. PROBLEM STATEMENT

2.1. Mathematical Model

Let us assume that the protected point is located on the plane at the coordinate origin. The
targets appear on the outer boundary of a circle of radius R in a layer of width 2ΔR in a sector
with a central angle α. Targets move rectilinearly with known velocities of given range [vmin, vmax].
At the initial moment TS is situated at the origin and it controlled with velocity v(t) ∈ [0, V ],
V > vmax. It is assumed that moving targets must be serviced by the salesman as far from the
protected object as possible, minimizing the danger as much as possible.

Definition 1. The set of initial conditions for targets and TS with all parameters of the problem
being fixed is called the initial state.
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The state may change as the current data about the objects is changed and refined. Since any
moment when all parameters of the problem are known can be chosen as the initial moment, the
situation at this moment will be called the current state.

Let us assume that there are only m targets and each of them is located at the initial moment
at the point r0j = (x0j , y

0
j ), where j = 1, . . . ,m. Each target moves with constant velocity vj =

(vx,j , vy,j). Thus, the trajectory of each target is a straight line

rj(t) = r0j + vjt, j = 1, . . . ,m (1)

with constrained parameters

||vj|| ∈ [vmin, vmax], vmax < V,

||r0j || ∈ [R−ΔR,R+ΔR],

arctan
y0j
x0j

∈
[
π

2
− α

2
,
π

2
+
α

2

]
.

(2)

When the target reaches the origin, it is meaningless to service it. This moment in time for
target number j can be calculated as follows:

t0j =
‖r0j ‖
‖vj‖ . (3)

The dynamics of TS is described with a system of differential equations of the following form:

ẋI(t) = v(t) cosψ(t), v(t) ∈ [0, V ];

ẏI(t) = v(t) sinψ(t), ψ(t) ∈ [0, 2π);
(4)

where rI(t) = (xI(t), yI(t)) is the position of TS at the moment t; ψ(t) is the velocity direction
control on the plane. The salesman is at the origin at the initial moment rI(0) = (xI(0), yI (0)) =
(0, 0).

In order to formulate the plan construction problem as an optimization problem, it is necessary
to give a formal description of the problem model, which include definitions of problem solution,
its acceptability, and a quality criterion of the problem.

The principles of non-optimality of no-waiting and maximum velocity motion is proved later in
the paper. The intercept function is constructed for the problem of the fastest intercept of a target
moving uniformly along a straight line by TS whose movement is subject to simple motion model,
and is reduced to finding the smallest positive root of the following quadratic equation with respect
to the intercept time τ :

(rj + vjτ)
2 = V 2τ2.

Here rj = rj(t)− rI(t) is a vector of relative positions of TS and the target with number j,
rI(t) is a current position of TS, V is a maximum velocity of TS, vj is a velocity vector of the
target. Let us denote the smallest non-negative root of this equation by τ(rj ,vj). It can be shown
that when v2

j < V 2 the following expression is valid

τ(rj ,vj) =
(vj, rj) +

√
(vj , rj)2 + r2j (V

2 − v2
j )

V 2 − v2
j

. (5)
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2.2. Individual Plan

An individual plan π for TS intercepting k ∈{0, . . . ,m} targets is a tuple of k different numbers
from M = {1, . . . ,m}. The order of the elements in the tuple determines the order according to
which the targets are intercepted. The space of all individual plans intercepting k∈{0, . . . ,m}
targets can be described as follows:

Πk =
{
(π1, . . . , πk)∈Mk : ∀p, q ∈{1, . . . , k} p �= q → πp �= πq

}
.

Let us consider for example m = 2:

Π0 = {()},
Π1 = {(1, ), (2, )},
Π2 = {(1, 2), (2, 1)}.

() denotes an empty tuple (an individual plan prescribing inaction). Thus, if an individual plan π =
(π1, . . . , πk)∈Πk is prescribed for TS, then TS should firstly intercept the target with number π1,
then – the target with number π2, and so on.

The space of all plans for a given number of targets m is the following set:

Π =
m⋃
k=0

Πk.

First, let us compute the minimum time T (π) that it takes a salesman to execute an individual
plan π = (π1, . . . , πk). Using the definition of τ(rj ,vj) from (5), the following recursive expression
can be obtained:

T (π) =

⎧⎪⎪⎨⎪⎪⎩
0, k = 0;

τ(r0π1
,vπ1), k = 1;

t+ τ(rπk
(t)− rI(t),vπk

), k > 1, here t = T ((π1, . . . , πk−1)).

(6)

Let us also write out the constraint that every target entering the plan must be intercepted on
time, i.e. before reaching the coordinate origin:

OnTime(π) =
(
∀j ∈{1, . . . , k} : T ((π1, . . . , πj)) � tπj

)
.

It should be noted that last restriction can be checked recurrently. If for an individual plan
π = (π1, . . . , πk) the corresponding constraint is satisfied and the target j is not considered in
the individual plan π, then the following expression can be used to check the constraint for the
individual plan π + j = (π1, . . . , πk, j):

OnTime(π + j) = OnTime(π) & T (π + j) � tj .

Definition 2. The interception plan is acceptable if it allows to intercept moving targets on time.
The set of acceptable plans is the following

ΠA = {π ∈Π : OnTime(π)} .
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2.3. Criteria and Definitions

The criterion of the problem is associated with the loss functional J . Obviously, a lesser loss
function corresponds to a better solution. The loss functional must be defined on the set of ac-
ceptable plans ΠA, i.e. for each plan an estimate of the losses can be made. The optimal solution
to the traverse plan construction problem is the plan π∗ ∈ΠA that minimizes the value of the loss
functional:

π∗ ∈ arg min
π∈ΠA

J [π]. (7)

The set of acceptable plans ΠA is finite and contains at least one element (which is the empty
plan), so the minimization problem always has a solution, maybe not the only one. The equal sign
in the expression π∗ = arg min

π ∈ΠA

J [π] means that solution is unique.

Basic functionals that can be used to build the criterion of the problem are

• Missed targets (the number of missed targets that reached the origin). All targets that were
not included in the individual plan π ∈ΠA will reach the origin, i.e. the number of missed
targets is calculated as follows

n0[π] = m− card(π),

where card(π) is the length of the plan π.
• Execution time. It is calculated as the execution time of the individual plan

Tsum[π] = T (π).

• Minimum interception distance. The minimum distance from the origin to target interception
point for the plan π ∈ΠA is calculated as follows

Dmin[π] = min
j ∈{1,...,m}

‖rπj (T ((π1, . . . , πj)))‖.

If the plan π is empty, it will be formally assumed that Dmin[π] = 0.

Not all of the mentioned functionals are suitable for the role of the problem criterion. Indeed,
minimizing only the execution time of the plan leads to an empty plan consisting in inaction, and
it will be optimal because zero time units are required for its execution. Only a loss functional,
describing the number of targets that reached the origin, can be used as problem criterion.

Definition 3. The interception plan is guaranteed if n0[π] = 0. The set of guaranteed plans is
denoted by ΠG.

Some generalization of the comparison method is needed to adequately compare the listed func-
tionals in the final problem criterion. Most of the mentioned functionals make sense in the mini-
mization problem if they are combined together to form a criterion. For example, if two plans are
compared primarily on the number of missed targets that reached the origin, and secondarily, on
the total interception time, then such a combined loss functional adequately capture the essence
of the point defense problem. In other words, if some plan π1 admits skipping one target to the
origin and the execution time of the plan is 7, i.e. n0[π1] = 1 and Tsum[π1] = 7, and a plan π2
admits skipping one target to the origin and the execution time of the plan is 8, i.e. n0[π2] = 1
and Tsum[π2] = 8, then plan π1 is better than plan π2, i.e. the tuples (1, 7) < (1, 8) can be formally
compared. This comparison is similar to the positional comparison of real numbers, where each
digit at the corresponding position of a real number is compared to the corresponding digit of
another number until no differences in values are found from left to right. Let us formalize the
above on the concept of lexicographic order.
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Definition 4. A tuple of numbers a = (a1, a2, . . . , ap) is less than a tuple of numbers b =
(b1, b2, . . . , bq) if there exists a number k∈{1, . . . ,min(p, q)} such that ai = bi for i < k and ak < bk.
If for all k∈{1, . . . ,min(p, q)} ak = bk, then for p < q it is assumed that a < b. In other cases, it
is assumed that a � b.

Examples:

(1, 2) < (1, 3), (0, 1) < (1, 2), (1, 2) < (1, 2, 1), () < (1, 2), (1, 2) < (2, ).

The main criteria of the target interception problem for an arbitrary acceptable plan π ∈ΠA are
formulated using the definition of tuple comparison.

• Missed targets + Execution Time. The quality criterion for the obtained plans is the following

JT [π] = (n0[π], Tsum[π]). (8)

Minimizing of this loss functional is primarily aimed at minimizing the number of missed
targets and time execution of the plan secondarily.

• Missed targets + Minimum interception distance. The quality criterion is the following

JD[π] = (n0[π],−Dmin[π]). (9)

Minimization of this loss functional is primarily aimed at minimizing the number of missed
targets and secondarily at maximizing the distance of the closest target approaching to the
origin.

• Missed Targets + Minimum interception distance + Execution Time. The quality criterion is
the following

JDT [π] = (n0[π],−Dmin[π], Tsum[π]). (10)

Minimization of this loss functional is primarily aimed at minimizing the number of missed
targets, secondarily at maximizing the distance of the closest target approaching to the origin
and thirdly at minimizing of total execution time.

Let us formulate the optimization problem.

Problem 1. For m targets moving along trajectories (1) with constraints on the motion param-
eters (2), it is required to find an optimal according to criterion (8) or (10) intercept plan π ∈ΠA

for TS with dynamics (4).

3. PROPERTIES OF THE OPTIMAL INTERCEPT PLAN SEARCH PROBLEM

The following definitions and terms are needed to describe the problem properties.

Using the formula (5), the time τj(t) = τ(rj ,vj) of intercepting the jth target from the current
state and the time tj(t) of movement of the jth target to the coordinate origin are introduced.

Definition 5. A danger Kj of the jth target is defined as the inverse value of the movement time
needed to reach the coordinate origin, namely

Kj(t) =
1

tj(t)
.

The danger is a property of the target. The less time before the target enters the protected
region, the more dangerous it is considered.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023
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Definition 6. The convenience Uj of intercepting the jth target is the inverse of the time which
TS needs to intercept this target from the current state, namely

Uj(t) =
1

τj(t)
.

Convenience is a property of TS’s action with respect to the target. The less time it takes, the
more convenient it is to intercept the target.

Definition 7. The intercept complexity C[π] of the plan π is the maximum time between two
consecutive intercepts in the plan, namely

C[π] = max
{πj}∈π,
1 < j � m.

τπj(T ((π1, . . . , πj−1))). (11)

Complexity is a property of TS’s plan. The less time there is between two consecutive target
intercepts during plan execution, the less complex it is.

Definition 8. The average complexity Ĉ[π] of an intercept plan π is the average time between
two consecutive intercepts in the plan, namely

Ĉ[π] =
1

m− 1

∑
{πj}∈π,
1 < j � m.

τπj(T ((π1, . . . , πj−1))). (12)

Average complexity characterises the durations between consecutive interceptions in a plan. If
all the targets are intercepted consecutively without long interceptions then this plan is less complex
in average compared to the plan containing several long interceptions.

The danger is directly related to the criteria for execution of the intercept plan, while convenience
and complexity relate to the sequential selection of the next target and the quality of plan execution
according to the time-optimal criterion. If there is a target traverse plan where the consecutive
intercepts occur as conveniently as possible and there is no target miss, then the execution time of
the plan is often close to optimal.

The notions of danger and convenience can be generalised for the current state.

Definition 9. The danger of the current state is a decreasingly ordered tuple of m target danger
values

(Kj1(t), . . . ,Kjm(t)). (13)

The order of targets in the danger tuple does not change during the execution of the plan.

Definition 10. The convenience of the current state is a decreasingly ordered tuple of m target
convenience values

(Uj1(t), . . . , Ujm(t)).

The convenience of the current state depends on the position of TS and changes over time.

When targets are intercepted, tuple lengths are reduced. The complexity of the plan is directly
related to the convenience of the traverse. The optimal plan combines all of the above state
characteristics.

Theorem 1. For any initial state and any number of targets in the problem 1, there is a guar-
anteed intercept plan π ∈ΠG.
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Fig. 1. Intercept targets with velocities ||v|| = {0.2V, 0.4V, 0.5V, 0.7V, 0.9V }, located on the boundary
of a circular sector with a centre angle α = 60◦.

Proof. It is possible to carry out the proof using Theorem 10 of [4], but then the features of the
problem will be left out.

The intercept plan is created according to the initial state danger (13) calculated similarly to [4].
Let us prove that such a plan is guaranteed.

If in the initial state the distance ||r0j ||, where the index j corresponds to the most dangerous
target, is not the minimum among all ||r0k||, k = 1, . . . , j − 1, j + 1, . . . ,m, then the moment of
the start of TS’s movement is postponed. Then a radius R0 is found such that the targets cross
it in decreasing order of danger (Kj1 , . . . ,Kjm) by permutation of the targets (j1, . . . , jm) with
respect to the initial numbering (1, . . . ,m). When the most dangerous target is intercepted, all
others are outside the radius of the current interception. Due to the superiority of the velocity
of TS, no target will reach the origin, which is shown in the example of a situation where the
next most dangerous target jd+1 is located diametrically opposite to the current one ||rjd(t)|| <
||rjd+1

(t)||, t = T ((j1, . . . , jd)). In this case, the difference between the times it takes the target
and TS to reach the origin is equal to

||rjd+1
(t)||

||vjd+1
|| − ||rjd(t)||

V
=
V · ||rjd+1

(t)|| − ||vjd+1
|| · ||rjd(t)||

V · ||vjd+1
|| > 0.

This means that in an extreme case, when the interception occurs along the beams of one straight
line, TS will have time to get to the origin, after which TS will intercept the next target. In cases
where the interception is carried out on the remaining beams, it is obvious that the targets also
will not reach the origin. This proves that the danger interception plan is guaranteed. �

Example 1. Let the targets be uniformly distributed on the boundary of a circular sector with
a radius R and a central angle α and move with equal velocities ||v||. Then the optimal intercept
according to the criteria JT [π] and JDT [π] is carried out along a trajectory close to the logarithmic
spiral [14] following the plan π on which n0[π] = 0, as shown in Fig. 1. In this example, the danger
and convenience of the initial setting are (K1, . . . ,Km) = (U1, . . . , Um) = (||v||/R, . . . , ||v||/R) and
do not allow to make an initial choice of target. Once the rightmost or leftmost target in a sector
has been intercepted, the remaining targets will also be equally distributed in danger. However,
the intercept convenience tuple will not only have an order of the remaining targets, but also this
order will not change after each intercept.
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Theorem 2. For criteria JT [π] and JDT [π] in problem 1 the following principles are valid:

1) the no-waiting principle (on the optimal plan TS cannot be motionless),

2) the principle of maximum velocity (on the optimal plan TS moves at the maximum possible
velocity).

Proof. The guaranteed intercept (n0[π] = 0) minimising the number of missed targets for criteria
JT [π] = (n0[π], Tsum[π]) and JDT [π] = (n0[π],−Dmin[π], Tsum[π]), can be obtained by the Theorem 1
by choosing the plan π = (i1, . . . , im) according to the initial state danger (Ki1 , . . . ,Kim).

Further optimisation of vector criteria JT [π] and JDT [π] is performed according to guaranteed
plans (n0[π] = 0), consisting of at least one plan π = (i1, . . . , im).

The validity of principles of no waiting and maximum velocity when minimising Tsum[π] is shown
in Lemma 1 of [4], which finishes the proof of the theorem for the functional JT [π].

Maximizing the functional Dmin[π] in the criterion JDT for a finite number of guaranteed plans
leads to finding the plan π∗. Let us fix this plan and find the first target number j in the plan,
on which the minimum distance to the origin is reached. The plan π∗ = (π1,j , πj,m) is divided into
two parts: π1,j before the goal j inclusive and πj,m after the goal j, then Dmin[π

∗] = Dmin[π1,j ].
Increasing the execution time of part of the plan π1,j by waiting time or moving at less than
maximum velocity leads to a decrease Dmin[π1,j] similar to Lemma 1 of [4]. Further, the part of
the plan πj,m is optimal in execution time by Bellman’s principle of optimality. The part Tsum[π] of
the criterion after reaching a minimum on the functional Dmin[π] is responsible for this. Therefore,
waiting and slowing down is impossible for TS on πj,m and hence on the whole π∗. �

4. OPTIMAL INTERCEPT PLAN FINDING ALGORITHM

The algorithm for constructing a traverse plan for a single TS and many moving targets is based
on brute-force sorting of plans with an initial sorting of targets by danger and an intelligent rule
for discarding obviously non-optimal branches of the search in the process of its operation. It is
guaranteed that the algorithm finds the optimal intercept plan.

To introduce some important notions that are necessary to understand the algorithm, let us
first consider the simplest case of a brute-force search. The work of the algorithm in this case can
be illustrated by the transition matrices in Table 1, which show the complete sequence of plans
considered during the operation of the algorithm. Table 1 is called the plan search table. The
criterion of the problem in the algorithm is from (10):

JDT [π] = (n0[π],−Dmin[π], Tsum[π]).

In Table 1 the transition matrices are numbered from 1 to m! = 24. For each matrix, a vector
of indices is written in the column on the left that defines the intercept plan. The resulting plan is
a sequence of marked circles in the matrix according to the index vector in ascending order of row
number.

The uppermost index in the column is marked with an asterisk, from which a new calculation
of the next plan begins. An intermediate state, characterised by a part of the already computed
plan, is stored to save computational resources.

Statement 1. The total number of calls of the single intercept function (5) in a brute force search
of all variants in the algorithm with intermediate saving of calculations is described by the recurrence
formula

f(m) = m(f(m− 1) + 1). (14)
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Table 1. Plan search table consisting of transition matrices for the case of brute-
force search with m = 4

1

1 1 2 3 4

1 2 3 4

1 3 4

1 4

2

1 1 2 3 4

1 2 3 4

*2 3 4

1 3

3

1 1 2 3 4

*2 2 3 4

1 2 4

1 4

4

1 1 2 3 4

2 2 3 4

*2 2 4

1 2

5

1 1 2 3 4

*3 2 3 4

1 2 3

1 3

6

1 1 2 3 4

3 2 3 4

*2 2 3

1 2

7

*2 1 2 3 4

1 1 3 4

1 3 4

1 4

8

2 1 2 3 4

1 1 3 4

*2 3 4

1 3

9

2 1 2 3 4

*2 1 3 4

1 1 4

1 4

10

2 1 2 3 4

2 1 3 4

*2 1 4

1 1

11

2 1 2 3 4

*3 1 3 4

1 1 3

1 3

12

2 1 2 3 4

3 1 3 4

*2 1 3

1 1

13

*3 1 2 3 4

1 1 2 4

1 2 4

1 4

14

3 1 2 3 4

1 1 2 4

*2 2 4

1 2

15

3 1 2 3 4

*2 1 2 4

1 1 4

1 4

16

3 1 2 3 4

2 1 2 4

*2 1 4

1

17

3 1 2 3 4

*3 1 2 4

1 1 2

1 2

18

3 1 2 3 4

3 1 2 4

*2 1 2

1 1

19

*4 1 2 3 4

1 1 2 3

1 2 3

1 3

20

4 1 2 3 4

1 1 2 3

*2 2 3

1 2

21

4 1 2 3 4

*2 1 2 3

1 1 3

1 2

22

4 1 2 3 4

2 1 2 3

*2 1 3

1 1

23

4 1 2 3 4

*3 1 2 3

1 1 2

1 2

24

4 1 2 3 4

3 1 2 3

*2 1 2

1 1

Thus, the number of calls of the single intercept function is significantly reduced. Example with
m = 4:

f(m) = 64, (15)

whereas for the case of brute force search the number of calls of this function is F (m) = m!·m = 96.
For a larger number of targets m = 10 respectively there are

f(m) = 9 864 100,
F (m) = 36 288 000.

(16)

Saving of the current state of the plan already significantly reduces the number of computations.
However, the main gain in the efficiency of the proposed algorithm is due to its problem orientation
specifics and the possibility of discarding non-optimal chains of plans, whose criterion values is
worse than ones of the currently saved plan. The algorithm consists of the following sequence of
actions.
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Algorithm 1. Finding a traverse plan.

(1) Targets are sorted by danger Ki.

(2) An auxiliary search matrix (matrix with index 1 in Table 1) is filled in and used to form a
sequence of the plans.

(3) At each new step of the algorithm, the transition through the states of the full plan search
table 1 . . . m! (Table 1) is performed according to the criterion (10).

(4) The first case: an intercept plan for all targets has not yet been found. In this case:

(a) The transition in the plan search table is performed according to the parameter of the
number of intercepted targets.

(b) If the next plan is impossible to complete (the target reaches the origin) and the new
considered plan has the same number of intercepted targets, the distance and time criteria
are checked and the best plan is stored in memory.

(c) The branch may be discarded if the number of targets missed at the origin has become
worse with respect to the saved plan.

(5) The second case: if a plan that intercepts all targets is found. Then:

(a) Any missed target in the new plan leads to the end of consideration of the current chain
of plans.

(b) If the new plan intercepts all targets, the distance and time criteria are checked and the
better of the two plans is stored in memory.

(6) The last saved plan is the optimal plan.

The proposed initial sorting of targets by danger is used to discard non-optimal plan chains in the
early stages of the Algorithm 1.

5. MODELLING AND RESULTS DISCUSSION

The interception Algorithm 1 was implemented in Matlab using the functions (5) and (6).
Modelling has shown that the running time of the algorithm is acceptable for real-time applications
and is strongly reduced relative to the brute-force algorithm. For 1000 experiments, the running
time was 200 s, which means that the average running time for one initial state is 0.2 s.

1000 different initial states are considered, for which the following basic parameters are chosen:

• The number of targets is m = 15.

• The central angle of the sector where the targets are located is α = 60◦.
• The values ||rj ||, j = 1, . . . ,m are uniformly distributed in [800, 1000].

• Target velocities are uniformly distributed in [0.5V, 0.7V ].

For each state, the danger, convenience, and optimal traverse plans are found according to the
criteria JT [π] and JDT [π] using the Algorithm 1. Tables 2 and 3 give statistics on how often the
first few objectives of the optimal plan turn out to be the most dangerous/convenient.

Tables 2 and 3 show that the statistics of selecting the first target in the plan differs from the
statistics in the following steps, since the initial state is significantly different from the state that
arise after each interception. In more than 70% of cases, according to the obtained statistics, the
first target of the optimal plan matches with the most dangerous or the most convenient target,
which can be used to construct greedy algorithms based on local rules according to danger or
convenience instead of brute-force algorithms.

It was found for 1000 initial settings that in 24.6% of cases, the optimal plan π∗ by criterion
JDT [π

∗] coincides with the optimal plan by criterion JT [π
∗].
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Fig. 2. Execution time of the plan and minimum interception distance for acceptable plans of the same
initial situation depending on the complexity and average complexity of the plan.

Further modelling is devoted to investigating plans for a single initial state. Figure 2 presents the
dependences Tsum[π],Dmin[π] from C[π], Ĉ[π] for acceptable π plans, whose minimum interception
distance Dmin[π] > 0.6Dmin[π

∗], where π∗ is the JDT [π] optimal plan. The values Tsum[π
∗],Dmin[π

∗]
are additionally circled in red, and all points {π : π1 = π∗1} corresponding to acceptable plans are
also highlighted in red.

Table 2. Percentage of matches of the first four objectives π∗
1 , π

∗
2 , π

∗
3 , π

∗
4 of the optimal JT [π] plan π

∗

with the corresponding dangerous and convenient targets for 1000 different initial state

Target numbers
in the plan π∗

Number of matches of i target of the plan π∗ with i according to

danger
(Kπ∗

i
= Kji), %

convenience
(Uπ∗

i
= Uji), %

danger and
convenience, %

danger or
convenience, %

First target π∗
1 (i = 1) 65.0 65.9 56.8 74.1

Second target π∗
2 (i = 2) 32.1 57.6 13.9 75.8

Third target π∗
3 (i = 3) 19.4 58.5 7.1 70.8

Fourth target π∗
4 (i = 4) 16.3 57.0 3.8 69.5

Table 3. Percentage of matches of the first four objectives π∗
1 , π

∗
2 , π

∗
3 , π

∗
4 of the optimal JDT [π] plan π

∗

with the corresponding dangerous and convenient targets for 1000 different initial state

Target numbers
in the plan π∗

Number of matches of i target of the plan π∗ with i according to

danger
(Kπ∗

i
= Kji), %

convenience
(Uπ∗

i
= Uji), %

danger and
convenience, %

danger or
convenience, %

First targe π∗
1 (i = 1) 61.2 63.0 52.8 71.4

Second targe π∗
2 (i = 2) 36.6 52.9 13.2 76.3

Third targe π∗
3 (i = 3) 27.5 49.2 7.7 69.0

Fourth targe π∗
4 (i = 4) 24.6 45.7 6.2 64.1
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Fig. 3. Optimal interception plan of 15 targets by TS according to the criterion JDT [π] : π
∗ =

(2, 4, 10, 5, 13, 8, 7, 9, 6, 3, 14, 1, 15, 12, 11), Tsum[π
∗] = 1471.049, Dmin[π

∗] = 159.168.
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Fig. 4. Optimal interception plan of 15 targets by TS according to the criterion JT [π] : π
∗ =

(2, 4, 10, 6, 1, 3, 9, 5, 13, 8, 7, 14, 15, 12, 11), Tsum[π
∗] = 1448.051, Dmin[π

∗] = 74.183.

The graph shows that the execution times of all acceptable plans are linearly dependent on Ĉ[π],
which makes it possible to create an optimal polynomial algorithm for constructing an intercept
plan in the considered problem. The green circles on all the graphs indicate the optimal JT plan,
the execution time of which is less than Tsum[π

∗] by 2%, and this plan is worse than π∗ by 54%
according to the minimum distance of approaching the targets to the origin.

The four acceptable plans π∗, π1, π2, π3 with the same value Dmin = 113.8, are analyzed in Fig. 2
on the left, are labeled with a single dot, and on the right they are separated by mean complexity
values. Table 4 shows the considered target traverse plans in clear form, where their common part
is highlighted.
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Table 4. Acceptable plans with Dmin[π] = 113.8

i πi Tsum[π] Dmin[π] C[π] Ĉ[π]

π∗

{10, 1, 6, 12, 2, 13, 3, 5, 15,
8, 11, 9, 4, 14, 7} 1472 113.8 518.8 70.1

1 8, 11, 4, 9, 14, 7} 1496 113.8 518.8 71.9

2 11, 8, 4, 9, 14, 7} 1504 113.8 518.8 72.4

3 11, 8, 9, 4, 14, 7} 1475 113.8 518.8 70.4

Table 4 shows that the maximum time between intercepts C and Dmin in these plans were
achieved in the general plan section. The differing sequences of targets finalizing the plans, however,
resulted in a change in the average complexity of each plan.

The modeling section is completed with an example of constructing two optimal intercept plans
according to the criteria JDT [π] and JT [π] in Figs. 3 and 4 for the same initial state, where the
trajectory of TS is highlighted by the blue dashed line.

Optimization according to the criterion JT [π] leads to a slight improvement in the execution
time of the plan compared to the optimal JDT [π] plan, but at the same time the value of Dmin[π]
is more than halved.

6. CONCLUSION

In this paper the problem of intercepting of a set of rectilinearly moving targets by a single
interceptor was considered. New macro characteristics of the problem were proposed and their
influence on the construction of the optimal intercept plan for different initial states was statistically
investigated. An optimal plan finding algorithm based on intelligent brute-force search and dynamic
programming concepts was proposed to collect statistics in adequate time. The impact of the new
quantities on mission success is shown on the collected statistics and conclusions are made about
its applicability to the creation of fast greedy intercept algorithms.

There are plans to investigate various local rules that take into account the state information and
geometric characteristics of the target distribution, build suboptimal intercept algorithms based on
them, and compare them with the brute-force optimal algorithms.
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Abstract—We dedicate this work to the memory of academician B.N. Petrov. It develops
the principles of terminal control of rocket carriers formulated by him. Next-generation rocket
carriers implement the principle of interconnected, coordinated terminal control of the center of
mass motion and propellant consumption. In this article we consider the problem of synthesizing
such control and the main principles of its implementation.
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1. INTRODUCTION

The beginning of B.N. Petrov’s creative activity coincided with the time when our war-exhausted
country made a gigantic breakthrough, opening the way to space for humanity. Soviet science
played an important role in this breakthrough. Many of the problems related to the creation of
rocket carriers belong to automatic control of mobile objects. B.N. Petrov’s profound knowledge
in this field and his erudition allowed him to actively participate in the development of new unique
automatic control problems and in the development and discussion of our country’s space programs
alongside leading figures in rocket and space science and technology.

He rightfully became one of the founders of domestic cosmonautics, working for many years
in close contact with S.P. Korolev, V.P. Glushko, M.K. Yangel, V.N. Chelomey, V.F. Utkin, and
N.A. Pilyugin.

The results of B.N. Petrov and Institute of Dynamics Research, which he headed in the develop-
ment of methods of modeling and regulating liquid rocket engine thrust and propellant component
ratio, are used in many onboard terminal systems. These systems significantly increase the en-
ergy of rockets by dramatically reducing the guaranteed propellant reserves. The book by Chertok
“Rockets and People” [1] notes the significance of this work.

Understanding the specifics of onboard terminal systems and the peculiarities of organizing
control processes allowed B.N. Petrov and his students to classify these systems as a separate class
among other automatic control systems. The monograph “Onboard Terminal Control Systems” [2]
develops the principles and elements of the theory of this class of systems.

The ideas of B.N. Petrov have further evolved and been applied in modern developments of
the Institute in the field of rocket and space technology, resulting in the creation of terminal
control systems for new-generation rocket carriers and booster blocks for space and defense purposes
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(upgraded carrier rockets “Soyuz-2”, “Angara” rocket family, “Sarmat” rocket, rocket boosters
under development “Soyuz-5”, “Amur”, and the KVTK booster block).

Next-generation rocket carriers implement the principle of interconnected, coordinated terminal
control of the center of mass motion and propellant consumption. In this article we consider the
problem of synthesizing such control and the main principles of its implementation.

2. PROBLEM STATEMENT

Consider the control of the center of mass motion of the rocket carrier in the exoatmospheric
flight phase.

To simplify, we assume the following:

—Aerodynamic forces are absent,

—The Earth’s gravitational field is parallel to the surface and the acceleration of the gravitational
force is constant at all altitudes �g = const.

—Rotation of Earth is neglected.

The motion of the center of mass of the rocket stage in the longitudinal plane (the plane of the
trajectory) in the exoatmospheric flight phase is described by the following equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V̇x =
P

mκ +m
cos(ϑ), V̇y =

P

mκ +m
sin(ϑ)− g, P = wr,

ẋ = Vx, ẏ = Vy, ṁ = −r,
ϑ̇ = ω,

ω̇ = ϕ(ϑ, ω, ϑdes),

(1)

where x, y are horizontal and vertical coordinates, m is propellant mass, mκ is dry mass of the
stage, r is propellant consumption rate, w is specific exhaust velocity, P is engine thrust, g is
acceleration of gravity, ϑ is pitch angle, ϑdes is control input (desired value of ϑ) for changing the
pitch angle, Vx, Vy are horizontal and vertical velocity components.

The equation for the pitch angle ϑ and the angular velocity ω in (1) simplistically describes the
operation of the stabilization system.

Coordinates x, y, m, ϑ, and their derivatives are functions of time t, t ∈ [t0, tk], tk is the terminal
time.

Note that the pitch angle ϑ converges to the value ϑdes(t) in a significantly shorter time than tk.

For the final stage, reaching the specified altitude with zero vertical velocity is required:{
y(tk) = yk,

Vy(tk) = 0.
(2)

No conditions are set for the horizontal velocity component. Solving the problem assumes maxi-
mizing the horizontal component.

For the lower stages of the rocket, we state the problem of hitting the designated burned-out
stage impact areas. In this case, we can determine boundary conditions for deviation of the flight
range L of the burned-out stage due to deviations of the motion coordinates at the end of the flight
from the target values:

δL = ζx(x(tk)− xk) + ζy(y(tk)− yk) + ζV x(Vx(tk)− Vxk) + ζV y(Vy(tk)− Vyk) = 0, (3)

where ζx, ζy, ζV x, ζV y are partial derivatives of δL with respect to the motion coordinates, δ is
deviation of the flight range from the target value.
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We can write the equations determining the apparent velocity change and the engine propellant
consumption processes in the following form:

Ẇ =
rg

mκ +m
Psp, Psp =

w

g
, m = mo +mf, r = ro + rf,

ṁo = −ro, ṁf = −rf, Km =
ṁo

ṁf
, Psp = ϕ(Km),

ṙo = fo(ro, αKm , αR), ṙf = ff (rf, αKm , αR),

(4)

with initial conditions accounting for fueling errors and pre-launch propellant component consump-
tion scatter at the moment of the fuel consumption control system activation mo(t0), mf (t0).

Here, mo, mf are the oxidizer and fuel masses, Psp is the specific thrust of the propulsion sys-
tem, ro, rf are the propellant consumption rates determined by the engine equations, αKm, αR are
the positions of the engine control devices determined by the specified values of the propellant
component consumption ratio coefficient Km and thrust engine condition R.

All coordinates W , mo, mf, ro, rf and their derivatives are functions of time. We consider them
on a bounded time interval t, t ∈ [t0, tk], tk is terminal time.

The positions of the engine control devices that result in the desired values of the fuel component
consumption ratio coefficient Km(t) and the thrust mode R(t) for engine operation are determined
by static nonlinear engine equations:

αKm(t) = fKm(Km(t), R(t)), αR(t) = fR(Km(t), R(t)), R(t) =
P (t)

Pnom
(t).

We assume here that Km(t) is calculated in the algorithm of the terminal control system for
object (3), and R(t) is determined by the specified thrust program.

Note that the transients of the propellant consumption rate ro, rf in response to the position
change of the engine control devices αKm(t), αR(t) conclude in a time significantly shorter than tk.

We impose constraints on the value of the fuel component consumption ratio coefficient that can
change during control. We determine the boundary values based on the conditions for stable engine
operation and significantly depend on the thrust mode: Kmmin(R, t) � Km(t) � Kmmax(R, t).

In this case, we impose final terminal conditions on the remaining propellant components at
the moment of engine shutdown and determine them based on the requirements for safe engine
shutdown. We specify the conditions as inequalities meaning the necessity of positive values of
the remaining propellant components at the moment of engine shutdown, generated by the control
system, relative to the propellant level that ensures a safe engine shutdown:

mo(tk)−momin > 0, mf (tk)−mfmin > 0. (5)

Here momin, mfmin are the remaining propellant components that are not spent due to the intake
design features and accounting for the control system errors.

We include the values momin, mfmin in mκ. We understand m(t), mo(t), mf (t) as the values of
the mass of the current propellant component excluding momin, mfmin.

Let’s define the vector of residuals of the specified boundary conditions (2), (3), (5) for the
terminal problem solution, and the vector of control inputs:

z0 = (y(tk)− yk, Vy(tk),mo(tk),mf (tk)) — for the terminal stage,

z0 = (δL,mo(tk),mf (tk)) — for the bottom stages,

u = (ϑdes,Km, tk).

(6)
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Note that the value of R, which determines the engine thrust program, is a specified function of
time and is not included in the vector of control inputs u. The terminal time moment tk can vary
and can be used as a control parameter to solve the terminal problem.

The main objective of terminal control is to minimize the residuals of the boundary conditions.
In addition to satisfying the boundary conditions, terminal systems also have other requirements,
the physical content of which can include energy resource costs, time costs, and control losses. In
this work, we limit the problem of criterion synthesis to boundary conditions, the fulfillment of
which is a priority.

The control object of the considered terminal system, in terms of transition to the specified final
state, is quite inertial (it represents integrating elements).

We achieve control of these processes by influencing other coordinates of the object ϑ, ro, rf with
rapidly decaying dynamics of their transients. The essence of such control lies in setting the desired
steady-state values of these coordinates.

Control of the coordinates ϑ, ro, rf (by changing the positions of actuators, drives, fins, etc.)
consists of stabilizing these coordinates of the object relative to the specified values determined by
the vector u(t). The operation of the closed stabilization loop is simplified by a system of equations
for ϑ, ro, rf .

In this case, we consider the operation of the stabilization loop in terms of transient responses
to changes in the control input. We assume that the transient process is completed in an interval
significantly shorter than the terminal control interval.

3. CONTROL ALGORITHM SYNTHESIS IN THE CLASS
OF PIECEWISE-CONSTANT FUNCTIONS

OF PREDICTED RESIDUALS OF THE TERMINAL CONDITIONS

Let us consider the object terminal control problem (1), (4) within the class of predictive model
systems.

Let us integrate (1) on prediction interval τ ∈ [t, tcommand], where tcommand is the predicted value
of the terminal time moment. We define the current initial rocket center of mass coordinates x, y,
Vx, Vy at time t in the inertial navigation system. We substitute propellant mass m(t) equation
in (1) with mmod(t) formed in the propellant management algorithm:

ṁmod(t) = rmod(t),

rmod(t) = rcycl(t)(1 + λ(t)),
(7)

where rcycl is cumulative propellant consumption corresponding to a given cyclogram of the en-
gine’s thrust operation mode, λ(t) is controlled parameter of the model that corrects rcycl(t) in
the propellant consumption model. The physical analog of λ(t) is the relative deviation of the
cumulative consumption from its nominal value.

Note that the cumulative propellant consumption value corresponding to a given cyclogram of
the engine’s thrust operation mode (rcycl(t)) can be determined based on measurements of apparent
acceleration and equation for Ẇ in (4).

We integrate (1), (7) in the interval τ ∈ [t, tcommand] with the assumption that ϑ(τ) = ϑ(t),
r(τ) = rcycl(τ)(1 + λ(t)), m(t) = mmod(t).

Let us define tcommand from condition mmod(t)−
∫ tcommand
t rmod(τ)dτ = 0.

Let us define the values of the predicted residuals y(tcommand)− yk, Vy(tcommand), δL(tcommand).

When integrating (1) we can use the integral expressions presented in [3].
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We take the time moment t such that mmod(t) = 0 is the value of the terminal time moment tk
(engine shutdown).

Regarding the management of propellant components, the predictive model includes equation (7)
and equations of the processes of change of the mass of propellant components (4). Taking into
account the interdependence of equation (7) with (4), let us define the equations for the deviations
of the current values of oxidizer and fuel masses from the model analogues, formed from the model
value of the total propellant mass according to the nominal value of ratio coefficient Km:

Δmo(t) = mo(t)−mmod(t)
Kmnom

Km nom + 1
,

Δmf(t) = mf(t)−mmod(t)
1

Km nom + 1
,

(8)

where mo(t), mf(t) are determined based on measurements of discrete level sensors in tanks.

For the deviations (8), we can obtain equations of the following form:

Δṁo(t) = ro(t)− rmod(t)
Km nom

Km nom + 1
,

Δṁf(t) = rf(t)− rmod(t)
1

Km nom + 1
.

(9)

Let us integrate equations (9) in interval τ ∈ [t, tcommand] assuming ro(τ) = ro(t), rf(τ) = rf(t),
rmod(τ) = rcycl(τ)(1 + λ(t)), and initial conditions Δmo(t), Δmf(t).

Determine the values of the predicted residuals Δmo(tcommand), Δmf(tcommand).

Due to predictive model of the object (1), (4), the vector of predicted boundary condition
residuals (6) is defined as

z(t)= (ypr(tcommand)− yk, Vypr(tcommand),Δmo(tcommand),Δmf (tcommand))

— for the terminal rocket stage,

z(t)= (δL,Δmo(tcommand),mf (tcommand)) — for the bottom rocket stage,

(10)

and the vector of control inputs in form u = (ϑdes,Km, λ).

If t→ tk, tcommand → tk, z(t) → z0.

We solve the problem of terminal control of object (1), (4) by forming feedback control based
on predicted boundary condition residuals (10).

Let xT (t) = (x(t), y(t), Vx(t), Vy(t),Δmo(t),Δmf (t),mmod(t)) be the vector of coordinates of the
predicted model of the object (1), (7), (9) supplemented with equations for ṁo, ṁf, ṙo, ṙf, which
determine the boundary condition residuals, and let xu(t) = (ϑ(t), ro(t), rf (t), λ(t)) be the vector
of coordinates directly influenced by the control inputs.

As shown in [4, 5], we determine the derivative with respect to time and the differential equation
for the vector of predicted boundary condition residuals z(t) by differentiating z(t) as a composite
function:

dz(t)

dt
=

∂z(t)

∂xT (tcommand)

[
∂xT (tcommand)

∂xu(t)

dxu(t)

d(t)
+
dtcommand

dt

dxT (tcommand)

d(t)

]
.

We choose control inputs ϑdes(t), Km(t), λ(t) from the class of piecewise-constant functions of
time. The control input for the pitch angle ϑdes changes discretely at moments in time when the
information is updated from the inertial navigation system. The control inputs Km(t) and λ(t)
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for the fuel consumption processes change at discrete moments in time when the levels of the
components in the tanks are measured. At these same moments transient processes for ro(t), rf (t)
appear and the quantities rmod(t) and tcommand(t) change abruptly.

For piecewise-constant control, we can obtain the difference equations for z(t) from the differ-
ential equations. We introduce notation for the components of the residuals vector:

zy(t) = ypr(tcommand)− yk, zV (t) = Vypr(tcommand),

zmo(t) = Δmo(tcommand), zmf
(t) = Δmf (tcommand), zδ(t) = δ(tcommand).

We can express the difference equations for the components of the vector z(t) as follows. In
terms of controlling the motion of the center of mass, the difference equations are determined for
discrete moments in time ti when the navigation information is updated i = 0, 1, 2, . . . , I, tI+1 = tk
(when λ(t) = const, tcommand(t) = const):

zy(ti+1) = zy(ti) +
∂zy
∂ϑ

(ti)Δϑi,

zV y(ti+1) = zV y(ti) +
∂zV y

∂ϑ
(ti)Δϑi,

zδ(ti+1) = zδ(ti) +
∂zδ
∂ϑ

(ti)Δϑ.

(11)

Here

Δϑi =

ti+δt∫
ti

ϑ̇(τ)dτ,

where δt is time interval of the transient in object (1) with respect to coordinate ϑ during an abrupt
control input ϑdes change at time momentti.

Furthermore, at time moments tj of discrete measurement of the propellant level in tanks, the
aforementioned residuals change due to changes in λ(t), tcommand(t).

Let us assume that the level sensors conduct discrete measurements at one of the discrete time
moments of navigational information update tj = ti. Let us add terms accounting for abrupt
changes of λ(t) and tcommand(t) to (11):

zy(ti+1)= zy(ti) +
∂zy
∂ϑ

(ti)Δϑi +
∂zy
∂rmod

(ti)rcycl(tj)Δλj +Δtcommandj ẏ(tcommand),

zVy(ti+1)= zVy(ti) +
∂zVy

∂ϑ
(ti)Δϑi +

∂zVy

∂rmod
(ti)rcycl(tj)Δλj +Δtcommandj V̇y(tcommand),

zδ(ti+1)= zδ(ti) +
∂zδ
∂ϑ

(ti)Δϑi +
∂zδ
∂rmod

(ti)rcycl(tj)Δλj

+Δtcommandj(ζxẋ(tcommand)+ ζyẏ(tcommand)+ ζV xV̇x(tcommand)+ ζV yV̇y(tcommand)).

(12)

Here Δtcommandj is difference of tcommandj values determined from equation (7) at tj while λ = λ(tj)
and λ = λ(tj)+Δλj. We can determine the value of this difference with the following approximate
expression: Δtcommandj = ζtk(tj)Δλj .
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In regard to propellant management, we define difference equations for discrete time moments tj
of information update of the level sensors:

zmo(tj+1) = zmo(tj) +
∂zmo

∂ro
(tj)Δroj +

∂zmo

∂rmod
(tj)rcycl(tj)Δλj

+ (ro(tj)− rmod(tj)
Km nom

Kmnom + 1
ζtk(tj)Δλj),

zmf
(tj+1) = zmf

(tj) +
∂zmf

∂rf
(tj)Δrfj +

∂zmf

∂rmod
(tj)rcycl(tj)Δλj

+ (rf (tj)− rmod(tj)
1

Km nom + 1
ζtk(tj)Δλj),

(13)

Here

Δroj =

tj+δt∫
tj

fo(ro, αKm , αR)dτ, Δrfj =

tj+δt∫
tj

ff (rf, αKm, αR)dτ,

where δt is transient time interval in object (4) with respect to coordinates ro, rf during abrupt
change of αKm during implementation of control input Km(t) at time ti.

For linearized engine equations under constant thrust mode, the values of propellant compo-
nent flow increments due to changes in ratio coefficient Km can be determined with the following
expression [5]:

Δroj =
δro(tj)

δKm
ΔKmj , Δrfj =

δrf (tj)

δKm
ΔKmj .

Let us rephrase the original terminal control problem. Instead of finding control u(t) in the
class of piecewise-constant functions, we search for the discrete sequence of coordinate increments
ϑ(t),Km(t), λ(t) at time points ti, tj .

Based on difference equations (11)–(13), we define algorithms for forming control input vector
Δu = (Δϑi,ΔKmj ,Δλj) functions of the predicted boundary condition residuals.

The main disturbance in the terminal problem considered is the unknown initial conditions for
the equations of the coordinates of the object (1), (4). The ability to counteract these disturbances
when controlling the regions of the lower stage drop depends on the fact that the dimensions of
the control vector are equal to the dimensions of the residual vector. When controlling the final
stage, the dimensions of the boundary condition vector increase. In this case, to solve the terminal
problem, it is necessary to choose the values of the control inputs for two discrete time points.
In this case, the number of independent control inputs is larger than the dimensions of the residual
vector. As a result of the analysis of possible options to form control inputs for two discrete time
points, we adopted the following most obvious control algorithm. Consider a discrete time point tj.

From the discrete equations (13) for the boundary condition residuals in terms of propellant con-
sumption management, we determine the values of the control inputs Km(tj), Δλ(tj). The control
algorithm for the pitch angle with feedback based on predicted residual values ypr(tcommand)− yk,
Vypr(tcommand), which ensures the solution of the terminal problem under the given boundary
conditions for the coordinates y(tk), Vy(tk) = 0, is determined from equations (11), (12) for two
discrete time points ti+1, ti−p+1. It should be noted that in the interval [ti, ti−p+1], the residuals
ypr(tcommand)− yk, Vypr(tcommand) maintain their values unchanged.

The algorithm to control the pitch angle with the feedback predicted from discrepancies
ypr(tcommand) − yk, Vypr(tcommand) at discrete time points ti, ti−p is determined based on equa-
tion (12). It takes into account the value Δλ(ti), calculated in the propellant consumption control
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algorithm. The procedure to form this algorithm is described in [4]. In this case, the pitch angle
at time ti−p receives an increment Δϑ1, while at time ti it changes by an amount Δϑ2.

The presence of parametric disturbances determines the errors in terminal control. We counter
these disturbances by applying an iterative procedure to form the control vector Δu =
(Δϑi,ΔKmj ,Δλj) with feedback on the vector of the residuals of the predicted boundary con-
dition z(t).

The main result of solving the problem considered of coordinated control of the center of mass
motion and propellant consumption is the most complete utilization of available propellant re-
serves [6]. The essence of such coordinated control is as follows. Information about the current
propellant mass is generated in accordance with (7), where λ(t) is determined taking into account
the measurements of the level sensors. We take this into account when predicting the discrepan-
cies in the center of mass trajectory coordinates corresponding to the target of escape. In this
case, equations (12) for zy(tj+1), zV (tj+1), zδ(tj+1) include disturbance Δλj. By burning addi-
tional propellant, the final value of apparent velocity W (tcommand) increases. The resulting error
in the impact area is eliminated by varying the velocity in the neutral direction through additional
pitch angle control. Note that the effectiveness of such control is maintained until the pitch angle
approaches the value at which the maximum range of the spent stage is ensured.

Without taking into account the actual current value of the fuel mass in controlling the motion
of the center of mass, the terminal time tcommand is determined by the zero discrepancy in the
coordinates of the trajectory. In this case, the effects of disturbing factors such as deviations
in initial mass, propellant consumption, etc., on the trajectory that are countered by controlling
the thrust vector up to the moment tcommand, lead to significant unused propellant residues. The
magnitude of these residues can reach 1% of the initial propellant mass.

In the propellant consumption control loop, significant random measurement errors occur when
measuring the levels of propellant components in the tanks. As a result, even with error filtering,
random control errors occur in the form of component residues at the moment tk. To counteract
these errors, we introduce safety reserve propellant components, which reduces the effectiveness of
control. However, the implementation of coordinated terminal control for modern rocket boosters
such as Angara and Soyuz-5 reduces unused propellant reserves by a factor of 3.

The principle of coordinated control of the center of mass movement and fuel consumption is
implemented in the control algorithms of the Proton-M and Angara rocket boosters.

In foreign counterparts, terminal control of the center of mass movement by influencing the
thrust vector and iterative procedures for feedback control based on predicted residuals was de-
veloped almost at the same time (at the end of the last century) as in the USSR and later in the
Russian Federation. However, coordinated control of the center of mass movement and propellant
consumption was not required. Presumably, because there were no strict constraints on the spent
stages impact areas.

4. CONCLUSION

1. We consider the problem of synthesizing terminal control of the center of mass movement
and propellant consumption for liquid rocket boosters. The control synthesis problem is limited by
given boundary conditions, the fulfillment of which is a priority task.

When solving the problem, we assume that the system can be decomposed into interrelated
processes of final-state control and object stabilization. Decomposition allows us to reveal the
content of control processes in the terminal system. Terminal control is performed by specifying
the object coordinate values maintained by the stabilization loop. Stabilization of the object relative
to the given values is characterized by fast damping of the dynamics of transient processes. The
derivative of the residuals in the decomposed system explicitly depends on the terminal control.
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2. We solve the synthesis problem in the class of systems with the prediction of boundary
condition residuals, which are vector functions of the current values of the object coordinates and
time. We discretized the synthesis problem for control variations in the class of piecewise-constant
functions. We obtain difference equations for the vector of predicted residuals. We determined
algorithms to form the vector of control actions to change the pitch angle, the proportion of
component consumption rates, and the controlled parameter of the object model as functions of
the predicted residuals of the boundary condition based on the difference equations obtained.

3. The solution to the considered terminal problem is a jointly coordinated control of the
center of mass movement and propellant consumption, ensuring the most complete use of available
propellant reserves. The principle of coordinated control of the center of mass movement and fuel
component consumption is implemented in the control algorithms of the Proton-M rocket booster
and the Angara rocket booster family.
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1. INTRODUCTION

A wide variety of tasks performed by spacecraft, extreme conditions of spacecraft operation,
and different technologies and protocols of information interaction between onboard hardware el-
ements and software, including various sensors and indicators, determine the need to create new
approaches, methods, and technologies to support R&D works in the field of advanced space tech-
nology. The papers [1, 5], the preprint [2], and the books [3, 4] were devoted to the development
and implementation of modeling methods in the aerospace industry. An important place therein
was occupied by the issues of digital modeling, a relevant method for studying different aspects in
the operation of onboard spacecraft control systems (OSCSs), including the design, development,
and verification of their software [6, 7]. According to the experience of application of modern orga-
nizational, methodological, and technical solutions used to verify OSCS software, it is necessary to
develop basic principles of a comprehensive verification methodology for OSCS software [6]. The
solution of this problem is urgent for the effective development and verification of OSCS software
using software prototypes, early functional integration, and the iterative checking of software re-
quirements. This methodology is used to optimize the comprehensive software verification process
in terms of time and cost criteria considering various technological constraints.

2. SELECTING AN OPTIMAL COMPREHENSIVE VERIFICATION STRATEGY

Formal problem statements on selecting an optimal comprehensive verification strategy for OSCS
software often involve two optimality criteria: the minimum time of verification and the minimum
cost of verification. The general problem of selecting an optimal comprehensive verification strat-
egy is to determine the following elements: 1) an optimal partition of the software complex into
separate parts, 2) the set of necessary subprograms (mocks and drivers), and 3) a scenario to verify
the separate parts of the software complex. When stating the problem, constraints are used to
determine the admissible partitions and unions of a special graph Γ , whose vertices correspond to
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the program modules and whose arcs are control links between them. When developing tests and
localizing errors, graph models are used to detail the graph Γ . These models formalize the detailed
flowcharts of the software complex and, in addition, the detailed flowcharts of separate program
modules (PMs).

The set of different comprehensive verification strategies for OSCS software is defined as follows.
At the initial stage, it is necessary to determine the set of all admissible partitions of the graph Γ
into subgraphs. Autonomous testing is conducted for each resulting subgraph. Next, the set of
all admissible unions of the resulting subgraphs is determined. These unions are used for joint
software testing. Each comprehensive verification strategy is defined as follows. First, it is the set
of subgraphs pm = {p1, . . . , pl, . . . , pM} obtained by partitioning the graph Γ . Second, it depends
on the order in which these subgraphs are united. Uniting the subgraphs in a given order yields the
original graph structure p̃mn = {p̃mn

1 , . . . , p̃mn
k , . . . , p̃mn

N }, where p̃mn
N coincides with the graph Γ .

The objective of selecting an optimal comprehensive verification strategy is to find a parti-
tion pm

∗
of the graph Γ and a sequence of uniting the subgraphs p̃mn∗

that, when used together,
yield a comprehensive verification scenario with the optimal values of time and cost characteristics
of the verification process.

If the verification process involves the mn-strategy, the time and cost of comprehensive verifi-

cation consist of two components, T
p
mn

(
C

p
mn

)
and T

o
mn

(
C

o
mn

)
. The first component is the time

T
p
mn (and cost C

p
mn) of the autonomous verification of the subgraphs obtained by partitioning the

graph Γ for the mn-strategy. The second component is the time T
o
mn (and cost C

o
mn) of imple-

menting the uniting stages for these subgraphs and performing the subsequent joint verification of
the subgraphs for the mn-strategy. The time and cost of verifying autonomously the subgraphs
obtained by partitioning the graph Γ are given by

T̄ p
mn =

∑
ν

tνmn, C̄p
mn =

∑
ν

Cνmn,

where tvmn and Cvmn denote the time and cost of the autonomous verification of the νth subgraph
of the graph Γ .

When uniting the subgraphs, the time and cost characteristics of joint verification are given by

T
o
mn =

∑
k

bkmn, C
o
mn =

∑
k

Skmn,

where bkmn and Skmn denote the time and cost of joint verification at the kth subgraph uniting
stage.

The problem of determining an optimal verification strategy with the time criterion has the
following general statement: it is required to minimize the expression∑

mn

(
T

p
mn + T

o
mn

)
xmn

subject to the verification cost constraint∑
mn

(
C

p
mn + C

o
mn

)
xmn � C.

In this constraint,

xmn =

{
1 if the mn-strategy is chosen for comprehensive verification

0 otherwise.
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The constraint also includes a constant C, which specifies the maximum allowable cost of com-
prehensive verification.

In the process of solving this problem, possible partitions of the graph Γ into subgraphs are
found by selecting the composition of V groups of the program modules of the software complex,
where V is the number of program modules in the software complex of the onboard control system.
When solving the problem, it is required to observe the constraints on the admissible combinations
of program modules for each of V groups.

In the course of selecting a union of subgraphs from the subgraph set pm = {p1, . . . , pm, . . . , pM}
into the original graph Γ , it is required to determine the list of stages to unite V* non-empty
subgraphs into Γ . The maximum number of such stages must be equal to the number of non-
empty subgraphs V*.

However, if the number of program modules in the software complex (the number of software
components) is high, then the set of possible system verification strategies becomes very large as
well. Due to this fact, estimating the time and cost characteristics of system verification strategies
becomes an extremely resource-intensive and time-consuming task. To eliminate this difficulty,
we propose to find particular optimal software verification strategies: such problems are most
commonly encountered in practice.

We define the set P
p
of admissible partitions of the graph Γ into subgraphs as follows:

P
p
= {Pm} , m = 1,M.

Here, Pm = {pm1 , . . . , pmν , . . . , pmDm
} and pmν denote the mth partition and the νth subgraph, respec-

tively, and Dm is the number of subgraphs in the mth partition.

The set P
o
= {P̃mn}, (n = 1, Nm, m = 1,M ) defines the admissible unions of the graph Γ . The

element P̃mn =
{
p̃mn
1 , . . . , p̃mn

k , . . . , p̃mn
Fmn

}
of the set P

o
is the nth union under the mth partition

of the graph Γ . The values Nm and Fmn are the number of the resulting unions of subgraphs and
the number of uniting stages under the mth partition of the graph Γ .

For the nth union, the element p̃mn
k is defined as follows:

p̃mn
k =

⋃
v∈R1mn

k

pmv
⋃

i∈R2mn
k

pmi .

Here, R1mn
k is the index set of the subgraphs from Pm and R2mn

k is the index set of the
subgraphs from P̃mn included in the kth joint verification stage under the mth partition and the
nth union of the graph Γ .

On the one hand, the comprehensive verification strategy is determined by the partition of the
graph Γ into subgraphs Pm ∈ P

p
; on the other, by the union of the resulting subgraphs P̃mn ∈ P p

into the original graph.

The time tν and cost Cν of the autonomous verification of each vth subgraph in a partition
consist of three components as follows: the time and cost (tnν , C

n
ν ) of preparing test data, the time

and cost (tpν , C
p
ν ) of executing the testing process, and the time and cost

(
tlocν , C loc

ν

)
of localizing

the errors detected during subgraph testing, i.e.,

tν = tnν + tpν + tlocν , Cν = Cn
ν + Cp

ν + C loc
ν ,

where

tnν = tgenν + tmock
ν + tdriν , Cn

ν = Cgen
ν + Cmock

ν + Cdri
ν .

These formulas have the following notations: tgenν and Cgen
ν are the time and cost of generating

test data for the vth subgraph, respectively; tmock
ν and Cmock

ν are the time and cost of developing
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mock subprograms to verify the vth subgraph, respectively; tdriν and Cdri
ν are the time and cost of

developing driver subprograms to verify the vth subgraph, respectively; tpν and Cp
ν is the time and

cost of carrying out tests for the vth subgraph, respectively; finally, tlocν and C loc
ν are the time and

cost of localizing errors detected when testing the vth subgraph, respectively.

An optimal system verification strategy can be found in two steps as follows. The first step
is to select an admissible partition of the graph Γ into subgraphs Pm ∈ P

p
for their autonomous

verification. The second step is to select an admissible union of these subgraphs from the set P
o

for joint verification. The two steps ensure the comprehensive verification process with minimum
time and cost under the existing time and cost constraints.

For the problem statement under consideration, we define the variable

ymn =

⎧⎨⎩1 if for the mth partition of the graph Γ the nth union is selected

0 otherwise.

This problem is solved using the following initial data:

1) the sets P
p
= {Pm} , m = 1,M and P

o
= {P̃mn}, n = 1, Nm, m = 1,M,

2) the time and cost characteristics of the autonomous and joint verification processes.

The time and cost of comprehensive verification are given by

T
k
= T

p
m + T

o
mn, C

k
= C

p
m + C

o
mn,

where T
p
m and C

p
m denote the time and cost of autonomous verification under the mth partition of

the graph Γ , respectively; T
o
mn and C

o
mn denote the time and cost of joint verification under the

mth partition of the graph Γ and the nth union of the graph Γ.

The time T
p
m and cost C

p
m of autonomous verification are given by

T̄ p
m =

∑
ν

(
tgenνm + tmock

νm + tdriνm + tlocνm

)
,

C̄p
m =

∑
ν

(
cgenνm + cmock

νm + cdriνm + clocνm

)
.

Let the test sets to debug the subgraphs pmν ∈ Pm be determined, and let the corresponding time
and cost characteristics be known for them. Then the time and cost characteristics of autonomous
debugging are calculated as

tgenνm =
Jνm∑
j=1

tjνm
gen, cgenνm =

Jνm∑
j=1

ĉjνm
gen,

tprogrm =
Jνm∑
j=1

tjνm
progr, cprogrνm =

Jνm∑
j=1

ĉjνm
progr,

tlocm =
Jνm∑
j=1

tjνm
locρ, clocνm =

Jνm∑
j=1

ĉjνm
locρ.

In these formulas, Jνm is the set of tests to verify the subgraph pmν .

The variables tmock
νm and cmock

νm specify the time and cost of developing all mock subprograms to
verify the subgraph pmν , i.e.,

tmock
νm =

Iνm∑
i=1

t̂mock
iν , cmock

νm =
Iνm∑
i=1

ĉmock
iν .
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Here, Ivm is the number of mock subprograms to verify the subgraph pmv .

The time T
o
and cost C

o
of executing joint verification stages under the mth partition and the

nth union of the graph Γ are given by

T
o
=

Fmn∑
k=1

(
bnkmn + bprogrkmn + blockmn

)
,

C
o
=

Fmn∑
k=1

(
Sn
kmn + Sprogr

kmn + Sloc
kmn

)
.

Suppose that the subgraphs p̃mn
k ∈ P̃mn are verified using test sets with known time and cost

characteristics. Then the time and cost of executing the kth joint verification stage under the mth
partition and the nth union of the graph Γ are given by

bnkmn =
Jkmn∑
j=1

b̂genjkmn; bprogrkmn =
Jkmn∑
j=1

b̂progrjkmn; blockmn =
Jkmn∑
j=1

blocjkmnρ,

Sn
kmn =

Jkmn∑
j=1

Ŝgen
jkmn; Sprogr

kmn =
Jkmn∑
j=1

Ŝprogr
jkmn; Sloc

kmn =
Jkmn∑
j=1

Sloc
jkmnρ.

With all these expressions for the time and cost characteristics of the software verification
process, we formally state an optimization problem to find an optimal strategy for implementing a
comprehensive verification scenario in terms of the minimum total time:

∑
m

(∑
m

T
p
m

Nm∑
n=1

ymn +
Nm∑
n=1

T
o
mymn

)
→ min.

This problem is solved subject to the following constraints:

—the maximum allowable cost of implementing the verification process,

∑
m

(
C

p
m

∑
m

ymn +
Nm∑
n=1

C
o
mymn

)
� C;

—the set of M constraints on the variables ymn,

Nm∑
n=1

ymn = 1, m = 1,M.

The problem of finding an optimal comprehensive verification strategy with the minimum cost
criterion is formulated by analogy:

∑
m

(
C

p
m

∑
m

ymn +
Nm∑
n=1

C
o
mymn

)
→ min

subject to the time constraint imposed on the verification process,

∑
m

(∑
m

T
p
m

Nm∑
n=1

ymn +
Nm∑
n=1

T
o
mymn

)
� T ,

and the set of M constraints imposed on the variables ymn.

These problems belong to the class of linear mathematical programming problems widely used
in practice.
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3. VERIFICATION METHODS FOR OSCS SOFTWARE
WITH FUNCTIONAL CORRECTNESS INDICATORS

At the early functional integration stage of OSCS components, functional correctness indicators
are used to assess the proper implementation of the functions of OSCS software. Each functionality
of the software complex is implemented on some set of data processing routes. Along these routes,
the input parameters of a function are transformed into one output result of this function or into a
set of its output results. In order to check the correct operation of a function fully, it is necessary
to check the entire set of data processing routes used by this function for a given set of its input
parameters. Correct operation is validated if the output results of functions completely coincide
with the reference results provided in the specifications of the program complex. Checking correct
operation on the entire set of input data and on all data processing routes is a task of very high
complexity. Therefore, one should select a bounded subset of data processing routes for their
checking. This subset must be sufficient to check the implementation of the main functions of the
software complex.

Nowadays, there are two approaches to check the correct operation of software: functional and
structural. The functional approach involves the “black box” representation of software. The
structural approach is based on checking the correct implementation of data processing routes;
when preparing tests, it considers the structural peculiarities of separate modules of the software
complex as well as the peculiarities of inter-module interaction within the complex. Both functional
and structural approaches have significant disadvantages from the standpoint of efficient software
verification implementation [2].

Due to this fact, we propose a method with the positive properties of both approaches. The
method implies selecting a set of tests with the functional correctness indicators of the program
complex that are necessary to check its correct operation. The quality of software operation is
assessed based on the results of carrying out a set of selected tests. Consider this method in detail.

Let F be the set of all functions of the software complex implementing all primary and auxiliary
functions. It is required to select a subset F < F of functions to be checked so that their cor-
rect operation will yield the desired values of the functional correctness indicators of the software
complex.

For the software complex, an input data domain E is defined. For each function Fj ∈ F , the
corresponding subset Ej ∈ E of this domain is defined as well. Each such function transforms data
of the input domain Ej ∈ E into the corresponding data of the output domain yj ∈ Y . Here, the

set yj contains all possible values of the output data for the function Fj

(
j = 1, J

)
.

The output results ykj ∈ Y of the software complex are obtained when implementing the sets

of routes Mjk

(
j = 1, J , k = 1,K

)
to process the data. Hence, to check the set of functions F of

the software complex, it is necessary to check the correct operation of the set of data processing
routes. Implementing these routes gives the necessary output results ykj for each function Fj from
the set F using the input data subsets Ej ∈ E.

A function Fj of the software complex will be considered checked if, for all output results

ykj ∈ Yj of this function, the correctness of passing the set Mjk

(
j = 1, J , k = 1,K

)
is successfully

checked for all data processing routes yielding the output results for the function Fj . The sets
Mjk ∈ Mj , k = 1,K, of such routes will be considered the sets Mj of backbone routes for the
function Fj . The correctness of obtaining the result of the j th function will be assessed using the
indicator

Nkj =
ncheckj

ntotkj

.
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In this formula, ncheckj is the number of checked backbone routes and ngenkj is the total number
of backbone routes forming the results ykj ∈ Yj. The total number of backbone routes equals the
cardinality of the set Mkj .

We will use the backbone route as the main element to be checked when assessing the functional
correctness indicator of software and the graph model Γ (V,C) of the enlarged flowchart of the
software complex when executing the verification scenario and determining the backbone paths for
the functions of the set F .

In the graph model, V is the vertex set of the graph Γ , which corresponds to the set of blocks
in the enlarged flowchart of the software complex, and C is the arc set of the graph. The arcs C
represent the transfer of control between the flowchart blocks. These blocks are separate procedures
and their aggregates or the program modules of the software complex. An arc between blocks i
and j means the transfer of control from the former to the latter. In the model under consideration,
vertex νi ∈ V of the graph Γ (V,C) is associated with the sets of its arguments Ai = {ain} and the
sets of its results Ri = {rij}.

An information processing route m in the graph Γ (V,C) is a sequence (v0, c0, v1, c1, . . . , cI−1, vI)
containing vertices and arcs. In this sequence, vi (0 � i � I) is a vertex of the graph Γ (V,C) and ci
(1 � i � I− 1) is an arc connecting vertices vi and vi+1. In turn, a sequence (v0, . . . , vI) of vertices
corresponds to the transformations implemented on a data processing route m. Such a sequence is
called a transformer of route m, and a sequence (c0, . . . , cI−1) of arcs corresponds to the conditions
to be satisfied on route m and is called the condition of route m.

For the result yjk ∈ Yj of a function Fj ∈ F, the backbone route mjk is a route whose transformer
(v0, . . . , vi) includes at least one of the possible sequences of external and internal information links.
These external and internal links must start at vertex v0 and end at vertex vi to obtain the result yjk.

4. SOFTWARE VERIFICATION FOR THE ONBOARD CONTROL SYSTEM
OF THE RUSSIAN SEGMENT OF THE ISS

In this section, as one example, the concept described above is used to verify software configu-
ration elements (SCEs) of the Russian Segment of the International Space Station (ISS) [3].

The following operations are carried out stage-by-stage to verify the SCEs:

(1) the autonomous testing of the software complex;

(2) the comprehensive verification of the SCEs on a ground verification bench;

(3) software verification jointly with C&C MDM (Command and Control Multiplexor DeMulti-
plexor, the onboard central computer of the US Segment and the entire ISS);

(4) the formal qualification tests of the SCEs.

The listed verification stages of the SCEs allow detecting, localizing, and eliminating the errors
arising in the software verification process as well as confirming software operability and assessing
software compliance with the technical specifications.

The autonomous testing of software is conducted based on an autonomous PC workstation
and on the SDDF complex (software project development tools). Testing is conducted using a
methodology that includes the following elements: the description of the testing procedure, initial
testing conditions, and test cases. After the software testing process is finished, it is handed over to
the configuration control group, which integrates the tested software into the SCEs of the onboard
central computer.

The comprehensive verification of the SCEs is performed according to a special scenario to solve
the following tasks:

(1) quality checking for the operating system;
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(2) onboard control system software assembly and comprehensive verification in accordance with
the flight plan and the operating modes of the Russian Segment and the service module simul-
taneously with flight safety control (i.e., checking the correct implementation of all subgraphs
and the entire graph Γ );

(3) spot checks of the backbone routes corresponding to the most probable abnormal situations,
the localization of abnormal situations, and their elimination;

(4) checking the compliance of onboard control system software with the documents (ICD SSP
50 097);

(5) resource allocation control (memory, CPU time, and I/O channels).

Joint tests with C&C MDM were conducted on SITE-C, EGSE, and SVF, dedicated benches
with special test implementation scenarios. During the tests, the onboard software of both onboard
control systems (the US Segment and the Russian Segment) as well as the model software of both
onboard systems (the US Segment and the Russian Segment) were used.

Formal qualification tests or acceptance tests and docking tests is a process that verifies the
compliance of the SCEs of the onboard central computer with the requirement specification and
ICD.

A certain subset is selected from the set of tests conducted using the NKO ground verification
complex. This subset serves to verify the correctness of implementing a given set of backbone
routes. Upon completion of the formal qualification testing, the Customer signs the report that
the SCEs of the onboard central computer are ready for docking tests.

Docking tests were conducted in accordance with a dedicated methodology. The hardware
and software means of the onboard central computer undergo docking tests with real hardware
or its analogs using the NKO-2 ground verification complex. Docking tests of the hardware and
software means of the onboard central computers (the Russian Segment with the US Segment) were
conducted using the NKO-1 ground verification complex. They were carried out in accordance with
the NASA–RSA Phase 2-3 Bilateral Integration and Verification Plan (SSP50101). The hardware
and software means of the onboard central computer as part of the Zvezda service module (product
index 17KSM) were tested on complex bench No. 24008 and on the control and test station in a
required volume.

5. CONCLUSIONS

This paper has presented the existing experience as well as organizational, methodological, and
technical solutions concerning software verification for onboard spacecraft control systems. The
main features of a comprehensive software verification technology for onboard spacecraft control
systems have been described. This technology ensures effective software development and debug-
ging based on software prototypes, the iterative refinement of requirements, and early functional
integration. The proposed technology has been implemented within the computer-aided software
development and verification system for onboard spacecraft control systems. As a result, the total
number of errors in the process of software development and verification has been significantly
reduced for the Russian Segment of the ISS.
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Abstract—This paper provides a parametrization of optimal anisotropic controllers for linear
discrete time invariant systems. The controllers to be designed are limited by causal dynamic
output-feedback control laws. The obtained solution depends on several adjustable parameters
that determine the specific type of controller, and is of the form of a system of the Riccati
equations relating to a H2-optimal controller for a system formed by a series connection of the
original system and the worst-case generating filter corresponding to the maximum value of the
mean anisotropy of the external disturbance.
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1. INTRODUCTION

The anisotropy-based control and estimation theory has been developed in the mid-90s as a
response to attempts to provide the generalization of the results of the well-known H2- and H∞-
controller design theories [4, 12, 13].

It clearly shows the features of the control problems, the information theory, and various classical
methods for suppressing (or mitigating) the impact of external disturbances [5]. However, unlike
some approaches where it was proposed to use artificially defined in a certain sense mixed-type
functionals, the anisotropy-based theory was focused on the method of describing the external
disturbance driven the system. It was shown that the use of theoretical functionals makes it possible
not only to describe a wide class of statistically uncertain random noises, but also generalize in a
natural way the concepts of H2- and H∞-norms making them the limiting cases of the anisotropic
norm.

In this paper, the problem of parametrization of optimal anisotropic controllers for linear discrete
time invariant systems is solved. The solution to the problem is based on the result associated with
the parametrization of H2-optimal controllers as well as with the equations for the worst-case
generating filter used in the anisotropy-based theory to form a signal with a given threshold level
of mean anisotropy.

The paper is organized as follows. In Section 2, some preliminary mathematics from anisotropy-
based theory are given. It also contains a parametrization of the H2-optimal controllers. In
Section 3, the problem of parametrization of optimal anisotropic controllers is solved. The results
are demonstrated with a numerical example. The last section contains the conclusions.
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2. PRELIMINARIES

2.1. Notations

Hm×n
2 is the Hardy space of analytic rational transfer functions P (z) =

+∞∑
k=0

Pkz
k ∈ C

m×n in the

open unit disk {z ∈ C : |z| < 1} having the finite H2-norm

‖P‖2 =
⎛⎝ 1

2π

π∫
−π

tr
(
P̂ (ω)P̂T(−ω))dω

⎞⎠1/2

,

where P̂ (ω) = lim
r→1−0

P (reiω); RHm×n
2 is set of strictly proper stable rational m × n transfer

functions; ‖P‖∞ = supω∈[−2π;π) σmax(P̂ (ω)) is H∞-norm of transfer matrix function P (z) where

σmax(X) = maxk σk(X) denotes maximum singular value of a matrix X, and σk(X) = λk(X
TX).

2.2. Basic Concepts of Anisotropy-Based Theory

Usually, the object of study in anisotropy-based theory is a stable linear discrete time invariant
system

Pzw ∼
{
xk+1 =Axk +Bwk,

zk =Cxk +Dwk,
(1)

with known matrices A ∈ R
nx×nx , B ∈ R

nx×nw , C ∈ R
nz×nx , D ∈ R

nz×nw , and, in general, zero
initial conditions (x0 = 0). This system describes the relation between the dynamical processes
{xk}k�0 and {zk}k�0 driven by random input disturbance {wk}k�0. The system (1) corresponds to
its transfer function Pzw(z) = D + C(zInx −A)−1B given by the quadruple

Pzw ∼
[
A B

C D

]
: w

x→ z. (2)

If necessary, we will specify the spaces of the states, the inputs, and the outputs. Within the
discussion of the controller design problem, the plant (1) should be considered as the closed-loop
system.

The following definitions give a basic idea of the concepts of the anisotropy-based theory.
See [4, 12, 13] for more details.

Definition 1. The anisotropy of the square-integrable random vector w∈L
nw
2 is a nonzero num-

ber defined by
A(w) = min

λ>0
D(f ||pnw,λ), (3)

where D(f ||g) is the Kullback–Leibler information divergence of f with respect to g; f(x) is the

probability density function (p.d.f.) of vector w; pnw,λ(x) = (2πλ)−nw/2 exp
(− |x|2

2λ

)
is the p.d.f. of

zero-mean Gaussian vector having scalar covariance matrix λInw .

Definition 2. The mean anisotropy of stationary ergodic random sequence W = {wk}k�0 is de-
fined by the following formula:

A(W ) = lim
N→+∞

A(W0:N−1)

N
. (4)

Here, Ws:t = (wT
s , . . . , w

T
t )

T denotes the fragment of the sequence W = {wk}k�0 for k = s, s + 1,
. . . , t− 1, t.
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It is assumed that the system (1) is driven by a disturbance with mean anisotropy constrained
by nonnegative number a � 0, i.e. A(W ) � a. This limitation determines the ability of the nature
to generate the worst-case (in the sense of the value of the root-mean-square (RMS) gain) external
disturbance, which the H∞-theory works with, but at the same time allows it to have both spatial
and temporal correlations, which is not covered by the classic H2-theory.

Definition 3. Anisotropic norm of the system (1) driven by the input disturbance whose mean
anisotropy satisfy A(W ) � a is defined as

|||Pzw|||a = sup

{‖PzwG‖2
‖G‖2

: G∈Hnw×nw
2 ∧W = GV ∧A(W ) � a

}
(5)

where V = {vk}k�0 denotes the standard Gaussian white noise passed through the linear system
with (nw × nw)-dimensional transfer function G(z) having bounded H2-norm.

The anisotropic norm quantitatively reflects the ability of the system to amplify in the RMS
sense the input signal with the information-theoretic constraint A(W ) � a imposed on it. In the
case A(W ) = 0, we have thatW = V , and |||Pzw|||0 = ‖Pzw‖2/

√
nw. In the case when the restriction

on mean anisotropy is removed, i.e. A(W ) < +∞, it can be shown that lim
a→+∞ |||Pzw|||a = ‖Pzw‖∞.

Thus, the anisotropy-based theory not only describes a wide class of external disturbances in
information-theoretic terms, but also generalizes the approaches to controller design developed
within the framework of H2- and H∞-theories.

2.3. Parametrization of H2-Optimal Controllers

A lot of works are devoted to the study of all possible aspects of the behavior of linear systems
with H2-optimal estimating controllers. In particular, a number of them describe methods for
parameterizing the entire set of H2-optimal controllers. The procedure for solving this problem,
as well as the accompanying difficulties, are described in detail in [2, 6, 9, 11] and many others.
The main idea on which the solution is based is that H2-optimal controllers are directly related
to the controllers that ensure the invariance of the output of some auxiliary system with respect
to disturbances. Hence, by parameterizing the set of these controllers, parametrization of the H2-
controllers can be obtained. The formulation of the problem of parametrization of H2-controllers,
and the solution of this problem can be given in the following form.

Consider the system

F ∼
⎡⎢⎣ A Bu Bw

Cy 0 Dyw

Cz Dzu 0

⎤⎥⎦ :

(
u
w

)
x→
(
y
z

)
, (6)

with matrices A∈R
nx×nx , Bu ∈R

nx×nu , Bw ∈R
nx×nw , Cy ∈R

ny×nx, Dyw ∈R
ny×nw , Cz ∈R

nz×nx ,
Dzu ∈R

nz×nw , where u, w, y, z are state, disturbance, measurement, and controlled vectors. Con-
sider also non-strictly causal dynamical stabilizing output-feedback controller

K ∼
[
Ac Bc

Cc Dc

]
: y

h→ u, (7)

where hk ∈R
nh , and Ac, Bc, Cc, Dc are unknown matrices. The closed-loop system formed by the

system (6) and the controller (7) can be represented by

Fcl(K) ∼
⎡⎢⎣ A+BuDcCy BuCc Bw +BuDcDyw

BcCy Ac BcDyw

Cz +DzuDcCy DzuCc DzuDcDyw

⎤⎥⎦ : w

(
x
h

)
→ z. (8)
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To solve the problem of H2-optimal control means to find the matrices of the controller (7), such
that H2-norm of the closed-loop system (8) is minimal, i.e. ‖Fcl(K)‖2 → min

K
.

It has already been noted that the problem of designing H2-optimal controller is associated
with the problem of input-output invariance of some auxiliary system [2, 3, 6, 9, 10]. To solve
the last problem, several additional definitions are introduced, closely related to the concepts of
controllable and observable invariants [1, 7]. Namely, for the system F : w

x→ z defined by the
quadruple (A,B,C,D) where x∈R

nx, w∈R
nw , z ∈R

nz , we define two sets: W(F ) and S(F ) (see,
for example, [8]).

Definition 4. The stabilizable weakly unobservable subspace W(F ) is the largest subspace
W ⊆ R

nx for which there exists a matrix Π of suitable dimensions, such that W ⊆ ker(C +DΠ),
(A+BΠ)W ⊆ W and ρ(A+BΠ) < 1.

Definition 5. The detectable strongly controllable subspace S(F ) is the smallest subspace
S ⊆ R

nx for which there exists a matrix Λ of suitable dimensions, such that im(B + ΛD) ⊆ S,
(A+ ΛC)S ⊆ S and ρ(A+ ΛC) < 1.

Let us also introduce two auxiliary matrices P andQ associated with the system (6) as the largest
in the sense of the matrix order (X 
 Y ⇔ X − Y 
 0) matrices-solutions to the inequalities

M1(P ) =

[
ATPA− P + CT

z Cz CT
z Dzu +ATPBu

DT
zuCz +BT

u PA DT
zuDzu +BT

u PBu

]
� 0, (9a)

M2(Q) =

[
AQAT −Q+BwB

T
w BwD

T
yw +AQCT

y

DywB
T
w +CyQA

T DywD
T
yw + CyQC

T
y

]
� 0. (9b)

For a pair (P,Q), we additionally define the matrices CP , DP , BQ and DQ in accordance with the
formulas [

CT
P

DT
P

]
[CP DP ] =M1(P ),

[
BQ

DQ

]
[BT

Q DT
Q] =M2(Q), (10)

provided that both [CP DP ] and [BT
Q DT

Q] are of full rank.

The solution to the problem of parametrization of H2-optimal controllers is given in the form of
the following theorem.

Theorem 1 [2, 10]. For a system (6), there exists an H2-optimal controller of the form (7) if
and only if the following conditions are satisfied:

(i) (A,Bu) is stabilizable,
(ii) (Cy, A) is detectable,

(iii) im(BQ −BuD
+
PR) ⊆ W(FPu

),

(iv) S(FQy
) ⊆ ker(CP −RD+

QCy),

(v) S(FQy
) ⊆ W(FPu

),

(vi) (A−BuD
+
PRD

+
QCy)S(FQy

) ⊆ W(FPu
),

where

R = (DT
P )

+(DT
zuCzQC

T
y +BT

u PAQC
T
y +BT

u PBwD
T
yw)(D

T
Q)

+, (11)

and the systems FPu and FQy are defined by

FPu ∼
[
A Bu

CP DP

]
, FQy ∼

[
A BQ

Cy DQ

]
. (12)
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If the conditions of the theorem are met, the set of all dynamic H2-optimal controllers of the
form (7) is given by

K ∼

⎡⎢⎢⎢⎣
A+BuΠ+ ΛCy −BuD̃Cy BuC̃ BuD̃ − Λ

−B̃Cy Ã B̃

Π− D̃Cy C̃ D̃

⎤⎥⎥⎥⎦ , (13)

where the choice of matrices Ã, B̃, C̃, D̃ is limited by the fact that the transfer function

F̃ (z) = D̃ + C̃(zInx − Ã)−1B̃ (14)

belongs to the following algebraic sum of spaces: F̃ (z)∈NF +MF , where

NF =
{
N ∈R

nu×ny : DPNDQ = −R
}
, (15a)

MF =
{
M(z)∈RHnu×ny

2 : F1(z)M(z)F2(z) = 0
}
, (15b)

and

F1(z) = DP + (CP +DPΠ)(zInx −A−BuΠ)
−1Bu, (16a)

F2(z) = DQ + Cy(zInx −A− ΛCy)
−1(BQ + ΛDQ). (16b)

A solid analysis of the statement of the theorem can be found in [11]. For the case when
left/right-invertible system has no invariant zeros, the similar theorem can be formulated with a
certain changes [2]. In this case, the statement will additionally include the condition of uniqueness
of the H2-optimal controller if one exists.

3. PARAMETRIZATION OF ANISOTROPIC CONTROLLERS

3.1. Problem Statement and Solution

The problem of optimal anisotropic controller design for linear discrete time invariant systems
was solved in [13]. The conditions under which the controller was designed ensure the existence
and uniqueness of the solution, and the controller itself was specified in a strictly causal form.
This section provides a solution to a similar problem, which consists of parameterizing all optimal
non-strictly causal anisotropic controllers.

Problem 1. For a system (6) driven by external disturbance with the constraint A(W ) � a,
describe the parametric set of optimal anisotropic controllers of the form (7), i.e. parameterize
non-strictly causal stabilizing dynamical controllers minimizing the anisotropic norm of the corre-
sponding closed-loop system.

It is known that when solving the anisotropic analysis and synthesis problems in the optimal
setting, it is necessary to consider an additional mathematical construction called the worst-case
generating filter. The goal of this filter is to generate the most undesirable (in terms of RMS
gain value) external disturbance for a closed-loop system. In accordance with the results obtained
in [12, 13], for the systems of the form (2), the worst-case filter is of the form

G ∼
[
A+BL BΣ1/2

L Σ1/2

]
: v

x→ w, (17)

where L∈R
nw×nx and Σ 
 0 are the matrices chosen to maximize the RMS gain ‖PzwG‖2/‖G‖2

under the constraint A(W ) � a. Here and below V = {vk}k�0 — standard Gaussian white noise.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023



PARAMETRIZATION OF OPTIMAL ANISOTROPIC CONTROLLERS 1191

The main idea of solving the problem 1 is to consider a system formed by a successive connection
of the worst-case shaping filter and the original system F , and then to parameterize the H2-
optimal controllers for the obtained system. First of all we note that taking into account the
shaping filter (17), the system (6) is equivalent from the point of view of the corresponding dynamic
processes to the system

F ∼
⎡⎢⎣ A Bu Bw

Cy 0 Dyw

Cz Dzu 0

⎤⎥⎦ =

⎡⎢⎢⎣
A′ +B′

wL B′
u B′

wΣ
1/2

C ′
y +D′

ywL 0 D′
ywΣ

1/2

C ′
z D′

zu 0

⎤⎥⎥⎦ :

(
u
v

) (x
h

)
→

(
y
z

)
, (18)

where the new variables are defined as uk =
(
uTk hTk+1

)T
and yk =

(
yTk hTk

)T
; the matrices used

in the expression (18) have the following structure:

A′ =

[
A 0
0 0nh×nh

]
, B′

u =

[
Bu 0
0 Inh

]
, B′

w =

[
Bw

0nh×nw

]
, (19a)

C ′
y =

[
Cy 0

0 Inh

]
, D′

yw =

[
Dyw

0nh×nw

]
, (19b)

C ′
z = [Cz 0nz×nh

] , D′
zu = [Dzu 0nz×nh

] ; (19c)

matrices L and Σ correspond to the shaping filter G (which is the worst-case one for the system (18))
generating a colored signal with the mean anisotropy less or equal to a given threshold a � 0 from
standard Gaussian white noise V = {vk}k�0.

Theorem 2. For a system (6) with an external disturbance satisfying the constraint A(W ) � a,
there is an optimal anisotropic controller of the form (7) iff the conditions (i)–(vi) of the Theorem 1
hold true. If these conditions are met, the set of all optimal anisotropic controllers of the form (7)

for the system (6) is determined by the formula uk =
(
uTk hTk+1

)T
where control uk is given by the

following set of optimal anisotropic controllers for the system (18):

K ∼

⎡⎢⎢⎣
A+BuΠ+ ΛCy −BuD̃Cy BuC̃ BuD̃ − Λ

−B̃Cy Ã B̃

Π− D̃Cy C̃ D̃

⎤⎥⎥⎦ . (20)

The matrices Ã, B̃, C̃, D̃ correspond to the transfer function

F̃ (z) = D̃ + C̃(zInx+nh
− Ã)−1B̃ (21)

belonging to the sum of subspaces F̃ (z)∈N
F
+M

F
, where

N
F
= {N ∈R

(nu+nh)×(ny+nh) : DPNDQ = −R}, (22a)

MF = {M (z)∈RH(nu+nh)×(ny+nh)
2 : F 1(z)M (z)F 2(z) = 0}, (22b)

where

F 1(z) = DP + (CP +DPΠ)(zInx+nh
−A−BuΠ)

−1Bu, (23a)

F 2(z) = DQ + Cy(zInx+nh
−A− ΛCy)

−1(BQ + ΛDQ) (23b)

and
R = (D

T
P )

+(D
T
zuCzQC

T
y +B

T
uPAQC

T
y +B

T
uPBwD

T
yw)(D

T
Q)

+. (24)
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The matrices CP , DP , BQ and DQ are introduced according to (10) for the matrices M1(P )

and M2(Q) associated with the system (18), and the matrices Π and Λ relate to the sets W(F Pu)
and S(FQy) introduced according to 4 i 5.

The proof of the theorem is given in the Appendix.

Corollary 1. If in the Theorem 2 it is also true that the transfer function

F ol
yw(z) = Dyw +Cy(zInx −A)−1Bw (25)

is right invertible, and the transfer function

F ol
zu(z) = Dzu + Cz(zInx −A)−1Bu (26)

is left reversible then the optimal anisotropic controller exists and is unique.

3.2. Numerical Example

As an example, consider a system of the form (6) with matrices

A =

[
−1 1
1 0

]
, Bu =

[
0
1

]
, Bw =

[
1
−1

]
, (27a)

Cy =

[
1 0
0 1

]
, Dyw =

[
0
0

]
, Cz =

[
0 0
0 1

]
, Dzu =

[
1
0

]
. (27b)

We assume that the external disturbance has the mean anisotropy bounded by a certain number
a � 0. Let us set the goal of the example as to solve the problem of parametrization of optimal
anisotropic controllers of order not higher than the order of the system itself. Moreover, for the
sake of simplicity we will require that the number of additional variables is minimal, i.e., according
to (21), F̃ (z) = D̃.

Following the required calculations, we can verify that the system (18) has the form

F ∼

⎡⎢⎢⎢⎢⎢⎢⎣

A+BwL1 BwL2 Bu 02×2 Bw

√
σ

02×2 02×2 02×1 I2 02×1

I2 02×2 02×1 02×2 02×1

02×2 I2 02×1 02×2 02×1

Cz 02×2 Dzu 02×2 02×1

⎤⎥⎥⎥⎥⎥⎥⎦ , (28)

and the corresponding matrices P and Q defined by the formulas (9) are as follows:

P =

[
P 11 02×2

02×2 02×2

]
, Q =

[
Q11 02×2

02×2 02×2

]
, Q11 = BwB

T
w

√
σ, (29)

where P 11 is the solution to the Riccati equation

P 11 = (A+BwL1)
TP 11(A+BwL1) + CT

z Cz (30a)

− (A+BwL1)
TP 11Bu(D

T
zuDzu +BT

u P 11Bu)
−1BT

u P 11(A+BwL1), (30b)
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where, in order to simplify the further calculations, we will immediately assume that L2 = 0 (one
can show this statement is true). After this, the matrices DP , CP , DQ and BQ:

DP =

[
(DP )11 01×2

02×1 02×2

]
=

[
(DT

zuDzu +BT
u P 11Bu)

1/2 01×2

02×1 02×2

]
, (31a)

CP =

[
(CP )11 01×2

02×2 02×2

]
=

[
(DP )

−1
11 B

T
u P 11(A+BwL1) 01×2

02×2 02×2

]
, (31b)

DQ =

[
(DQ)11 02×2

02×2 02×2

]
=

[
(BwB

T
w)

1/2√σ 02×2

02×2 02×2

]
, (31c)

BQ =

[
(BQ)11 02×2

02×2 02×2

]
=

[
(A+BwL1)(DQ)11 02×2

02×2 02×2

]
. (31d)

We also calculate the matrix R using (11):

R =

[
(CP )11(DQ)11 01×2

02×2 02×2

]
. (32)

Now one can check the conditions of the Theorem 2. Obviously, the pair (A,Bu) is stabilizable,
and the pair (Cy, A) is detectable. Now one needs to introduce the sets W(F P ) and S(FQ).

According to the definitions (4) and (5), the matrices Π and Λ satisfy the following conditions:

Π =

[
Π11 Π12

Π21 Π22

]
=

[ −(DP )
−1
11 (CP )11 01×2

Π21 Π22

]
, ρ(Π22) < 1, (33a)

Λ =

[
Λ11 Λ12

Λ21 Λ22

]
=

[ −(BQ)11(DQ)
−1
11 Λ12

02×2 Λ22

]
, ρ(Λ22) < 1. (33b)

To simplify the calculations, we choose Π21 = Π22 = 02×2 and Λ12 = Λ22 = 02×2. One should keep
in mind that the particular choice of these matrices leads to a narrowing of the set of the optimal
anisotropic controllers. The choice made leads to the fact that W(F P ) = R

4 and S(FQ) = {0}4,
after which the conditions (iii)–(vi) of the Theorem 2 can be trivially verified.

In this example, a controller with representation (20) under the condition F̃ (z) = D̃ is com-
pletely determined by the matrix D̃, satisfying the requirement DP D̃DQ = −R. Substituting the

previously found matrices into the last equality, we obtain that D̃ have the form

D̃ =

[
D̃11 D̃12

D̃21 D̃22

]
, (34)

where D̃11=Π11, which completes the procedure of describing all optimal anisotropic controllers (20)

associated with the relation uk =
(
uTk hTk+1

)T
.

Let us make a few important comments.

In order to obtain the final solution to the problem, the resulting system of equations must be
supplemented with a system of equations determining the worst-case generating filter, thus finding
the variables L1 ∈R

1×2 and σ > 0 (see, for example, [12]).

Also, since in the framework of the considered example, the state was observed (measured)
precisely, it seems natural to choose a controller in the form of the static state-feedback uk = Kxk.
In this case, the optimal choice of matrix K is K = D̃11.
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Let us also present a solution to this problem for a = 0 (this case was chosen for simplicity, since
there is no need to solve the auxiliary problem associated with the generating filter). It can be
shown that all controllers with the representation

K ∼
[
Ac Bc

Cc Dc

]
≈
⎡⎢⎣ 0 0 −1 1
−κ − 1.4773 −κ − 1.4773 κ + 1 κ + 2.1823

−κ − 1.4773 −κ − 1.4773 κ κ + 2.1823

⎤⎥⎦ (35)

are optimal, and have the same closed-loop system that does not depend on the specific choice
of κ (the choice of which is constrained by the inclusion κ ∈ (−2.4773; −0.4773) providing that the
spectral radius of the matrix Ac is less than 1):

xk+1 ≈
[

−1 1
−0.4773 0.7051

]
xk +

[
1
−1

]
wk, (36a)

zk ≈
[
−1.4773 0.7051

0 1

]
xk. (36b)

Note that κ ≈ −1.4773 in (35) corresponds to a static state-feedback controller uk = Dcxk.

4. CONCLUSION

The paper provides a parametrization of a set of optimal anisotropic controllers for linear discrete
time invariant systems. The results obtained can find application in solving practical problems of
navigation and control, in particular, in cases when additional constraints are imposed on the
control actions. The results can also be useful to solve the problem of parameterizing a set of
suboptimal anisotropic controllers and estimators.

APPENDIX

Proof of Theorem 2. First let us show that the conditions (i)–(vi) from the formulation of the
Theorem 2 are equivalent to the following:

(a) (A,Bu) is stabilizable,

(b) (Cy, A) is detectable,

(c) im(BQ −BuD
+
PR) ⊆ W(FPu

),

(d) S(FQy
) ⊆ ker(CP −RD

+
QCy),

(e) S(FQy
) ⊆ W(F Pu

),

(f) (A−BuD
+
PRD

+
QCy)S(FQy

) ⊆ W(F Pu
)

where matrices CP , DP , BQ, DQ and R, as well as systems F Pu
and FQy

are set in accordance
to the material presented in Section 2.3 in relation to the system (18). Note that the conditions
(a)–(f) are a direct analogue of the conditions (i)–(vi) of the Theorem 1 for system (18).

The equivalence of (i)⇔ (a) and (ii)⇔ (b) is obvious due to the notation (19). For further proof,
let us determine the relation of the sets W(FPu

) and S(FQy
) from Theorem 1 to the sets W(F Pu

)

and S(FQy
), respectively. Given the system F , using the Definitions 4 and 5, it can be verified

that there exist matrices Π and Λ such that

W(FPu
) = W(FPu

)× R
nh , S(FQy

) = S(FQy
)× {0}nh , (A.1a)

(A+BuΠ)W(F Pu
) ⊆ W(F Pu

), (A+ ΛCy)S(FQy
) ⊆ S(FQy

), (A.1b)

ρ(A+BuΠ) < 1, ρ(A+ ΛCy) < 1. (A.1c)
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After this, we can conclude that the equivalence of the conditions (iii)⇔(c) and (iv)⇔(d) holds
due to the fact that

ker(CP −RD
+
QCy) = ker(CP −RD+

QCy)× R
nh , (A.2a)

im(BQ −BuD
+
PR) = im(BQ −BuD

+
PR)× {0}nh . (A.2b)

Finally, by (A.1), the equivalence of the conditions (v)⇔(e) and (vi)⇔(e) is proved.

The structure of the controller (20) is determined by the content of the Theorem 1.

The Theorem 2 is proven.
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Abstract—The problem of obtaining three-dimensional radio images of objects with increased
resolution based on the use of ultra-wide-band pulse signals and new methods of their digital
processing is considered. The inverse problem of reconstructing the image of a signal source
with a resolution exceeding the Rayleigh criterion has been solved numerically. Mathematically,
the problem is reduced to solving the Fredholm integral equation of the first kind by numerical
methods based on the representation of the solution in the form of decomposition into systems
of orthogonal functions. The method of selecting the systems of functions used, which increases
the stability of solutions, is substantiated. Variational problems of optimizing the shape and
duration of ultra-wide-band pulses have been solved, ensuring the maximum possible signal-
to-noise ratio during location studies of objects with fully or partially known signal reflection
characteristics. The proposed procedures make it possible to increase the range of measuring
systems, and also make it possible to increase the stability of solutions to inverse problems.
It is shown that the use of the developed methods for achieving super-resolution to process
ultra-wideband signals dramatically improves the quality of 3D images of objects in the radio
range.

Keywords : Rayleigh criterion, angular superresolution, stability of solutions to inverse problems

DOI: 10.25728/arcRAS.2023.90.53.001

1. INTRODUCTION

Increasing the effective angular resolution of radio and sonar, radio navigation, and remote
sensing systems and bringing it to super-resolution makes it possible to detail images of the ob-
jects under study, solve problems of their recognition and identification, and separately observe
individual targets as part of group targets. Solving these tasks makes it possible to improve the
quality of existing and promising control systems for land, surface, underwater and aerospace ob-
jects. Currently, many methods of digital signal processing and analysis are known to increase
the effective resolution. These are, in particular, methods of reverse convolution of signals, phase
weighing coefficients, angular weighing, etc. Currently popular methods are: MUSIC (MUlti-
ple SIgnal Classification) [1], ESPRIT (Estimation of Signal Parameters via Rotational Invariant
Techniques) [2], deconvolution method [3, 4], maximum entropy method [5], maximum likelihood
method [6], methods using neural networks [7], as well as nonlinear methods [8].

The listed methods are not effective in all cases. Most of them, including MUSIC and ESPRIT,
turn out to be ineffective when active measuring systems use complex signals, in particular, UWB
(Ultra Wide Band) signals with a duration of nanoseconds. The use of such ultra-wideband signals
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potentially allows for very high resolution over a range of about 1 m. As a result, the combination
of the use of UWB signals and the achievement of angular super-resolution due to digital signal
processing will allow obtaining high-quality three-dimensional radio images of objects. Such systems
are all-weather and can operate at any time of the day.

2. SETTING THE TASK OF ACHIEVING SUPER-RESOLUTION

The signal U(ϕ, θ) received by the goniometer system when scanning a two-dimensional sector
of the survey can be expressed as a linear integral transformation [9]

U(ϕ, θ) =

∫
Ω

f(ϕ− φ, θ − ϑ)I(φ, ϑ) dφ dϑ, (1)

where Ω = Ω(ϕ, θ)—the angular area of the signal source location; I(ϕ, θ)—the angular amplitude
distribution of the signal reflected (or emitted) by the object of observation, equal to zero out-
side Ω; f(ϕ, θ)—directional pattern (DP) of the measuring system. For convenience, the Cartesian
coordinate system is used here and further, where the angles are calculated from the normal to the
antenna plane.

It is known that the angular resolution achieved during direct measurements in accordance
with (1), i.e. the ability to distinguish two closely spaced objects, is measured by the minimum
angles δϕ and δθ, at which the two point signal sources still differ separately. These angles are
determined based on the Rayleigh criterion

δϕ ∼= λ/Dx, δθ ∼= λ/Dy, (2)

where Dx and Dy are the linear dimensions of the antenna at the corresponding angles ϕ and θ
directions, λ is a wavelength. The angles δϕ and δθ they turn out to be equal to the width of the
DP, determined by reducing the radiated power by half and are denoted as ϕ0.5 and θ0.5.

The task is to obtain an image of the signal source I(ϕ, θ) with an angular resolution exceeding
the Rayleigh criterion to the greatest extent possible, based on the intelligent analysis of the received
signal U(ϕ, θ) and the known DP f(ϕ, θ) of the system. Mathematically, the problem is reduced
to an approximate solution of the Fredholm integral equation (IE) of the first kind of convolution
type (1) with respect to an unknown function I(ϕ, θ) with the maximum achievable accuracy.

In general, attempts to increase the resolution exceeding (2) by solving the IE lead to unstable
solutions, since the task belongs to the class of inverses and does not satisfy the second and third
requirements of Hadamard correctness (2nd is an unambiguity of solutions and 3rd is their stability).

The methods of digital signal processing developed by the authors, called algebraic [9–15], seem
promising, allowing to obtain a stable approximate solution of the IE (1).

3. ALGEBRAIC METHODS OF SOLUTION

Algebraic methods consist in parameterizing the problem by presenting approximate solutions
in the form of expansions over selected sequences of functions. The choice of systems of functions
is based on a priori information about the solution.

Let’s consider practically important tasks when scanning is performed using one of the angular
coordinates.

The desired distribution of I(ϕ) can always be represented as a decomposition over some com-
plete system of orthogonal functions in the domain of Ω gm(ϕ) with unknown coefficients bm

I(ϕ) =
∞∑

m=1

bmgm(ϕ) ∼=
M∑

m=1

bmgm(ϕ). (3)
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Then the received signal is U(ϕ) is expressed as a superposition of functions Gm(ϕ), which are
images of gm(ϕ) when converting

Gm(ϕ) =

∫
Ω

f(ϕ− φ)gm(φ) dφ, (4)

U(ϕ) =
∞∑

m=1

bmGm(ϕ) ∼=
M∑

m=1

bmgm(ϕ), (5)

where M is the selected number of expansion terms.

Thus, the inverse problem turns out to be parameterized, and its solution is reduced to finding
the coefficients bm [10–12], which are usually found when minimizing the standard deviation of the
function U(ϕ) from (5) from the signal under study (1) in the corner sector Φ > Ω, where Φ is the
sector in which the useful signal exceeds noise and can be measured with sufficiently high accuracy.
In practice, the boundaries of the Φ sector are often determined by reducing the amplitude of the
useful signal by half in relation to its maximum value.

Function system Gm(ϕ) of (4), generally speaking, is not orthogonal and the minimization
mentioned above reduces to solving the following system of linear algebraic equations (SLAE)

V = SB,

where B is a vector column of coefficients bm, and the components of the vector V and the matrix S
are equal respectively:

Vj =

∫
Φ

U(ϕ)Gj(ϕ) dϕ, Sjm =

∫
Φ

Gj(ϕ)Gm(ϕ) dϕ,

here

∫
Φ

U(ϕ)Gj(ϕ) dϕ =
M∑

m=1

bm

∫
Φ

Gj(ϕ)Gm(ϕ) dϕ, j = 1, 2, . . . ,M. (6)

The principal feature of SLAE (6) is their poor conditionality, which is a consequence of an attempt
to solve an incorrect inverse problem. An increase in the stability of solutions can be achieved if
the functions Gm(ϕ) turns out to be orthogonal in the domain of Φ. In this case, in the matrix S,
only the elements on the main diagonal are different from zero and the coefficients bm are easily
found

∫
Φ

U(ϕ)Gm(ϕ) dϕ = bm

M∑
j=1

G2
j (ϕ) dϕ, m = 1, 2, . . . ,M.

Thus, the problem arises of choosing such an orthonormal in the domain of Φ systems of func-
tions g̃m(ϕ), images G̃m(ϕ) of which are orthogonal in Φ.

4. SIMULTANEOUS ORTHOGONALIZATION OF THE SYSTEMS OF FUNCTIONS USED

The orthogonal functions gm(ϕ) and Gm(ϕ) can be used as their own functions and IE (1).
However, the numerical search for each of them boils down to solving unstable problems and,
consequently, to the appearance of significant errors in solving the entire problem. Even in the
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simplest case of searching for eigenfunctions, when the core of the IE is degenerate, i.e. DP of the
f(ϕ) measuring system is the DP of a one-dimensional antenna array (AA) [29]

f(ϕ) =
n=K∑
n=−K

jn exp(−ikdn sinϕ). (7)

The SLAE obtained for searching for eigenfunctions turn out to be poorly conditioned. In (7)
it is indicated: jn is the magnitude of the current at the nth emitter, d is a distance between
neighboring emitters, 2K + 1—the number of DP elements and the constant k = 2π/λ, where the
wavelength λ = 2πc/ω, c is the speed of light, ω is the frequency of radiation. It is significant that
the conditionality numbers of the corresponding matrices increase exponentially with an increase in
the number of eigenfunctions to be determined, i.e. with attempts to increase the effective angular
resolution.

Note that the construction of an orthogonal system of functions G̃m(ϕ) in the domain Φ can also
be carried out on the basis of the Gram–Schmidt orthogonalization process. In this case, however,
the resulting functions turn out to be images of functions that are not orthogonal in the domain
of Φ. In this case, the source is also represented as a superposition of non-orthogonal functions,
which significantly reduces the quality of the approximate solution.

The actual problem of simultaneous orthogonalization of systems of functions gm and Gm is
proposed to be solved on the basis of the following theorem, the proof of which is given in Appendix.

Theorem 1. Let’s define a system of N orthonormal functions gm(x) (hereafter m = 1, 2, . . . , N)
on the segment Lg and an arbitrary linear operator A generating a system of N functions G = Ag,
on the segment LG. Here G and g are N -dimensional vector columns with components Gm and gm.
Then there is a linear transformation, represented as a matrix T, such that the systems of functions

G̃m(ϕ) =
N∑
j=1

TjmGj(ϕ), g̃m(ϕ) =
N∑
j=1

Tmjgj(ϕ) (8)

on the segments LG and Lg, respectively, turn out to be orthogonal, while maintaining the condition
G̃ = Ag̃.

The results of the theorem allow us to simultaneously present the desired solution I(ϕ) of the
inverse problem under consideration and the signal under study U(ϕ) in the form of decompositions
over systems of orthogonal functions, which simplifies the analysis of the problem, increases the
stability of numerical solutions and, ultimately, allows to increase the achieved degree of superres-
olution.

Using (A.1)–(A.5) (see Appendix), we obtain

G̃m(ϕ) =

∫
Ω

f(ϕ− φ)g̃m(φ) dφ, g̃m(ϕ) =
N∑
j=1

Tmjgj(ϕ). (9)

Further, expressing the received signal in the form of decomposition

U(ϕ) ∼=
N∑

m=1

CmG̃m(ϕ),

we find, due to the orthogonality of the functions, the coefficients Cm

Cm =
1

Pm

∫
Φ

U(ϕ)G̃m(ϕ) dϕ, where Pm =

∫
Φ

G̃2
m(ϕ) dϕ. (10)
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Taking into account the entered designations, the received signal (1) can be represented as
follows

U(ϕ) =

∫
Ω

f(ϕ− φ)I(φ) dφ ∼=
N∑

m=1

CmG̃m(ϕ) =

∫
Ω

f(ϕ− φ)

(
N∑

m=1

Cmg̃m(φ)

)
dφ. (11)

Equating the integral expressions in (11), we obtain a solution to the inverse problem under con-
sideration in the form of decompositions both according to the introduced system of functions (A.5)
and according to the original system of N functions (3)

I(ϕ) ∼=
N∑

m=1

Cmg̃m(ϕ), I(ϕ) =
N∑
j=1

bjgj(ϕ), bj =
N∑

m=1

CmTmj . (12)

Next, the algorithm uses an iterative process of increasing N to increase the degree of superresolu-
tion achieved until stable solutions can be obtained.

Since the inverse problem is considered, the solution of which, after parameterization, is reduced
to a SLAE solution, all the negative properties of inverse problems are preserved and transferred
eventually to SLAE solutions. In the problems under consideration, the second and third signs
of the correctness of the Hadamard problem are violated, namely: unambiguity of solutions and
their stability. The matrices S in (6) turn out to be poorly conditioned. When trying to increase
the resolution, the dimension of the S matrices increases, while the conditioning numbers increase
exponentially and reach huge values: 1010–1013, so even insignificant rounding errors lead to in-
adequate solutions. The presence of noise and measurement errors further worsens the situation.
The direct solution of SLAE by known numerical methods of linear algebra does not lead to a
satisfactory result.

At the same time, the values of the conditioning numbers of matrices of type T from (8), (9) are
many times—and the orders are less than those of matrices S. This circumstance is an indicator
of the higher stability of solutions obtained on the basis of Theorem 1, in comparison with the
direct solution of SLAE (5), (6). Thus, the proposed approach to solving the problem (1) provides
the opportunity to use a larger number of functions in the solution representation (12) compared
to (3)–(6), which increases the angular resolution. In an alternative formulation, the developed
approach makes it possible to achieve the same level of exceeding the Rayleigh criterion as other
methods, but at a significantly higher level of noise and interference.

5. EXAMPLES OF PROBLEM SOLUTIONS

Initially, single-stage functions were selected to represent the solution in the domain Ω = [−θ0, θ0],
where 2θ0 = θ0.5, and the solution was searched based on the algebraic method briefly described
above (3)–(5). Then the search for solutions was carried out on the basis of Theorem 1 and the
relations (8)–(12), and the solutions obtained were compared.

Figure 1a of the five original functions gm(ϕ), m = 1, . . . , 5, three are shown—g1(ϕ), g2(ϕ) and
g4(ϕ). Figure 1b shows for illustration the transformed modifications of the original functions g1(ϕ)
and g4(ϕ), i.e. g̃1(ϕ) and g̃4(ϕ). Figure 2a shows the images of Gm(ϕ) source functions gm(ϕ) at
m = 1, 3, 5, and in Fig. 2b—images of G̃m(ϕ) functions g̃m(ϕ) in the domain Φ.

Two point targets with the same amplitude of the emitted signal were selected as classical
objects for the study of resolution. The distance between the objects was consistently reduced
until it was possible to obtain sufficiently stable solutions adequate to the original objects. When
objects approach each other, false sources begin to appear in the solution. Their intensity increases
dramatically with further convergence. Figure 3b shows the extreme case when they can still be
neglected.
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Fig. 1. Initial step functions (a), modified functions (b).

Fig. 2. Images of Gm original functions (a), images of G̃m modified functions (b).

Fig. 3. Solution based on the original functions (a), solution based on modified functions (b).

Figures 3a and 3b present the solutions obtained in accordance with (3)–(6), i.e. without orthog-
onalization of functions and their images, as well as solutions after the procedure of simultaneous
orthogonalization of gm(ϕ) and Gm(ϕ). The angular position of point objects is shown as a bold
vertical line, and the solution is shown as a polyline.

The results of numerical experiments have shown that by simultaneous orthogonalization it
is possible to exceed the Rayleigh criterion four times (Fig. 3b). An attempt to obtain a stable
solution to the same problem in accordance with (3)–(6) does not lead to a satisfactory result. The
resulting inadequate solution, shown in Fig. 3a, is characterized by an oscillating character with a
very large oscillation amplitude. Against the background of this solution, the true objects depicted
on the same scale as in Fig. 3b are almost invisible. The type of solution is typical for cases when
it is not possible to find an adequate solution. The conditioning numbers of the matrices used in
solving and characterizing the stability of problems differ in the presented examples by two orders
of magnitude.

It should be noted that when the number of M functions of the original system used in the
solution representation (3) changes, the systems of functions gm(ϕ) and Gm(ϕ) (9) themselves
change. This feature has little effect on the running time of the program, since the basic calculations
are performed using standard high-speed and well-developed algorithms.
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Fig. 4. A solution based on DOG wavelets.

Fig. 5. A solution based on delta functions.

The choice of the initial system of functions gm(ϕ) is based on a priori information about the
solution [16] and the shape of the signal received during scanning (1). Such information may include,
in particular, the size and location of the signal source localization area, monotony, smoothness of
the continuity area of the angular distribution of the amplitude of the emitted signal, the presence
of areas with a discrete distribution, the dynamic range of intensity variation, restrictions on the
gradient and other characteristics [11, 13, 16].

Figure 4 shows the solution of the inverse problem under consideration using this kind of a priori
information. It was known that in the remote sensing problem, the reflecting surface is described by
a smooth function with a smooth change in the amplitude of the reflected signal, with the possible
presence of a small-sized area with high reflection. Based on this information, a system of functions
based on DOG-wavelets was chosen to represent the solution.

Under direct observation without the proposed digital processing, the presented section has some
averaged amplitude – the upper point curve. Signal processing by the algebraic method made it
possible to identify the details of the amplitude distribution of I(ϕ). In the form of a solid thin
curve, Fig. 4 shows the true distribution of the reflected signal, the strokes represent the solution
found by the algebraic method (3)–(6), the solid bold curve is the solution obtained using the
considered double orthogonalization method.

Digital processing based on double orthogonalization has improved the quality of the solution,
especially in the area of the area with a high gradient of the reflection coefficient.

Orthogonalization of function systems allows not only to increase the angular resolution, but,
due to good stability, to obtain adequate solutions at high levels of random components.
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Figure 5 shows the solution of the problem at a high noise level in the form of a bold polyline.
The signal source consisted of two small-sized objects shown in the drawing with a thin polyline.
The amplitudes of the signals reflected from the objects differed by five times. The objects were
not resolved under direct observation. To illustrate, the figure shows the signal received during
scanning in the Ω sector—the upper curve.

To represent solutions as a gm(ϕ) system, there was selected a system of delta functions located
at the same distance from each other. In the process of finding a solution, these distances could be
changed.

In the course of numerical experiments, the minimum value of the signal-to-noise ratio (SNR)
was sought, at which it was still possible to obtain a satisfactory solution. The large difference
in the amplitudes of the reflected signals significantly complicated the solution of the problem.
False objects appeared, albeit with a small amplitude, the magnitude of which allowed them to be
neglected when presenting the final solution. As a result, a completely satisfactory stable solution
was obtained with a SNR equal to 1/3, or 10.5 dB. Many well-known methods, including [1–8], allow
us to successfully solve such problems only with an SNR of at least 20 dB. Thus, the application of
the method of simultaneous orthogonalization of systems of functions for solving inverse problems
makes it possible to detail images of objects with an angular resolution exceeding the Rayleigh
criterion at a significant level of random components of the signal. A further increase in the
achieved degree of superresolution is possible with a decrease in the level of random components—
noise in the studied signals.

6. IMPROVING THE SNR FOR UWB SYSTEMS

Currently existing UWB signal generation systems do not have sufficient energy to carry out
measurements at significant distances [17–19]. In these conditions, an important task is to increase
the range of systems by optimizing the digital processing of received UWB pulses. Optimization
consists in the development of algorithms to increase the SNR in the received signals, which ul-
timately increases the range of the systems, and also improves the quality of images of objects
with angular superresolution. Increasing the SNR increases the stability of solutions to the inverse
problems discussed above, which are significantly more sensitive than direct ones to the presence
and level of random components in the studied signals. Any linear algorithms for processing UWB
signals that increase the SNR simultaneously provide an increase in the effective angular resolution.

Known methods of calculating characteristics and optimizing them are of little use for solving
problems of optimizing the characteristics of UWB radars [20–28]. When emitting, receiving and
reflecting ultra-wideband pulses from objects, it is necessary to take into account the dispersion
dependences of the reflection characteristics of the studied objects, as well as antenna systems. As
a result of the dispersion, the shape and spectrum of the received pulse differ significantly from
the emitted one, which makes it almost impossible to use traditional methods of coherent signal
processing.

Another feature of solving problems of analysis and optimization of UWB pulses is the diffi-
culty of using well-developed spectral analysis methods in calculations, since for their successful
application it is necessary to set the amplitude and phase spectra of pulses with high accuracy.
The UWB signal, however, has an ultra-wide frequency band and, consequently, the spectral den-
sity of the pulse turns out to be small (often close to the magnitude of errors in calculations and
measurements). In particular, when receiving a signal, its spectral density is often lower than the
spectral density of noise. Under these conditions, the measurement accuracy of the amplitude-phase
spectrum required for optimization cannot be achieved.

To overcome such difficulties, it is proposed to apply to calculations related to the description
of the processes of radiation, reception, reflection and processing of UWB pulses a time domain
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analysis method based on the representation of antenna systems, reception, generation systems,
etc., as linear systems described by pulse characteristics.

The proposed unconventional approach turns out to be more convenient and accurate, since
when using it, it is necessary to know not the spectrum, but only the time dependence of the
generated signal U(t), which can be determined experimentally with sufficiently high accuracy.

7. OPTIMIZATION OF THE IMPULSE RESPONSE OF THE RECEIVING SYSTEM

Let’s set the task of searching for the impulse response hr(t) of the receiving system, which
ensures the maximum possible power gain—q2. The shape of the generated UWB pulse U(t), the
DP of the transmitting and receiving antenna systems at each of the frequencies used are considered
to be set—fe(ϕ,ω) and fp(ϕ,ω), as well as the complex frequency response of the reflection of
the object—R(ω). The specified variance dependencies allow using the Fourier transform F[..]
determine the pulse characteristics of radiation, reception and reflection of the signal:

he(ϕ, t) = F[fe(ϕ,ω)], hp(ϕ, t) = F[fp(ϕ,ω)], hR(t) = F[R(ω)]. (13)

In addition to the above characteristics, for modern systems based on antenna arrays (AA), it is
necessary to additionally take into account the mutual influence of emitters on each other. Mutual
influence is usually described using mutual complex resistances, i.e. the intrinsic resistance of
the emitter changes by the amount of a certain introduced resistance. This resistance, called
mutual resistance, depends on the distance between the emitters, measured by the ratio of the
physical distance to the wavelength—the electrical distance. Without taking into account the
mutual influence for narrow-band AA, the error in calculating their characteristics is 3–6% and
it can often be neglected. When using UWB pulses for low-frequency components, the electrical
distances between the emitters decrease several times and the resistance value increases noticeably.
In order to avoid significant errors—up to 40–50%—mutual influence must be taken into account
when constructing the pulse characteristics of UWB radars.

For two separate AA emitters numbered m and n located at a distance of dm,n from each other
with co-directional DP, their mutual complex resistance

z(kdm,n) = r(kdm,n) + ix(kdm,n),

expressed as [29]

r(kdm,n) =
1

B

π∫
0

2π∫
0

φm(ϕ, θ)φ∗n(ϕ, θ) cos
(
kdm,n sin θ

)
sin θ dϕdθ, (14)

x(kdm,n) =
4

kdm,n

π∫
0

φm(θ)φ∗n(θ) dθ

−
π∫
0

2π∫
0

φm(ϕ, θ)φ∗n(ϕ, θ) sin
(
kdm,n sin θ| sinϕ|

)
sin θ dϕdθ,

(15)

where B is the normalizing factor, φm(ϕ, θ)—DP of a separate emitter.

Usually, the weakly directional DP of individual AA emitters are the same and often, especially
for flat and linear AA, do not depend on the azimuth angle. Then they can be described with high
accuracy in the form of functions φ(ϕ, θ) = cosν θ or a superposition of similar functions, where the
parameter ν describes the directivity of the emitter. In this case, the integrals in (14), (15) are
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taken explicitly [29], and the mutual effective resistance of two adjacent radiators (14) turns out to
be equal

r(kdm,n) = Γ(ν + 3/2)
Jν+1/2(kdm,n)

(kdm,n/2)ν+1/2
, (16)

where Γ(ν) is a Gamma function, Jν is a Bessel function of the order of ν. The mutual reactive
part of the resistance, normalized to its own resistance, is reduced to the form

x(kdm,n) =
2Γ(ν + 3/2)√
πΓ(ν + 1)kdm,n

− Γ(ν + 3/2)Hν+1/2(kdm,n)2
ν+1/2

(kdm,n)ν+1/2
, (17)

where Hν is a Struve function of the order ν [30].

For large AA, one can ignore the edge effects and assume that all emitters are in the same
conditions. Then the resistances of all emitters turn out to be the same, and taking into account
the mutual influence of the emitters leads to the need to use instead of he,p(ϕ, t) from (13)

he,p(ϕ, t) = F

[
fe,p(ϕ,ω)

z(ϕ,ω)

]
, (18)

where z(ϕ,ω)—the resistance of the emitter at the frequency ω, taking into account the influence
of all other emitters of the AA.

Let’s find the frequency dependence of the emitter resistance z(ϕ,ω). To this end, let’s first
consider the linear AA. For large AA with a number of 2N + 1 emitters focused in the direction
of ϕ to the AA axis (7), active resistance r(ϕ,ω) of each element represents the following amount,
which can be extended indefinitely with almost no error

r(ϕ,ω) =
N∑

n=−N

r(kdn) cos
(
kdn sinϕ

) ≈ ∞∑
n=−∞

r(kdn) cos
(
kdn sinϕ

)
. (19)

The sum of the series (19) can be represented as a closed expression. To do this, you first need to
find the sum of the next row

W =
∞∑
n=1

Jν(x)

(nx/2)ν
cos(nx sinϕ), (20)

which is called the generalized Schlemilch series [30]. Note that the values of the sum (20) are
given in the reference books only for a few special cases. In general, the sum of the series is found
in [22]. It is shown that under the condition kd < 2π/(1 + sinϕ), which is true for AA, the sum of
the generalized Schlemilch series is equal to

W = − 1

2Γ(ν + 1)
+

√
π

Γ(ν + 1/2)x
cos2ν−1 ϕ. (21)

Finally,

r(ϕ,ω) =
2
√
πΓ(ν + 3/2)

Γ(ν + 1)kd
cos2ν ϕ. (22)

The imaginary part of the resistance of each element of a large linear AA has a representation

X =
∞∑

n=−∞
x(kdn) cos(kdn sinϕ) ∼=

N∑
n=−N

x(kdn) cos(kdn sinϕ) (23)
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Numerical estimates (23) for various ν and kd from (17) show that the value of X for large linear
AA turns out to be close to zero. Thus, the resistance of each element in the composition of a
large linear AA z(kd) with good accuracy takes the value (22), which allows us to find the impulse
response (18).

The resistance of the radiator in a large flat AA is obtained twice using the sum (22)

r(ϕ,ω) =
4π(ν + 1/2)

(kd)2
cos2ν−1 ϕ. (24)

Now, using the found resistance values, we find the pulse characteristics of the radiation and AA
reception in the form (18).

Typically, the SNR for pulse signals is defined as the ratio of the square of the maximum value
of the useful signal to the RMS value of the noise U2

n

q2 =
U2
M

U2
n

. (25)

Then for narrowband signals, when the frequency band is much less than the fundamental frequency
Δω � ω0, for the viewing angle ϕ = 0 we get

q2 =
f4(0, ω0)|R(ω0)|2

N0(ω0)
, (26)

where N0 is the spectral density of noise at the frequency ω0. For UWB signals, considering noise
to be a stationary random process, (25) takes the form:

q2 =

(∫∞
−∞ hr(t)Ur(t0 − t) dt

)2∫∞
−∞

∫∞
−∞ hr(t)hr(T )K(t− T ) dt dT

, (27)

where Ur(t) is the received signal, t0 is the time when the useful signal reaches the maximum value
of UM , K(t) is the autocorrelation function of noise at the receiver input. Often in practically
significant problems, when noise can be described as white, the K(t) function is a delta function.
Then, solving the variational problem of finding hr(t) from (27), which provides the maximum
possible value of q2 up to a constant, we obtain

hr(t) = U0(t0 − t), Ur(t) = he(0) � hR(t) � he(0) � Ug(t), (28)

where Ug(t) is the generated signal, and the symbol � denotes the convolution of functions. Note
that the first two convolutions are formed by the given functions and can be replaced by a single
dependency

Hr(t) = he(0) � hR(t) � he(0), Ur(t) = Hr(t) � Ug(t), (29)

which determines hr(t) from (28), which can be called the impulse response of the optimal filter
(OF).

Most often, in communication, radar, and remote sensing tasks, noise is considered white. How-
ever, in an ultra-wide frequency band, the spectral noise density may differ markedly from the
constant, and then its shape must be taken into account when synthesizing OF. In this case,
instead of (29) from (27) up to a constant, it follows

Ur(t0 − t) =

∞∫
−∞

hr(τ)K(t− τ) dτ (30)

and now, to determine hr(t) OF, it is necessary to numerically solve the resulting integral equa-
tion (30).
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8. RESULTS OF NUMERICAL EXPERIMENTS

The problem of optimal reception of UWB pulses when reflected from an object with a smooth
increase in the value of the modulus of the reflection coefficient from the frequency R(ω) was consid-
ered and a fast-variable phase characteristic. As the spectral noise density N0(ω) the distribution
of atmospheric noise in the wavelength range of 1 m–3 cm was chosen. The DP of the antenna
system at each of the frequencies used corresponded to the DP of the antenna array with a beam
width of 2θ0 = 3◦ at the average frequency of the range used.

The results of solving the problem are shown in Fig. 6. Shows: the initial UWB pulse is a dashed
curve; the received UWB pulse without using OF is a thin solid curve; the received UWB pulse
after optimal processing in the receiver (28), (29) is a bold curve. Noticeable changes occur in
the received signal due to dispersion: —the pulse duration increases significantly; —the maximum
modulo values of the reflected signal, pronounced in the initial pulse, disappear; —the shape of
the received pulse, and therefore the shape of its spectrum, become little similar to the generated
signal.

The use of an optimal receiver for UWB signals turns out to be highly effective, since it is used in
an ultra-wide frequency band. In the given example of optimization of reception from the direction
ϕ = 0, the SNR increased by more than 150 times, which corresponds to an increase in the range
of the system by 3.7 times.

When receiving a signal from a direction other than ϕ = 0, the filter characteristic hr(t) in
accordance with (28)–(30) is no longer optimal and increases the peak value of the signal to a
lesser extent than from the direction ϕ = 0. In the given example, the optimization gain for ϕ = 0
decreased by 5 times at the boundary of the transmitting beam ϕ = θ0. The revealed pattern with
optimal filtering of UWB pulses shows that the effective width of the receiving DP for the signal
in question becomes significantly less than θ0. This effect can be used to improve the accuracy
and angular resolution of UWB systems when searching and tracking objects with known reflection
characteristics.

In practice, it is difficult to expect that the complex reflection coefficient of the object under
study, especially its phase characteristic, is precisely known. However, as numerical experiments
have shown, taking into account even partial information about the reflective properties of an
object can significantly increase the SNR—up to 0.2–0.5 from the value of the optimal q2. In the
example given, the phase characteristic of the reflection was given as a very approximate estimate.
Nevertheless, it was possible to significantly increase the SNR by about 50 times.

The obtained theoretical results and the results of numerical experiments on a mathematical
model show that optimizing the reception of UWB pulses makes it possible to increase the proba-
bility of correct detection and identification of the objects under study.

Fig. 6. The shapes of the generated and received UWB pulses.
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9. CONCLUSION

1. The proposed methods of processing received signals based on the simultaneous orthogonal-
ization of two interconnected systems of functions make it possible to increase the stability of the
inverse problems being solved and restore the image of signal sources with an angular resolution
several times higher than the Rayleigh criterion.

2. Algorithms based on algebraic methods make it possible to obtain satisfactory solutions with
a signal-to-noise ratio of 15–20 dB, and sometimes at 11–12 dB, i.e. with significantly higher values
of random components than the well-known methods described in domestic and foreign literature.

3. A priori information about signal sources allows for a targeted selection of systems of functions
to represent solutions and, thereby, increase the adequacy and stability of the solutions obtained.

4. The relative simplicity of object image recovery algorithms makes it possible to use them in
real time.

5. The variational problem of optimizing the pulse characteristics of the receiver of probing
UWB pulses has been solved. The efficiency of using the proposed algorithms for processing UWB
signals is shown, which allows 2–4 times to increase the range of UWB systems and improve the
quality of radio images.

6. It is shown that optimizing the shape of the received UWB pulses allows for known object
types to simultaneously increase the range of the systems, improve their angular characteristics
and detection and identification characteristics.
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APPENDIX

Proof of Theorem 1. The system of functions Gm(x) is generally non-orthogonal to LG. Let’s
make a Gram matrix based on it, i.e. a matrix P of scalar products with elements Pmn:

Pmn = (Gm, Gn) =

∫
Φ

Gm(φ)Gn(φ) dφ. (A.1)

Since the matrix P is symmetric and positively defined, there is a transformation T that leads it
to a diagonal form

P̃ = T	PT. (A.2)

Using the found matrix T, we introduce a new system of functions G̃m(x) in the form (9). The
resulting system turns out to be orthogonal on the segment LG, which is easily verified by directly
calculating scalar products:

(G̃m, G̃n) =
N∑

j,i=1

TjmTin

∫
Φ

Gj(φ)Gi(φ) dφ =
N∑

j,i=1

TjmTinPji = P̃mn,

where P̃mn are the elements of the diagonal matrix (A.2).

Now let’s find the system of functions g̃m(x), which generates the resulting orthogonal in the
domain LG the system G̃m(x), i.e.

G̃m = Ag̃m. (A.3)
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The required representation (9) follows

G̃m =
N∑
j=1

TmjAgj = A

⎛⎝ N∑
j=1

Tmjgj

⎞⎠ . (A.4)

Comparing (A.3) and (A.4), we obtain

g̃m(x) =
N∑
j=1

Tmjgj(x). (A.5)

The found system (A.5) turns out to be orthogonal on the segment Lg. Indeed, due to the
orthogonality of the functions gm(x) and the orthogonality of the eigenvectors of the matrix P
forming the matrix T, we have

(
g̃m(x), g̃n(x)

)
=

N∑
j=1

TmjTnj
(
gj , gi

)
=

{
0, m �= n
λm, m = n

, λm =
N∑
j=1

T 2
mj .

Note that the found system of orthogonal functions g̃m(x) is determined by the same linear
transformation T as the system of functions G̃m(x).

As a result, based on a given system of N orthogonal functions gm(x) on the segment Lg, a
new orthogonal system of functions on the same segment is constructed, generating an orthogonal
system of functions g̃m(x) in the domain Lg. The theorem is proved
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Abstract—The control modes of a free-flying space manipulation robot during the transporta-
tion and installation of a building element on a large space structure are considered. It is
proposed to save the working fluid of the gas-jet engines of the robot body when moving along
the trajectory by using the mobility of a manipulator with electromechanical drives for the
angular stabilization of the mechanical “robot–transported element” system. Conditions en-
suring the stable motion of the manipulator in the working area when installing the element
on the assembled structure are obtained. A stability domain is determined to select the initial
configuration of the manipulator before installing the element and its admissible change during
installation. The control algorithms are designed based on the principle of dynamic feedback
systems.

Keywords : free-flying space manipulation robot, working area, technical controllability, control
algorithm, motion stability
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1. INTRODUCTION

In space technology, space manipulation robots (SMRs) are used for servicing and assembling
various-purpose spacecraft in orbit. Such robots fly freely in space due to their movement system
independently of the spacecraft that delivered the robot to the destination point [1]. The feasibility
of developing this type of space robotic devices was declared at the 6th IFAC Symposium on Space
Control (1974), which was held under the leadership of Academician B.N. Petrov [2]. Currently,
there are two ways of connecting spacecraft and modules in space: direct docking and berthing
(docking by means of a manipulator) [3]. The latter term defines several operations, such as soft
docking, payload stowage in the receiving compartment of a cargo spacecraft, etc. This paper
considers the problem of attaching a building element to a large space structure (LSS) being
assembled in orbit by means of an SMR, another operation of the same type. As in [3], the mass
of the LSS element may significantly exceed that of the manipulator, whose gripper with the held
payload may be located at a significant distance from the center of gravity of the SMR body and
the entire mechanical system. The kinematic algorithm used to control the manipulator converts
control signals into the required rotational velocities of the actuators; this algorithm considers the
geometric and kinematic constraints determined by the current configuration of the manipulator.

Structurally, a freely-flying space manipulation robot (FSMR) is designed as a platform with
one or several manipulators attached. The platform is equipped with control devices and a set
of actuators that provide the required orientation and desired trajectory of the platform in outer
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space. Such SMRs are called free-flying robots in the literature [4, 5]. One of the first domestic
publications [6] presented a methodology for analyzing the dynamics of a manipulator on a moving
base and one solution to capture a payload in inertial space by means of an FSMR in the cases of
its stabilizable and non-stabilizable body.

An assembly operation performed in space includes two stages as follows. In the first stage,
an FSMR approaches the installation zone of a building element; at the end of this stage, the
robot hovers in the vicinity of the docking point of the element with an LSS. The boundary of the
working area is determined, on the one hand, by safety conditions (no possible contact between the
hovering robot and the LSS when installing the element) and, on the other, by goal attainability
conditions (the successful installation of the element with a given orientation in the required point
of the LSS) [7, 8]. The latter is the content of the second stage of the assembly operation. The first
stage of the assembly operation is implemented by means of a control system of the translational
and angular movements of the FSMR using reaction forces and torque applied by the actuators to
the robot body. The manipulator with the transported element is stationary in this stage, and its
configuration should be as close to optimal as possible [7].

The list of problems arising in the design of control systems for FSMRs was described in [1].
This paper considers those of manipulator control during the FSMR movement to the working
area and in it. When controlling an FSMR in its working area in the free-floating mode (i.e., the
angular position control system of the robot body is disabled), the challenges include the narrowing
of the working area [4, 9] and the presence of dynamic singularities [10, 11]. The dynamics and
kinematics of the mechanical structure of an FSMR in this mode are significantly complicated due
to the disturbing effect of the manipulator motions on the body position [12, 13]. Therefore, we
consider manipulator control based on the feedback principle using information about the angular
position of the robot body and estimates of the deviation of the manipulator’s endpoint from the
target point [14, 15].

We present solutions of two problems as follows. The first problem arises if it is necessary to
save the working fluid of the gas-jet engines of the robot body when moving along the trajectory.
This problem is solved using the manipulator mobility. The second problem is related to the
stabilization of the manipulator movement in the working area when installing the transported
element on the LSS.

2. THE MECHANICAL STRUCTURE OF A FREE-FLYING SPACE
MANIPULATION ROBOT: KEY FEATURES

The mechanical structure of an FSMR is a set of elements connected through joints. The main
element is the body equipped with a control system and jet engines. Multilink manipulators are
attached to the body. A gripper, a device for capturing and holding a payload during manipulation
operations of an FSMR, is rigidly fixed on the end link of each manipulator. This mechanical
structure is characterized by many degrees of freedom and the mutual influence of the movements
of its elements. The FSMR body responds to dynamic reaction forces arising from the movements
of the manipulator’s links. When controlling the configuration and angular movements in such
a mechanical system, it is necessary to consider the dynamic coupling between the body and
manipulators [15].

To illustrate the key features of its mechanical structure, we consider the plane motion of an
FSMR with one three-link manipulator [16] as one possible setup. The coordinates X0 and Y0
of the FSMR body’s center of gravity and its angle of rotation ϑ are the generalized coordinates
describing the position of the FSMR body in the inertial frame CXY whose axes are associated
with an LSS. They form the vector qK = (X0, Y0, ϑ)

T. The vector qα = (α1, α2, α3)
T consists of the

generalized coordinates of the inter-link angles that specify the manipulator’s configuration. The
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vector ρBA = (Xε, Yε)
T represents the controlled coordinates, i.e., the deviations of the endpoint of

the transported payload B = (XB , YB) from the target point A = (XA, YA) in the inertial frame:
Xε = XA −XB and Yε = YA − YB.

The plane motion of this setup is described by the equation

A(q)q̈ =M(q, u) + F (q, q̇) (1)

for the vector q = (qK , qα)
T with the following notations [15, 16]: the matrix A(q)∈R6×6 contains

blocks of symmetric matrices specifying the mass-inertia parameters of the body and manipu-
lator (A11(q)∈R3×3 and A22(q) ∈ R3×3, respectively) as well as the dynamic interaction coeffi-
cients of the body and manipulator’s links (A12(q)∈R3×3 and A21(q)∈R3×3, respectively, where
A12(q)=A21(q)); M(q, u) = (MK ,Mα)

T, where MK ∈R3 is the vector of control actions applied
to the robot body and Mα ∈R3 is the vector of control actions applied by actuators to the
manipulator’s links when feeding control voltages u(t) to the former’s inputs; finally, F (q, q̇) =
(fK(q, q̇), fα(q, q̇))

T is the vector of nonlinear disturbance functions from Coriolis and centrifugal
forces. The expressions for calculating the elements of these matrices and vectors were given in [16].

In this paper, the actuators of manipulator’s links are assumed to have DC motors with indepen-
dent excitation [16]. In the first approximation with the time constant of the motor and mechanical
nonlinearities being neglected [16, 17], the dynamics of each jth actuator (j = 1, 3) are described
by the equations

Jjipjα̈j = (kbjkaj)
−1uj(t)− k−1

aj ipjα̇j −MRj(t), j = 1, 3, (2)

where αj ∈ qα, Jj is the moment of inertia of the jth actuator reduced to the motor shaft, ipj is
the gearing ratio, MRj is the moment of dynamic load on the motor shaft from the manipulator,
and kbj and kaj are constants.

Self-braking mechanical gears [15, 16] are often used in the link actuators to reduce the energy
cost of controlling the FSMR manipulator. The self-braking property is provided by imposing an
impulse coupling on the moving link of the manipulator; as a result, α̇j = 0 and uj = 0. Due to self-
braking, the equation for αj disappears from (1), which is mathematically expressed as a decrease
(or increase) in the order of system (1) by 2× r, where r denotes the number of simultaneously
braked (or unbraked) links of the manipulator. The FSMR model (1), (2) serves to design robot
motion control algorithms in different operation modes of the manipulator [15].

When designing angular motion control algorithms for an FSMR, it is necessary to consider the
property of technical controllability, a necessary condition for the performance of the robot [18].
For an FSMR, this property means that the angular motion of the robot body and the movements
of the manipulator’s links must be controllable. In other words, when control signals are supplied to
change their positions, these changes must be implemented in a required direction and with a given
speed. It is reasonable to analyze the controllability of FSMRs based on a simplified angular motion
model of the robot mechanical system under the following assumptions [18]: for each qi, there exists
Mi with the constraint |Mi| �Mmax

i > 0, i = 1, 6; given Mj = 0, i, j = 1, 6, j �= i, at a time instant
t = t0 and qi(t) = q̇i(t) = q̈i(t) = 0 (t < t∗), the desired response to Mmax

i > 0 is qi(t) � 0 at time
instants t > t∗; the velocities q̇ are small enough to nullify the terms of the full motion model that
depend on the products of q̇; the motion equations of the model can be linearized with respect to
the position q = q∗, where q∗i = const, i = 1, 6.

The angular motion model linearized in the position q∗ has the form

A(q∗)Δq̈ = P (q∗)M(q), (3)

where Δq = q− q∗, A(q∗) is a positive definite matrix, and the matrix P (q∗) relates the generalized
forces to the vector of control forces and moments [18].
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The FSMR with model (3) is controllable in Δqi i = 1, 6 in the position q = q∗ if under the zero
initial conditions Δqi(t) = Δq̇i(t) = Δq̈i(t) = 0 ∀t < t0, supplying the maximum control |Mi(t)| =
Mmax

i ∀t � t0 at the time instant t0 generates an acceleration Δq̈i(t) � ηi �= 0 of the same sign
as Mi(t) irrespective of the other control actions Mi(t) (j = 1, 6; j �= i), where ηi are known charac-
teristic values of the mechanical system. According to the theorem proved in [18], the controllability
of the FSMR in the neighborhood of the point q = q∗ is determined only by the design parameters
of the robot’s mechanical system and not by the vector of control constraints Mmax.

3. TRAJECTORY MOTION CONTROL OF A FREE-FLYING SPACE
MANIPULATION ROBOT

Consider a section of the FSMR trajectory that starts when turning the cruise engine off and
ends when reaching the boundary of the manipulator’s working area. On this section, the FSMR
motion control system must eliminate the residual lateral velocity and the lateral deviation of the
robot from the line of sight as well as stabilize the angular position of its body. If gas-jet engines
are used as actuators, the problem is to reduce the consumption of the onboard working fluid of
the engines. This problem will be solved for control design by the joint use of gas-jet nozzles and
torque actuators of the manipulator. For brevity, such control will be referred to as cost-efficient
control.

When the FSMR with the transported element of the LSS moves along the trajectory, its ma-
nipulators must be fixed in a position that aligns the center of gravity of the robot’s mechanical
system with the center of application of the control forces [7]. The manipulator with the trans-
ported element is stationary, and the trajectory and angular motion of the FSMR are controlled
using basic algorithms that form the control actions Mϑ applied to the robot body from gas-jet
nozzles. Under cost-efficient control on the considered trajectory section, we propose to provide
the limited mobility of the manipulator. In this case, the required angular stabilization of the body
is implemented through motion exchange between the robot body and the manipulator’s links by
applying control torques from the electromechanical actuators of the manipulator, the electrical
energy of which can be recovered. Due to restrictions on the admissible movements of the manip-
ulator’s links to control the angular position of the FSMR body, the angles of rotation of the links
may reach the limit values, making further control by the electromechanical method impossible.
When restoring the initial configuration of the manipulator, the required angular orientation of the
body is provided by means of gas-jet nozzles. For brevity, this restoration process will be called
the manipulator’s unloading mode.

The following features must be considered when forming cost-efficient control algorithms: there
are bounded domains of varying the coordinates of the manipulator’s links (|αi(t)| � αimax,
|α̇i(t)| � α̇imax); the deviation of the manipulator’s links from the initial position displaces the
FSMR’s center of gravity relative to the center of application of the forces and, therefore, is a
parametric disturbance in the robot orientation system; gas-jet actuators are relay elements, and
the torques of electromechanical actuators are bounded; the conditions of technical controllability
by the vector qα hold in the entire domain of varying the coordinates of system (1).

Let uϑ(ϑ, ϑ̇, t) be the basic orientation control algorithms for the FSMR and uα(α, t) be the
manipulator’s configuration control algorithms. In the case of cost-efficient control, initially imple-
mented by the control action Mα1 from the arm link actuator only, the FSMR motion equations of
motion of the SCMR have the form

A1(q)q̈1 = Fq + F d
q , (4)

where q1 = (ϑ, α1,X0, Y0)
T, Fq = (0,Mα1, 0, Fy)

T is the vector of control actions used, F d
q =

(Md
ϑ , 0, 0, 0)

T is the vector of disturbances considered, A1(q) = [aij(α1, λ)] is a symmetric matrix,
and λ is the vector of the parameters of the FSMR and LSS element.
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The coordinate ϑ varies according to the solution of equation (4) of the form

ϑ̈ = k0(kαMα1 + kdM
d
ϑ + kyFy), (5)

where k0 = (det[A1(q)])
−1; kα(α1, λ) = −D21q is the efficiency coefficient ofMα1 when applied to ϑ,

representing the algebraic complement of the element a21(q) for det[A1(q)]; kd(α1, λ) = D11(q) is the
efficiency coefficient of the exogenous disturbance Md

ϑ on ϑ, representing the algebraic complement
of the element a11(q) for det[A1(q)]; finally, ky(α1, λ) = −D41(q) is the efficiency coefficient of the
control channel Fy, representing the algebraic complement of the element a41(q) for det[A1(q)].

We construct the stabilizing control action Mα1 for the coordinate ϑ in the form

Mα1[uα1(t)] = −k̃0kA(ϑ+ kϑ̇ϑ̇), (6)

where kA = (kmkb)
−1 is the static gain of the actuator; k̃0 is a tunable parameter of the control

algorithm uα1(t) (if necessary); kϑ̇ is a constant.

If the control action (6) is implementable, then the linear part of the basic algorithm is designed
to ensure stability and the desired quality of the motion (5). Considering (6), let us write (5) as

ϑ̈+ kAkϑ̇k̃0k̄α(α1, λ)ϑ̇ + kAk̃0k̄α(α1, λ)ϑ = M̄d
Σ(α1, λ, t), (7)

where k̄α(α1, λ) = k0kα(α1, λ) is the reduced efficiency coefficient of the control action Mα1 (ac-
cording to the technical implementability theorem and [18], this coefficient satisfies the condi-
tion k̄α(α1, λ) > 0∀(α1, α2) ∈ (0,±π)); M̄d

Σ(α1, λ, t) = k̄d(α1, λ)M
d
ϑ + k̄y(α1, λ)Fy is the resulting

reduced disturbing torque; finally, k̄y(α1, λ) = k0ky(α1, λ) and k̄d(α1, λ) = k0kd(α1, λ).

If the parameters λ are known and α1(t) is measured, we propose an algorithm to change k0(t)
in (6) based on the stationarity condition

k̃0(t)k̄α(α1, λ) = K, (8)

where K is a constant satisfying the desired quality of motion for ϑ.

Under (8), the coefficients in (7) are constant, which ensures the stability of motion for ϑ. For
the motion (7) with (8), the required static accuracy |ϑ(t)| � ϑmin of FSMR orientation, where

ϑmin is a given value, is achieved by fulfilling the condition kA � (Kϑmin)
−1
[
Md

Σ(α1, λ, t)
]
max

.

The control action (5) is implemented by supplying the voltage uα1(t) to the input of the
electrical actuator (2) of the manipulator’s shoulder link according to the algorithm [16]

uα1(t) = − k̃0
ig

[(
1 +

kϑ̇
kmJm

)
ϑ+ (kmJm)−1

∫
ϑdt+ kϑ̇ϑ̇+

kbJL

k̃0Jm
α̇1

]
, (9)

where ML ≈ −JLα̈1 and JL is the moment of inertia of the load reduced to the shoulder joint.

The algorithm (9) is used until reaching the domain |ϑ(t)| < ϑmin by ϑ. The system then
switches to a nonlinear algorithm containing nonlinearities (dead zone and hysteresis) to organize
highly cost-efficient unilateral auto oscillations in this coordinate domain.

Generally, the residual nonzero initial conditions ϑ0, ϑ̇0 and the forced motions generated by
exogenous disturbances are damped using the algorithm (9) by changing the coordinates αi(t).
The damping process ends either with steady-state small oscillations in the domain |ϑ(t)| � ϑmin

or with αi(t) reaching the constraints. In the latter case, it becomes necessary to return the
manipulator to the initial position (the unloading mode) in order to implement the orientation
control method for the FSMR using its mobility again. In the unloading mode, the manipulator’s
links are transferred to the initial state, αi(t) → α∗

i , under the action of its control Mα(uα) while
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Fig. 1. Limit cycles in the manipulator’s unloading mode.

keeping ϑ in the domain |ϑ(t)| � ϑmin. The angular stabilization of the body is implemented by
the torque Mϑ(uϑ) �Mmax

ϑ , where Mmax
ϑ is the existing constraint. In this mode, robot control is

a multilink control problem in an essentially nonlinear system with control constraints.

When describing the unloading mode in (4), it is necessary to assume

Fq = (Mϑ,Mα1, 0, Fy)
T.

Then the behavior of the coordinate ϑ is described by the equation

ϑ̈ = k̄Mϑ(α1, λ)Mϑ(uϑ) + fp(α1, λ), (10)

where k̄Mϑ(α1, λ) is the efficiency coefficient ofMϑ(uϑ), calculated by analogy with (5); fp(α1, λ) =
M̄d

Σ(α1, λ, t) + k̄α(α1, λ)Mα1 are disturbances for |ϑ(t)| � ϑmin.

When designing control algorithms for the coordinates ϑ and α, it is necessary to consider
the contradictory requirements for the operation of each subsystem. Minimizing the roll time
of the manipulator’s link that has reached the constraint implies using the maximum achievable
speeds α̇1max of the output shaft of the actuator (under the existing constraints). However, the
disturbances fp(α1, λ) arising in the control subsystem ϑ under the constraint Mmax

ϑ may violate
the orientation accuracy requirements. In this case, the roll rate of the manipulator’s link should be
bounded by a value smaller than α̇1max. It is reasonable to use the phase plane method based on (10)
to determine the optimal controller parameters ensuring the desired dynamics in the unloading
mode.

Let the basic nonlinear algorithm for stabilizing the angular position of the FSMR uϑ(ϑ, ϑ̇, t)
generate unilateral auto oscillations represented on the phase plane (ϑ, ϑ̇) as a limit cycle Γ0 (Fig. 1).
In the unloading mode of the manipulator, under the action of fp(α1, λ), the undisturbed cycle Γ0

is transformed into another stable cycle Γ1. The cycle Γ1 is formed so that for the maximum
possible value fp,max(α1, λ), its phase trajectory would not cross the limits of the admissible devi-
ations of the controlled coordinates (|ϑ| = ϑp, |ϑ̇| = ϑ̇p); see the dashed box in Fig. 1. When the
unloading process is complete, the original cycle is restored (Γ1 → Γ0), and a return to the control
action Mα(uα) follows.
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Simultaneously with FSMR orientation control, the correction system continues to work for the
transverse displacements of the body: when the deviation exceeds Y0 = Y0min, it generates the
control action Fy in (4). Since the mechanical structure of the FSMR has an unbalanced configura-
tion, the disturbing torque Md

Fy = Fyxc arises in the orientation control channel; its compensation
by the action of Mα(uα) may be insufficient. Therefore, when Fy acts in the orientation control
system, it is necessary to provide an automatic transition to the efficient nonlinear control Mϑ(uϑ).

4. MANIPULATOR CONTROL WHEN INSTALLING AN ELEMENT ON AN OBJECT

Consider FSMR manipulator control in the soft installation mode of a building element on an
LSS in the working area. Here, the motion of the robot body when using manipulator’s self-braking
actuators does not change qα. The controlled motion of each link must not change the values of other
interlink angles. This property, characteristic of the class of mechanical systems under considera-
tion, holds under the conditions of technical controllability (if satisfied during the design process).
These conditions allow neglecting the mutual influence of joints and, consequently, treating the
matrix A22 as a diagonal one. For t � t0, where t0 is the time of entering the working area, the
coordinates of the FSMR mechanical system with the transported element of the LSS change with
sufficiently small rates. Hence, linear mathematical models can be used to design algorithms [15].
The terms of the functions fK(q, q̇) and fα(q, q̇) contain products of small values (q̇iq̇j), i, j = 1, 6;
hence, their contribution to FSMR dynamics can be neglected in the first approximation. In the
presence of all these features, the motion of (1) can be approximately described by

Ar(q)q̈ =M(q, u), (11)

where the matrix Ar(q) consists of the blocks Ar,11 = A11, Ar,12 = A12, Ar21 = 0 and q̇(t0) = 0.

When the coordinates Xε and Yε are selected as the controlled ones, manipulator control by the
coordinates qα becomes open-loop and it is possible to reach the domain |Xε| � Xε,min, |Yε| � Yε,min

by purposefully varying qα(t), where Xε,min and Yε,min are given values. Using only the rotating
degrees of freedom of the mechanical FSMR system allows neglecting the displacement of the
body’s center of gravity and treating q1 and q2 as constants. If the control actions by α1 and α2

are formed in the soft installation mode of the element and the manipulator’s end link is fixed
(α3 is a constant), then the motion for Xε and Yε based on (11) is described by

Ẍε = d11(q)Mα1 + d12(q)Mα2,

Ÿε = d21(q)Mα1 + d22(q)Mα2,
(12)

where

d11(q) = bΔa
−1
44

[
(bm − a223)(a14a33 − a13a34) + b3(a24a33 − a23a34)

]
,

d12(q) = bΔa
−1
55

[
(bm − a223)(a15a33 − a13a35) + b3(a25a33 − a23a35)

]
,

d21(q) = bΔa
−1
44

[
(bm − a213)(a24a33 − a23a34) + b3(a14a33 − a13a34)

]
,

d22(q) = bΔa
−1
55

[
(bm − a213)(a25a33 − a23a35) + b3(a15a33 − a13a35)

]
,

bΔ =
[
a33mS(bm − a213 − a223)

]−1
, bm = a33m

2
S, b3 = a13a23, and mS denotes the FSMR mass.

The coefficients dij(q), i, j = 1, 2, vary due to their dependence on the angular position of the
FSMR body through ϑ and on the joint angles α1 and α2. During manipulator control in the
working area, its links may take positions in which dij(q) < 0, causing instability for Xε and Yε.
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Fig. 2. The effect of the angle ϑ on the boundaries of the stability domain.

If the information about Xε, Yε, Ẋε, and Ẏε is available, then stable control by Xε and Yε is ensured
by the PD algorithms

Mα1 = k0x(k1xXε + k2xẊε),

Mα2 = k0y(k1yYε + k2yẎε),
(13)

where the gains kjx, kjy (j = 0, 2) must be appropriately chosen to stabilize the trivial solution
of system (12), (13). These stability requirements are defined when analyzing the characteristic
equation

4∑
j=0

cjλ
j = 0,

where

c0 = Δdk1xk1y; c1 = Δd(k1yk2x + k1xk2y);

c2 = Δdk2xk2y − (k1xk0xd11 + k2xk0yd22);

c3 = −(k1yk0xd11 + k2yk0yd22); c4 = 1;

Δd = k0xk0y(d11d22 − d12d21).

The necessary stability condition cj > 0 ∀j = 0, 4 holds for Δd > 0 and sgnd11 �= sgnk0x, sgnd22 �=
sgnk0y. The condition Δd > 0 does not depend on the gains kjx, kjy, j = 0, 2, and is satisfied under
the relations

(sgnd11 �= sgnd22 ∧ sgnd12 = sgnd21) ∨ (sgnd11 = sgnd22 ∧ sgnd12 �= sgnd21);

(sgnd11 = sgnd22 ∧ sgnd12 = sgnd21 ∧ |d11d22| > |d12d21|)
∨ (sgnd11 �= sgnd22 ∧ sgnd12 �= sgnd21 ∧ |d11d22| < |d12d21|).

(14)
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If the variations of dij(q) do not violate the condition Δd > 0, then the stability conditions are
satisfied by varying the gains in (13). If α1 and α2 are measurable during FSMR manipulator
control, then dij(q) can be calculated and the stability conditions can be maintained by tuning the
gains in (13) at appropriate time instants.

Based on (14), it is reasonable to form the stability domain in the coordinates α1 and α2.
Information about this domain serves to choose the initial configuration of the manipulator before
the element installation and the admissible variation of α1 and α2 during the installation process.
The topology of the stability domain depends on the values ϑ and α3, which determine the relative
position of the body and the element to be installed. As one example with the data from [15],
Fig. 2 shows a segment of the stability domain for α3 = −0.2π and three initial positions of the
FSMR body (ϑ = [−0.35; 0; 0.35]). Here, the point F0 indicates the initial position of the links:
α1(t0) = −1.26 and α2(t0) = 1.58. According to Fig. 2, increasing the positive value of the angle ϑ
reduces the stability domain where Δd > 0. (In this figure, the stability domain is indicated by
DD > 0.) This fact decreases the range of varying the angles α1 and α2 when the element is
installed by the manipulator.

Note that the variation of the angle α3 (the gripper’s position) has a smaller effect on the
boundaries of the stability domain compared to the variation of the angular position of the FSMR
body.

5. CONCLUSIONS

The features of the mechanical structure of the FSMR have been analyzed, and a solution has
been proposed to reduce the consumption of the onboard working fluid of gas-jet engines during
transportation of the LSS element and during its assembly in orbit. This solution involves the
mobility of the manipulator to stabilize the angular position of the FSMR body. On separate
sections of the FSMR motion trajectory, the control is jointly implemented by two types of actua-
tors: gas-jet nozzles and torque electromechanical actuators of the manipulator. The mathematical
models of FSMR motion used in this paper are convenient for designing control algorithms based
on the feedback principle and studying the manipulation processes of the FSMR. The control al-
gorithms of the FSMR satisfy the conditions of technical controllability and maintain the required
configuration of the mechanical structure of the robot during the transportation and installation
of the LSS element. Under sufficiently small velocities of the manipulator’s joints, the algorithms
presented above provide in the working area a soft installation of the element at a given point
of the LSS. The stability domain in the space of the angles of the manipulator’s joints has to be
determined in advance in order to choose the initial configuration of the robot’s mechanical system
before the manipulation operation and the range of these angles during the operation that ensures
stable motion.
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Abstract—This paper proposes a novel approach to suppressing bounded exogenous distur-
bances in a linear discrete-time control system by a static state- or output-feedback control
law. The approach is based on reducing the original problem to a nonconvex matrix opti-
mization problem with the gain matrix as one variable. The latter problem is solved by the
gradient method; its convergence is theoretically justified for several important special cases.
An example is provided to demonstrate the effectiveness of the iterative procedure proposed.
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1. INTRODUCTION

Consider a linear discrete-time control system described by

xk+1 = Axk +Buk +Dwk,

yk = Cxk,

zk = C1xk,

(1)

with the following notations: A∈R
n×n, B ∈R

n×p, D∈R
n×m, C ∈R

l×n, and C1 ∈R
r×n are given

matrices of compatible dimensions; x0 is an initial state; xk ∈R
n is the state vector; yk ∈R

l is
the observed output; zk ∈R

r is the controlled output; uk ∈R
p is the control vector; wk ∈R

m is an
exogenous disturbance bounded at each time instant:

|wk| � 1 for all k = 0, 1, 2, . . . . (2)

The problem of suppressing bounded exogenous disturbances is to find a stabilizing feedback
control law that minimizes the value maxk |zk|. In this paper, we will design a linear static state-
uk = Kxk or output-feedback uk = Kyk control law (if it exists).

The exact solution of this problem seems difficult; following the approach proposed in [1–3], we
will find a suboptimal solution in terms of invariant ellipsoids. In this case, the original problem
is treated as an optimization problem, where one variable is the gain matrix and the objective
function to be minimized determines the performance criterion (the size of the ellipsoid containing
the controlled output of the system). The corresponding approach goes back to the works [4, 5],
devoted to linear quadratic control design.
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This paper is a natural continuation of the publication [6], where the problem of suppressing
bounded exogenous disturbances in a linear continuous-time control system was considered and
solved from the same perspective.

The remainder of this paper is organized as follows. Section 2 discusses an algorithm for solving
the analysis problem (finding the minimal bounding ellipsoid for the closed loop system). In
Section 3, the control design problem is written as a nonconvex matrix optimization problem, and
an iterative algorithm for solving it is formulated and justified. Section 4 provides an illustrative
example.

2. ANALYSIS PROBLEM

Consider a discrete-time dynamic system described by

xk+1 = Axk +Dwk,

zk = Cxk
(3)

with a stable (Schur) matrix A ∈ R
n×n, an initial state x0, the state vector xk ∈ R

n, the output
zk ∈ R

l, and an exogenous disturbance wk ∈ R
m that satisfies the constraint (2).

Recall that an ellipsoid of the form

Ex =
{
x ∈ R

n : xTP−1x � 1
}
, P 
 0,

is said to be invariant for system (3) if the condition x0 ∈ Ex implies xk ∈ Ex for all time instants
k = 1, 2, . . . . If Ex is an invariant ellipsoid with a matrix P , then the output zk of system (3) with
x0 ∈ Ex belongs to the so-called bounding ellipsoid

Ez =
{
z ∈ R

r : zT(CPCT)−1z � 1
}
;

in the case x0 /∈ Ex, the output will tend to this ellipsoid.

The analysis problem is to assess the effect of exogenous disturbances on the system output.
Within the proposed approach, we are concerned with minimal ellipsoids containing the system
output. A conventional minimality criterion for ellipsoids is the value trCPCT, equal to the sum
of the squares of its semi-axes. The following result holds.

Theorem 1 [1, 3]. Assume that the matrix A is Schur, ρ = maxi |λi(A)| < 1, and the matrix
P (α) 
 0, ρ2 < α < 1, satisfies the discrete Lyapunov equation

1

α
APAT − P +

1

1− α
DDT = 0.

Then the optimal bounding ellipsoid for system (3) is obtained by minimizing the univariate function

f(α) = trCP (α)CT

on the interval ρ2 < α < 1; and if α∗ is the minimum point and x0 satisfies the condition
xT0 P

−1(α∗)x0 � 1, then the estimate

|zk| �
√
f(α∗), k = 1, 2, . . . ,

holds.

The optimization problem formulated in Theorem 1 can be solved using Newton’s method [7].
Let us choose an initial approximation ρ2(A) < α0 < 1, e.g., α0 =

(
1 + ρ2(A)

)
/2, and apply the

iterative process

αj+1 = αj − f ′(αj)

f ′′(αj)
, (4)
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where

f ′(α) = trY

(
1

(1− α)2
DDT − 1

α2
APAT

)
,

f ′′(α) = 2tr Y

(
1

(1− α)3
DDT +

1

α3
A(P −X)AT

)
,

and P , Y, and X are the solutions of the discrete Lyapunov equations

1

α
APAT − P +

1

1− α
DDT = 0,

1

α
ATY A− Y + CTC = 0,

and
1

α
AXAT −X +

1

(1− α)2
DDT − 1

α2
APAT = 0,

respectively.

The next theorem ensures the global convergence of this algorithm. It can be established by
analogy with a similar result in [6].

Theorem 2. In the method (4),

|αj − α∗| � f ′′(α0)

2jf ′′(α∗)
|α0 − α∗|, |αj+1 − α∗| � c|αj − α∗|2,

where c > 0 is some constant.

3. DESIGN PROBLEM

Returning to system (1), we suppose that the matrices D and C1 are square and nonsingular.1

The problem is to find a linear static output-feedback control law

uk = Kyk

(in the case C = I, a linear static state-feedback control law) that stabilizes the closed loop sys-
tem (1) and suppresses the exogenous disturbances (2) by minimizing the bounding ellipsoid for
the controlled output zk. As an optimality criterion we choose the value

trC1PC
T
1 + ρ‖K‖2F ,

where the first component describes the size of the bounding ellipsoid and the second one is a control
penalty to avoid large values of the gain matrix. (The coefficient ρ > 0 adjusts its significance.)

Due to Theorem 1, the original problem is reduced to the matrix optimization problem

min f(K,α), f(K,α) = trC1PC
T
1 + ρ‖K‖2F

subject to the constraint

1

α
(A+BKC)P (A+BKC)T − P +

1

1− α
DDT = 0 (5)

with respect to the matrix variables P = PT ∈ R
n×n and K ∈ R

p×n and the scalar parameter 0 <
α < 1.

According to Section 2, minimization with respect to the parameter α can be performed rather
effectively. (It suffices to replace the matrix A by A+BKC.) Therefore, we will focus on minimizing
the function

f(K) = min
α
f(K,α).

1 No doubt, this technical assumption can be relaxed; for the time being, the objective is to establish simple and
visual results.
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Assumption. Let K0 be a known stabilizing controller, i.e., the matrix A+BK0C is Schur.

Note that the function f(K) is well-defined and positive on the set S of stabilizing controllers. Its
definitional domain S can be nonconvex and disconnected whereas its boundaries can be nonsmooth.
Here, the situation completely matches the continuous-time case; see [6].

Lemma 1. The function f(K) is coercive on the set S of stabilizing controllers (i.e., it tends to
infinity on its boundary) and, moreover,

f(K) � 1

1− ρ2(A+BKC)

λmin(CC
T)

1− σ2min(A+BKC)
‖D‖2F , (6)

f(K) � ρ‖K‖2.

Corollary 1. The level set

S0 = {K ∈ S : f(K) � f(K0)}

is bounded for any controller K0 ∈ S.
On the other hand, the function f(K) has a minimum point on the set S0 (as a continuous

function on a compact set), but the set S0 shares no points with the boundary of S due to (6). It
will be demonstrated below that f(K) is differentiable on S0; hence, the following result is valid.

Corollary 2. There exists a minimum point K∗ on the set S, and the gradient vanishes at this
point.

The gradient and Hessian of the function f(K,α) have properties described by the two lemmas
below.

Lemma 2. The function f(K,α) is well-defined and differentiable on the set S of stabilizing
controllers K for ρ2(A+BKC) < α < 1. In addition,

1

2
∇Kf(K,α) = ρK +

1

α
BTY (A+BKC)PCT, (7)

∇αf(K,α) = trY

(
1

(1− α)2
DDT − 1

α2
(A+BKC)P (A+BKC)T

)
,

where the matrices P and Y are the solutions of the discrete Lyapunov equations

1

α
(A+BKC)P (A+BKC)T − P +

1

1− α
DDT = 0 (8)

and

1

α
(A+BKC)TY (A+BKC)− Y +CT

1 C1 = 0, (9)

respectively.

The function f(K,α) achieves minimum at an inner point of the set S × (
ρ2(A+BKC), 1

)
.

This point is given by the conditions

∇Kf(K,α) = ∇αf(K,α) = 0.

In addition, f(K,α) as a function of α is strictly convex on ρ2(A + BKC) < α < 1 and achieves
minimum at an inner point of this interval.
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Lemma 3. The function f(K,α) is twice differentiable with respect to K, and the action of its
Hessian on an arbitrary matrix2 E ∈ R

p×l is given by

1

2
∇2

Kf(K,α)[E,E] = ρ〈E,E〉 + 1

α
〈BTY BECPCT, E〉+ 2

α
〈BTY (A+BKC)P ′CT, E〉,

where P ′ is the solution of the discrete Lyapunov equation

1

α
(A+BKC)P ′(A+BKC)T−P ′+

1

α

(
(A+BKC)P (BEC)T+BECP (A+BKC)T

)
= 0. (10)

The gradient of f(K,α) as a function of K is not Lipschitz on the set S of stabilizing controllers.
However, like in the continuous-time case, it has the Lipschitz property on the subset S0. (This
result can be easily obtained.)

The above properties of the objective function allow constructing a minimization method and
justifying its convergence. That is, we propose an iterative approach to solve the problem that
involves the gradient method with respect to the variable K and Newton’s method with respect to
the variable α.

The algorithm includes several steps as follows.

1. Choose some values of the parameters ε > 0, γ > 0, 0 < τ < 1, and the initial stabilizing
approximation K0. Calculate

α0 =
1 + ρ2(A+BK0C)

2
.

2. On the jth iteration, the controller Kj and the value αj are given. Calculate the matrix
Aj = A+BKjC, solve equations (8) and (9) to find the matrices P and Y . Calculate the
gradient

Hj = ∇Kf(Kj, αj)

from the relation (7).

If ‖Hj‖ � ε, then take the controller Kj as the approximate solution.

3. Perform the gradient method step:

Kj+1 = Kj − γjHj.

Adjust the step length γj > 0 by fractionating γ until the following conditions are satisfied:

a. Kj+1 is a stabilizing controller, i.e., the matrix (A+BKj+1C)/
√
αj is Schur.

b. f(Kj+1) � f(Kj)− τγj‖Hj‖2.
4. Minimize f(Kj+1, α) with respect to α and find αj+1. Revert to Step 2.

This algorithm converges in the following sense.

Theorem 3. Only a finite number of fractions are realized for γj at each iteration of the algo-
rithm, the function f(Kj) is monotonically decreasing, and its gradient vanishes with an exponential
rate (like a geometric progression):

lim
j→∞

‖Hj‖ = 0.

The proof is completely analogous to the continuous-time case and uses the common gradient
method analysis scheme for the unconstrained minimization of functions with a Lipschitz gradi-
ent [8].

2 In the sense of the second derivative in a direction.
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4. EXAMPLE

Consider a system of the form (1) with the matrices

A =

⎛⎜⎜⎜⎝
0.9950 0.0050 0.0998 0.0002
0.0050 0.9950 0.0002 0.0998
−0.0997 0.0997 0.9950 0.0050
0.0997 −0.0997 0.0050 0.9950

⎞⎟⎟⎟⎠ ,

B =

⎛⎜⎜⎜⎝
0.0050
0.0000
0.0998
0.0002

⎞⎟⎟⎟⎠ , D =

⎛⎜⎜⎜⎝
0.0050 0.0000
0.0000 0.0050
0.0998 0.0002
0.0002 0.0998

⎞⎟⎟⎟⎠ ,

C =

(
1 0 0 0
0 0 1 0

)
, C1 =

(
0 1 0 0
0 0 0 1

)
.

This is a slight modification of Example 4.3.2 from the monograph [3].

Let ρ = 0.1 and choose

K0 =

(
−2.9823
−3.9608

)
as an initial stabilizing controller.

The iterative process terminated in the 25th iteration and yielded the controller

K∗ =

(
−0.6519
−1.8166

)

and the corresponding bounding ellipse for the controlled output of the system with the matrix(
19.2309 −3.4643
−3.4643 10.3506

)
.

The dynamics of the iterative process are shown in Fig. 1.

For the initial stabilizing controller

K ′
0 =

(
−0.3675

−0.7106

)
,

in the 24th iteration we obtain the controller

K ′
∗ =

(
−0.6527

−1.8166

)

and the corresponding bounding ellipse with the matrix(
19.2293 −3.4638

−3.4638 10.3543

)
.

Note that the controllers K∗ and K ′∗ differ in norm by fractions of a percent. The same applies to
the bounding ellipses when contrasted by the trace criterion.

For comparison, we solve the same problem by constructing a dynamic feedback controller

uk = Kx̂k
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Fig. 2. Bounding ellipses.

using the observer

x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k), x̂0 = 0.

Following the approach [3] and the technique of linear matrix inequalities (LMIs), we calculate the
gain matrix

K =
(
−39.0055 −46.7193 −8.5074 −98.0176

)
,
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the observer matrix

L =

⎛⎜⎜⎜⎝
0.5655 0.0759

−6.7183 1.8722

−2.2061 1.0573

−2.8715 0.7224

⎞⎟⎟⎟⎠ ,
and the matrix (

32.2165 −14.9238

−14.9238 36.3654

)

of the ellipse containing the controlled output.

These problem statements have a small technical difference: in the latter case, the regularizing
term ρ‖K‖2F is eliminated from the objective function and an additional term with control is
introduced into the regulated output of the system for the same purpose: zk = C1xk +B1uk.

In Fig. 2, the solid line shows the bounding ellipse yielded by the iterative procedure whereas
the dotted line the one provided by the dynamic controller. The rather large difference in the sizes
of the ellipses can be explained as follows: when constructing a dynamic feedback controller, it
is necessary to roughen several things in order to linearize the matrix inequalities, which leads to
excessive conservatism.

5. CONCLUSIONS

This paper has proposed a new controller design approach for the optimal suppression of bounded
exogenous disturbances in a linear discrete-time system. It is based on reducing the original problem
to a matrix optimization problem with the gain matrix as one variable. Next, this problem is solved
using the gradient method. Its convergence has been theoretically justified for several important
special cases. A numerical example has been presented to demonstrate the effectiveness of the
proposed procedure.

The problem of suppressing exogenous disturbances has been considered under fairly strict
restrictions. In particular, it has been assumed that the dimension of disturbances and controlled
outputs coincides with the number of states. However, the method quite effectively works in the
absence of such restrictions. An important task is to justify the method in this case as well.

Since the definitional domain of the function f(K) may even be disconnected, it is difficult to
expect convergence to a global minimum. However, for the problem with state-feedback control, as
in the continuous case, one can apparently expect that the objective function satisfies the gradient
dominance condition and, hence, global convergence to a unique minimum point.

APPENDIX

Proof of Lemma 1. Consider a sequence of stabilizing controllers {Kj} ∈ S such that Kj →
K ∈ ∂S , i.e., ρ(A+BKC) = 1. In other words, for any ε > 0 there exists a number N = N(ε)
such that

|ρ(A+BKjC)− ρ(A+BKC)| = 1− ρ(A−BKjC) < ε

for all j � N(ε).

Let Pj be the solution of equation (5) associated with the controller Kj:

1

αj
(A+BKjC)Pj(A+BKjC)T − Pj +

1

1− αj
DDT = 0.
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Also, let Yj be the solution of the dual discrete Lyapunov equation

1

αj
(A+BKjC)TYj(A+BKjC)− Yj + C1C

T
1 = 0.

Using [6, Lemmas A.1 and A.2] and [7, Lemma A.1.2], we have

f(Lj) = trC1PjC
T
1 + ρ‖Kj‖2F � trPjC1C

T
1 = tr

(
Yj

1

1− αj
DDT

)

� 1

1− αj
λmin(Yj)‖D‖2F � 1

1− αj

λmin(C1C
T
1 )

1− σ2min(A+BKjC)
‖D‖2F

� 1

1− ρ2(A+BKjC)

λmin(C1C
T
1 )

1− σ2min(A+BKjC)
‖D‖2F

� 1

ε

1

1 + ρ(A+BKjC)

λmin(C1C
T
1 )

1− σ2min(A+BKjC)
‖D‖2F −−−→

ε→0
+∞

since ρ2(A+BKjC) < αj < 1.

On the other hand,

f(Kj) = trC1PjC
T
1 + ρ‖Kj‖2F � ρ‖Kj‖2F � ρ‖Kj‖2 −−−−−−−→‖Kj‖→+∞

+∞.

The proof of Lemma 1 is complete.

Proof of Lemma 2. Differentiation with respect to α is performed in accordance with the results
of Section 2, with A replaced by A+BKC.

We add the increment ΔK for K in equation (5) and denote the corresponding increment of P
by ΔP :

1

α

(
A+B(K +ΔK)C

)
(P +ΔP )

(
A+B(K +ΔK)C

)T − (P +ΔP ) +
1

1− α
DDT = 0.

Leaving the notation ΔP for the principal part of the increment, we have

1

α

(
(A+BKC)P (A+BKC)T +BΔKCP (A+BKC)T

+ (A+BKC)P (BΔKC)T + (A+BKC)ΔP (A+BKC)T
)

− (P +ΔP ) +
1

1− α
DDT = 0.

Subtracting equation (5) from this equation gives

1

α
(A+BKC)ΔP (A+BKC)T −ΔP

+
1

α

(
(A+BKC)P (BΔKC)T +BΔKCP (A+BKC)T

)
= 0. (A.1)

The increment of f(K) is calculated by linearizing the corresponding terms:

Δf(K) = f(K)− f(K +ΔK)

= trC1(P +ΔP )CT
1 + ρ‖K +ΔK‖2F − (trC1PC

T
1 + ρ‖K‖2F )

= trC1ΔPC
T
1 + ρtrKTΔK + ρtr (ΔK)TK = trΔPCT

1 C1 + 2ρtrKTΔK.
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Due to [6, Lemma A.1], from the dual equations (A.1) and (9) it follows that

Δf(K) = 2tr Y
1

α
BΔKCP (A+BKC)T + 2ρtrKTΔK

= 2tr

(
ρKT +

1

α
CP (A+BKC)TY B

)
ΔK

= 2

〈
ρK +

1

α
BTY (A+BKC)PCT,ΔK

〉
.

Thus, we arrive at (7). The proof of Lemma 2 is complete.

Proof of Lemma 3. The value

∇2
Kf(K,α)[E,E] = 〈∇2

Kf(K,α)[E], E〉,
is calculated by differentiating ∇Kf(K,α)[E] = 〈∇Kf(K,α), E〉 in the direction E ∈ R

p×l.

For this purpose, linearizing the corresponding terms, we calculate the increment of∇Kf(K,α)[E]
in the direction E:

Δ∇Kf(K,α)[E]

= 2

(
ρ(K + δE) +

1

α
BT(Y +ΔY )

(
A+B(K + δE)C

)
(P +ΔP )CT

)
−2

(
ρK +

1

α
BTY (A+BKC)PCT

)
= 2δ

(
ρE +

1

α
BT(Y BECP + Y ′(K)[E](A +BKC)P

+ Y (A+BKC)P ′(K)[E]
)
CT

)
,

where

ΔP = P (K + δE) − P (K) = δP ′(K)[E],

ΔY = Y (K + δE) − Y (K) = δY ′(K)[E].

Thus, with P ′ = P ′(K)[E] and Y ′ = Y ′(K)[E], we have

1

2
∇2

Kf(K,α)[E,E]

=

〈
ρE +

1

α
BT(Y BECP + Y ′(A+BKC)P + Y (A+BKC)P ′)CT, E

〉
.

Furthermore, P = P (K) is the solution of the discrete Lyapunov equation (5). We write it in
increments in the direction E:

1

α

(
A+B(K + δE)C

)
(P + δP ′)

(
A+B(K + δE)C

)T − (P + δP ′) +
1

1− α
DDT = 0

or

1

α

(
(A+BKC)P (A+BKC)T + (A+BKC)δP ′(A+BKC)T

+ (A+BKC)P (BδEC)T +BδECP (A+BKC)T
)

− (P + δP ′) +
1

1− α
DDT = 0.

In view of (5), this expression yields equation (10).
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Similarly, Y = Y (K) is the solution of the discrete Lyapunov equation (9). We write it in
increments in the direction E:

1

α

(
A+B(K + δE)C

)T
(Y + δY ′)

(
A+B(K + δE)C

)− (Y + δY ′) + CT
1 C1 = 0

or

1

α

(
(A+BKC)TY (A+BKC) + (A+BKC)TδY ′(A+BKC)

+ (A+BKC)TY BδEC + (BδEC)TY (A+BKC)
)
− (Y + δY ′) + CT

1 C1 = 0.

Due to (9), we obtain

1

α
(A+BKC)TY ′(A+BKC)− Y ′

+
1

α

(
(A+BKC)TY BEC + (BEC)TY (A+BKC)

)
= 0.

(A.2)

From (10) and (A.2) it follows that

trP ′(A+BKC)TY BEC = trY ′BECP (A+BKC)T,

so

1

2
∇2

Kf(K,α)[E,E] = ρ〈E,E〉 + 1

α
〈BTY BECPCT, E〉+ 2

α
〈BTY (A+BKC)P ′CT, E〉.

The proof of Lemma 3 is complete.
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Abstract—Methods for assessing the current state and forecasting critical events are developed
in order to reduce the stress load on the pilot of an aircraft. These methods are based on the
energy approach to flight control. Algorithms for forecasting the possibility of safe takeoff in the
presence of high-rise obstacles on the trajectory are obtained. Forecast correction algorithms
are introduced. Algorithms for calculating the braking distance depending on the runway
condition are found in the modes of landing or emergency braking at takeoff. Some ways to
correct forecasts considering the sequence and operation time of all braking devices are proposed.
Model tests are carried out for the algorithms in the entire range of operating conditions.
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1. INTRODUCTION

The issues of organizing passenger transportation have recently become more and more acute
and topical. The main directions of transportation improvement are traffic intensification and the
expansion of permitted weather conditions for aircraft flights. Therefore, the safety of aviation
equipment comes to the forefront.

Technical and communications progress in all spheres of human activity tends to accelerate.
This progress is manifested by the increase in transportation traffic and the expansion of acceptable
atmospheric or climatic conditions.

According to statistical data of the Main Center for Information Technologies and Meteorological
Services for Aviation (Aviamettelecom) of the Federal Service for Hydrometeorology and Environ-
mental Monitoring (Roshydromet) [1], there were nine aviation accidents during January–March
2023, including:

(1) three fatal accidents, particularly three fatal accidents in G-class airspace, with a death toll
of 5;

(2) one non-fatal accident, including one non-fatal accident in G-class airspace;

(3) two aviation incidents in total (one aircraft landing below the operational minimum and one
aircraft struck by atmospheric electricity);

(4) two industrial events (emergency events);

(5) one emergency situation without investigation (one aircraft struck by atmospheric electric-
ity).

In a statistical study of aviation accidents on passenger flights throughout the world, Boeing demon-
strated that more than half of all accidents occur during takeoff and landing stages [2]. Flight con-
trol at these stages is carried out with the direct participation of the pilot, who undergoes strong
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psychological stress. Therefore, the human factor becomes governing. The statistics of aviation
accidents based on the recent studies [3–5] shows that the share of aviation accidents caused by
human participation in flight task fulfillment varies from 50 to 70% depending on the estimation
methods.

One safety improvement direction is to equip aircraft with onboard systems providing instrument-
based control of critical motion coordinates during two stages: ground run on the runway during
landing and takeoff. Information support for the pilot and the creation of a pilot-friendly interaction
environment with cockpit equipment have become necessary. For this purpose, forecasting methods
and new algorithms [6–8] were developed to calculate the aircraft motion on the ground segment
of the trajectory.

In particular, it was decided to supplement onboard equipment with an information measuring
system (IMS) of takeoff run control [6]. This system simultaneously monitors longitudinal acceler-
ation, speed, and distance to reach the target speed. The forecasted distance to the decision point
helps the pilot to make a timely decision. But if the forecasted distance differs from the standard
one by an unacceptable value, the IMS generates a signal to alert the pilot and a command signal
to prohibit takeoff. In [7, 8], some variants of safe forecasted takeoff and emergency braking in
unfavorable climatic conditions and geographical coordinates were developed. These solutions are
conceptually based on the energy approach to controlling the spatial motion of an aircraft, first
presented in [9].

This paper further refines methods for assessing the current situation and forecasting the air-
craft’s motion on the runway in the braking modes after landing or aborted takeoff and in the ground
run stage before takeoff. In addition, we develop methods for increasing situational awareness to
eliminate stress load and reduce the risks of erroneous actions of the pilot.

2. THE ENERGY BALANCE EQUATION FOR AIRCRAFT MOTION

Historically, the basic controllable coordinates of an aircraft are altitude, speed, and the direction
of flight. They are natural for flight control both in visual orientation mode and in instrument
flight. The theory and practice of automatic control were developed in the same line. The concept
of flight control in the longitudinal channel of the aircraft using two loops—trajectory and speed—
became established in aviation. In automatic flight control systems, the functions of controllers
are performed by independent devices, namely, thrust automaton and autopilot. Controller design
problems with classical methods neglect the nonlinear relationship between the two main variables
(speed and flight altitude), which is provided by the fundamental law of conservation of energy of
a body moving in a potential field of forces.

In contrast to the conventional description of the spatial motion of an aircraft by the Cauchy
equations, the paper [10] proposed a control concept with the total energy of motion

E = mgh+
mV 2

2
,

where m denotes the weight of the aircraft, h is the flight altitude, and V is the speed in the inertial
frame.

We will consider motion in terms of the weight-normalized specific energy of motion HE, which
is also called the pseudo-energy or energy height:

HE =
E

mg
= h+

V 2

2g
.
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Being jointly solved, the dynamic equations of translational motion in the disturbed atmosphere
and the total energy equation of an object yield the energy balance equation

ΔHE = ΔHeng
E +ΔHD

E +ΔHgear
E +ΔHw

E .

This equation describes quantitative relations between the energy source and all its consumers in
the “aircraft–engine–environment” system. The equation is written in increments and contains the
following terms: ΔHE is the increment of the energy height of the aircraft; ΔHeng

E is the specific
work of the engine; ΔHD

E is energy costs to overcome the aerodynamic drag; ΔHgear
E is energy

costs to overcome the resistance of landing gear; finally, ΔHw
E is wind work. For each term, the

following expressions were derived in [8, 9]: ΔHE =
∫ t2
t1
VB(θ +

V̇B
g )dt, where VB is airspeed and θ is

the angle of inclination of the trajectory in the inertial frame; ΔHeng
E =

∫ t2
t1
VBPH cos(αB + φeng)dt,

where PH = P
mg is the normalized thrust, αB is the angle of attack, and φeng is the angle of engine

installation; ΔHD
E =

∫ t2
t1
VBDHdt, where DH = D

mg is the normalized drag; ΔHw
E =

∫ t2
t1
VBfwdt,

where the factor fw ≈ ẇx
g − ẇy

VB
is called the wind factor or hazard index, and wx and wy are the

projections of wind speed on the inertial frame axes; finally, ΔHgear
E =

∫ t2
t1
V kbrakfwdt, where kbrak

is the generalized normalized braking coefficient (the total resistive force of landing gear divided
by aircraft weight).

3. BASIC ALGORITHMS OF ENERGY CONTROL SYSTEM

The energy height HE has two components characterizing potential and kinetic energies, respec-
tively. When moving in space, each component changes not independently but in according with
the law of conservation of total energy. Therefore, the problem of designing flight control algo-
rithms is naturally posed as a problem of multicriteria control. The first criterion is to minimize
the deviation of the energy height: ΔH → min. The second criterion is to minimize the mismatch
between its kinetic and potential components:

ΔHkin
E −ΔHpot

E → min .

In the energy control system (EnCS), the thrust P is the only control variable affecting the total
energy of the aircraft; the elevating rudder deviation δB causes a redistribution of the potential
and kinetic components.

The forces in projections on the axes of the air frame satisfy the equation

mV̇B = P cos(αB + φeng)−D −mg sin θB −m(Ẇxg cos θB + Ẇyg sin θB),

where VB is airspeed, αB is the angle of attack in the air frame, D is drag, θB is the trajectory’s
angle of inclination in the air frame, and Wxg and Wyg are the projections of wind speed on the
axes of the Earth frame. Resolving this equation for P under the assumption of small angles and
passing to the normalized variables, we obtain

PH = θ +
V̇B
g

+ fw +DH .

In the steady-state flight mode without wind, the simplified thrust control law in the EnCS in
increments relative to the set values is given by

ΔPEnCS
H = Δθ +

ΔV̇B
g

.
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Elevating rudder control is used to minimize the mismatch between the potential and kinetic
components, which does not affect the first criterion:

ΔδEnCS
H = Δθ − ΔV̇B

g
.

Integral terms are added to the proportional ones to ensure astatism for the controlled coordinates.

Flight control with EnCS naturally considers the mutual influence of the speed and trajectory
channels; thus, correction loops for these relationships are not needed.

4. ENERGY FORECASTING METHOD FOR TAKEOFF AND OBSTACLE CLEARANCE

The pilot’s goal in the takeoff stage is to overcome a high-rise obstacle at a speed at least equal
to that of stable horizontal flight. In complicated conditions, the pilot needs to assess a priori
the aircraft’s ability to accelerate to the takeoff speed within the runway and climb sufficiently to
overcome high-rise obstacles on the takeoff course. The takeoff diagram is shown in Fig. 1.

LrunLrunLrun

LobstLobstLobst

HobstHobstHobst

V2V2V2

LresLresLres
DTPPDTPPDTPP

DDPDDPDDP

xDPxDPxDP

x�t�x�t�x�t� TPP DP Capture Image Ptint Screen

Time advance
Takeoff

possibility
point

Decision
point

Trajectory
length S

Fig. 1. Characteristic points on the takeoff trajectory.

This figure has the following notations: x(t) is the current coordinate of the aircraft; Hobst

and Lobst are the obstacle height and the distance to the obstacle from the runway endpoint,
respectively; V2 is the minimum speed of stable horizontal flight; S is the energy accumulation
distance; Lrun is the runway length; DTPP is the distance to the takeoff possibility point (TPP);
DDP is the distance to the decision point (DP); xDP is the coordinate of the decision point; finally,
Lres is the takeoff run reserve from the DP to the runway endpoint.

According to the Flight Manual, takeoff is authorized when sequentially reaching the minimum
horizontal flight speed V1 and the nosewheel lift-off speed Vr regardless of the aircraft’s position on
the runway. However, this takeoff procedure does not ensure overcoming an obstacle safely since
the speed Vr may be reached at a point in unacceptable proximity to the runway endpoint or even
beyond it.

Let us inform the pilot about the possibility of a safe takeoff ahead of time by forecasting the
energy state of the aircraft corresponding to the required generalized coordinates at the obstacle
clearance point.

To overcome the obstacle safely, the aircraft must have a speed not less than its stable horizontal
flight speed V2. At the instant of overcoming the obstacle, the total energy EHobst

of the aircraft
must contain the required minimum kinetic component and a reserve of the potential component,
which gives the aircraft the necessary altitude Hobst for obstacle clearance:

EHobst
= m

V 2
2

2
+mgHobst. (1)
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The total accumulated energy of the aircraft consists of the current kinetic and potential compo-
nents and the work of all external forces Fi on the trajectory of length S. Then the forecasted
accumulated energy is given by

E(t)fore = m
V (t)2

2
+mgh(t) + S

∑
i

Fi(t), (2)

where
∑

i Fi(t) is the resultant of all external forces: engine thrust, aerodynamic drag, wind force,
and landing gear braking force. Equation (2) explicitly relates the energy state of the controlled
object and the trajectory length to reach this state.

The resultant is naturally calculated through the longitudinal overload:∑
i

Fi(t) = mgnx(t). (3)

Let all forces in (3) be measured during the ground run before takeoff. Equating the required (1)
and forecasted (2) energies, we find the length of the forward section of the ground segment to the
DP necessary to accumulate the deficient total energy:

DDP =
(g(Hobst − h(t)) + 0.5(V 2

2 − V (t)2))

gnx(t)
− Lobst.

Note that this expression is invariant with respect to weight. The trajectory point where the
forecasted length of this section becomes zero is the DP of safe takeoff: XDP = x(t)|D=0. The
coordinate of this point is simply calculated as

XDP (t) = x(t) +DDP (t).

Total energy forecasting indicates the possibility of takeoff not at the instant of reaching the decision
speed but earlier and in the distance coordinates associated with the runway.

The forecasting method based on the energy approach yields a forecast of another characteristic
point on the takeoff run trajectory. Each type of aircraft is allowed to lift the front landing gear
strut when reaching a known minimum takeoff run speed Vr. In abnormal situations, the pilot
must assess the possibility of continuing the takeoff run and, moreover, the position of the aircraft
on the runway in which it is possible to start lifting the front strut. The distance from the current
position of the aircraft to reaching the rate of climb is calculated as

DVr(t) =
V 2
r − V 2(t)

2gn(t)
.

When this forecasted distance reaches zero, it is possible to lift the front landing gear strut to turn
the airplane to the takeoff angle of attack. In the course of the takeoff run, it is proposed to inform
the pilot about the distance to the front strut lift point. The instrumental estimate of this distance,
unlike the intuitive one, improves the pilot’s situational awareness and reduces the prerequisites for
erroneous actions. The distance to the front strut lift point can be shown on the instrument panel
or on the display.

Situational awareness can be increased (and stress load can be reduced) when using the fore-
casted distance reserve to the runway endpoint at the DP:

Lres(t) = Lrun − x(t)−DDP (t).

A very fruitful feature of the energy method is that the current forecast considers the total energy
acquired by the aircraft on the forward air segment outside the ground one. As a result, it is
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Fig. 2. Energy accumulation on the ground and air segments of the trajectory.

possible to calculate forecast values ahead of current events. Figure 2 demonstrates the energies
on the ground and air segments for aircraft with three takeoff weights.

Thus, energy forecasting allows calculating the distances to all regulation events on the trajectory
of a complicated takeoff ahead of time. Information about the occurrence of these events can be
presented to the pilot on the cockpit indicator in text, audio, or graphic form. The pilot’s awareness
of the current and forecasted situation reduces the stress load and the probability of erroneous or
untimely response of the pilot.

5. SIMULATION OF TAKEOFF IN THE PRESENCE OF OBSTACLES

The method for forecasting flight parameters at an obstacle clearance point was tested on a com-
puterized bench. The bench included a complete certified model of the TU-204 aircraft, particularly
the engine model and the landing gear model.

The operator’s console was used to set the aircraft weight and alignment, climatic conditions, and
airfield altitude and to prepare a takeoff scenario in accordance with the current flight regulations.
In the bench, control during the ground run and takeoff was performed by the automatic EnCS.

The energy system saves and efficiently utilizes the resources of the controls—throttle lever and
altitude channel knob—for spatial maneuvering. Therefore, the takeoff scenario contained only the
required speed and altitude values.

Figure 3 shows the transients in the height Y G and speed V P at takeoff in the presence of a
100 m-high obstacle at a distance of 1000 m from the runway endpoint for an aircraft with three
different takeoff weights.
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Fig. 3. Transients with the energy control system.
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Fig. 4. Cockpit takeoff indicator window.

The simulation was carried out to compare the forecasted decision points for takeoff with the
Flight Manual’s recommendations for aircraft with different weights (from minimum to maximum)
and the location of obstacles with heights of 50–150 m at a distance of 500–3000 m from the
runway endpoint. During takeoff, the bench recorded the position of the aircraft on the runway
(the coordinate XDP ) in which the current energy state was sufficient for a safe takeoff considering
the forecasted motion.

Table 1 combines the coordinates of three points for an aircraft with takeoff weights of 70,
90, and 105 tons: the decision points calculated by forecasting (Xfore

V1
), the points of reaching

the regulation takeoff speed V1 factually (Xfact
V1

), and the points of reaching the nosewheel lift-off
speed (XVr ).

Clearly, the possibility of overcoming the obstacle, as well as the nosewheel lift-off speed, are
forecasted much earlier than the aircraft gains the decision speeds V1 and Vr prescribed by the
Flight Manual.

For bench testing of takeoff modes with information support of the pilot, a prototype of a real-
time indicator of aircraft movement on the ground and air segments was implemented. Figure 4
presents the indicator window at the obstacle clearance instant.

The indicator window demonstrates the histories of the set and factual values of the main
flight parameters (altitude and speed). The aircraft symbol on the altitude trajectory shows its
current position. The runway and obstacle are conditionally depicted as well. The prototype of the
indicator successively marks in real time the forecasted distances to the decision point for takeoff
(DDP ), to the point of reaching the regulation decision speed (DV1), and to the point of nosewheel
lift-off speed (DVr), including their numerical values.

Table 1. Comparison of forecasted and factual coordinates

Weight, t V1, km/h Xfact
V1

, m Xfore
V1

, m Vr, km/h XVr , m

70 204 515 153 210 547

90 220 764 508 228 825

106 238 1095 837 245 1203
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6. METHOD FOR FORECASTING SAFE BRAKING DISTANCE

Figure 5 shows the landing diagram with the following notations: x(t) is the current position
of the aircraft on the runway; Dbrak is the braking path length; Xbrak is the end point coordinate;
finally, Lres is the ground run reserve to the runway endpoint.

LresLresLres
XbrakXbrakXbrak

DbrakDbrakDbrakx(t)x(t)x(t)

Random factors:

�Aerodynamics
�Wind, precipitation
�Thrust reverse
�Landing gear braking
�Spoiler extension

Stop

Fig. 5. Landing with braking.

Within the ground segment of the trajectory, during the run after landing or before an aborted
takeoff, there may be situations with a risk of overrunning the runway. Under a time deficit, it is
necessary to assess the possibility of either emergency braking and stopping within the runway or
going around again. We define the braking length as the distance over which the airspeed will be
canceled from the current one to some small value ε or the taxiing speed.

For the stopping criterion V (t) � ε, the forecasted braking length is given by

Dbrak =
0.5(V 2(t)− ε2

gnx(t)
. (4)

According to this estimate of the marginal stopping distance of the aircraft, the pilot may be
visually informed of the safe braking distance reserve

Lres = Lrun − x(t)−Dbrak.

This information message will help the pilot to make a decision on emergency braking (and in the
case of its impossibility, a decision on go-around).

In the process of braking, all forces and conditions change; therefore, the a priori estimates of the
aircraft motion on the runway differ from the real ones, containing an inevitable error. Moreover,
the current situation forecast is always optimistic since the main braking forces (reverse thrust and
aerodynamic drag) relax with decreasing the speed.

To improve the reliability of forecasting, we propose to correct the forecast (4) by introducing a
correction Qcor and calculating the corrected braking distance

Dbrak cor = QcorDbrak. (5)

The highest forecasting errors occur on sections with maximum reverse and with extended spoilers,
so the correction coefficients are selected separately for each configuration of the braking devices.
These sections are always identifiable, and switching the type of correction is straightforward.

At the beginning of the braking path (the reverse section), the greatest impact on the forecasting
errors is exerted by the friction coefficient kfric (which is reported to the board for the landing
calculation) and the rolling velocity V (which is bounded by the reverse speed, V � Vrev).

The correction coefficient on the reverse section, Qrev, explicitly considers both factors men-
tioned:

Qrev = krev(kfric)krev(V ).
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The value krev(ksc) was analytically approximated by the polynomials of the second, third, and
fourth degrees. The polynomial of the third degree has the form

krev(kfric) = 16.14(kfric)
3 − 22.55(kfric)

2 + 8.25kfric + 0.716.

Despite the differences in the approximating polynomials, the resulting errors varied by no more
than 10%.

The empirical dependence of the correction coefficient on speed was found in the form

krev(V ) = k1(k0 + (1− k0))V/VH ,

where VH is the initial braking speed, the coefficient k1 determines the overall intensity of correction,
and the coefficient k0 changes the degree and sign of correction as the aircraft moves along the
runway. The tuning coefficients k0 and k1 were determined by minimizing the average forecast
error on the reverse section.

On the ground run section with extended spoilers, the correction was achieved by simply scaling
the coefficients using the normalized average landing weight mnorm=m/90:

Qspoil = kimnorm.

The values ki were found by minimizing the error over the entire flight under all braking conditions.
After retraction of the spoilers, the correction coefficient was scaled to Qspoil = 0.8Kimnorm.

The states of the braking devices and the actions of external factors change at a high rate.
Therefore, to smooth out possible high-frequency bursts, all the forecasted values are passed through
a damping filter, i.e., an aperiodic link with a tunable time constant Tffore.

7. STUDIES OF THE BRAKING DISTANCE FORECASTING ALGORITHM

A special simulation bench was created to study the forecasting algorithms. This bench has a
set of modes to analyze the forecasting algorithms and to perform their correction and studies as
well as developed service tools for setting the experimental conditions and processing and recording
the results.

First of all, the bench is used to determine the correction coefficients in terms of the selected
optimality criteria (forecasting errors on any trajectory section). The program module of the fore-
casting algorithms contains a base of settings for the coefficients of the algorithm (5) on a discrete
set of braking conditions. To make the coverage of the settings domain continuous, the software
includes a module for interpolating the correction coefficients as a function of three variables:
[k0, k1, ki] = INTERPOL[m,kfric, Vpos].

The service software of the simulation bench includes a module for analyzing the results of
statistical tests of the forecasting algorithms. The statistical testing module is configured to analyze
the forecasting errors of the stopping point during aircraft braking on the runway. The random
disturbances are the variations in aircraft weight and friction coefficient. The distribution law can
be assigned as Gaussian or uniform. When displaying the curves on the screen, the experimental
distribution function is plotted along with the analytical Gaussian function with the same moments.

Figure 6 shows the experimental distribution functions and the corresponding probability den-
sities of the forecasting errors of the braking distance (ΔDbrak) for a 90-ton aircraft from an initial
speed of 220 km/h. The analytical approximation of the distribution function by the Gaussian law
is plotted on each graph. The mean and the width of the 5% error tolerance are also provided.

According to the graphs, random forecasting errors have distributions close to Gaussian. Small
values of the mean and standard deviation indicate high forecasting accuracy, which is achieved by
the effective correction of forecasting algorithms.
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Fig. 6. Distribution functions and probability densities of the forecasting errors of braking distance.

Fig. 7. Braking indicator.

Engine thrust reverse has the strongest impact on the dynamics of the braking process. Increas-
ing the reliability of forecasting on the reverse section is very important: on this section, the speed
takes the highest values, increasing the stress load on the pilot. Forecasting errors during the entire
braking stage (total errors) and those in the reverse mode only (reverse errors) were investigated
and compared. The correction coefficients were determined using two different optimality criteria:
by minimizing the errors on the reverse section, min(reverse errors), and by minimizing the errors
on the complete braking trajectory, min(total errors).

Table 2 presents the average forecasting errors on the reverse section and on the complete braking
trajectory of an aircraft with a landing weight of 90 t, an initial speed of 220 km/h, and friction
coefficients of 0.3, 0.5, and 0.75.

These data confirm that the reverse section contributes most to the forecasting error, and opti-
mization in terms of the minimum error on the reverse section also significantly reduces the total
error over the entire run.

Table 2. Forecasting errors on the reverse section and complete braking trajectory

Friction coefficient 0.3 0.3 0.5 0.5 0.75 0.75

Reverse Total Reverse Total Reverse Total
Optimality criterion

errors errors errors errors errors errors

min(reverse errors) −8.97 −8.94 −0.48 10.27 −0.23 6.03
min(total errors) −21.35 −3.81 −3.54 −2.0 1.55 0.55
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Figure 7 demonstrates the prototype of the braking indicator for information support of the
pilot of an aircraft moving in real time along the runway. There are marks of the current position
of the aircraft and the forecasted braking endpoint. The numerical value of the aircraft coordinate
on the runway and the estimated distance to the stopping point are also shown.

If the forecasted stopping point goes beyond the runway endpoint, it is a signal to go around.

8. CONCLUSIONS

To increase situational awareness of the pilot and reduce stress load, we have developed algo-
rithms for forecasting terminal states during takeoff and landing operations. The algorithms are
based on the energy approach to aircraft flight control. This approach allows assessing the current
situation and, moreover, the future situation on the forward section of the trajectory, including
the air segment of climbing and overcoming a high-rise obstacle. The idea is to inform the pilot
of the forecasting results in the form of text, graphic, or audio alerts. In the ground run mode
before takeoff, the distance to the decision point on the possibility of safe takeoff and clearance
of a high-rise obstacle has been determined. In the braking mode, algorithms for forecasting the
distance to the stopping point or to the taxiing speed have been developed. In each mode men-
tioned, the possibility of safely reaching critical points of the maneuver has been forecasted ahead
of their factual occurrence on the trajectory. This gives confidence in fulfilling the flight task in
nonstandard or complicated conditions on the runway.
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Abstract—Deterministic continuous finite-dimensional stationary linear dynamic control sys-
tems with many inputs and many outputs are considered. Authors assume that the dynamics
matrix can be both stable and unstable, but its eigenvalues are different, do not belong to the
imaginary axis, and their pairwise sum is not equal to 0. The problems of constructing spectral
solutions of the equations of state and matrices of gramian controllability of these systems, as
well as the associated energy functionals of the degree of stability and reachability with the aim
of optimal placement of sensors and actuators of multi-connected control systems and complex
networks are considered. To solve the listed problems, the article uses various models of the
system in state space: a general representation, as well as a representation in various canoni-
cal forms. To calculate the spectral decompositions of controllability gramians, pseudo-Hankel
matrices (Xiao matrices) are used. New methods have been proposed and algorithms have
been developed for calculating controllability gramians and energy metrics of linear systems.
The research results can be used for the optimal placement of sensors and actuators of multi-
connected control systems or for control with minimal energy in complex networks of various
natures.

Keywords : spectral decompositions of gramians, energy functionals, inverse matrix of gramians,
stability that takes into account the interaction between modes, Lyapunov equation, unstable
control systems
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1. INTRODUCTION

Monitoring the state of control objects and controlling the damping of dangerous vibrations
are important areas of research in various fields of industry (energy, mechanical engineering, avia-
tion and astronautics, robotics). New modeling technologies require the development of tools for
approximating mathematical models of complex systems of various natures. When solving these
problems, an important role is played by the methods of calculating the Lyapunov and Sylvester
matrix equations and the study of the structural properties of solutions to these equations [1–4].
The fundamental properties of linear dynamic systems associated with solutions to these equa-
tions are controllability, observability and stability. Important results in this area were obtained
for methods for calculating the gramians of systems, the models of which are presented in the
canonical forms of controllability and observability. The application of gramians for constructing
simplified models of high-dimensional dynamic systems and for calculating the norms of transfer
functions of linear and bilinear dynamic systems is well known [1, 2, 5–8]. Controllability gramians
play an important role in calculating output deviations caused by Gaussian random disturbances.
In recent years, interest has arisen in the development of methods for calculating various energy
indicators to analyze the stability and degree of controllability and observability of these systems.
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Such indicators for linear stable systems and unstable linear systems were proposed in [1, 8–11].
Simplified models for large networks based on output controllability gramians, that allow to cal-
culate the energy indicators, were proposed in [12]. The balanced truncation method, based on
the gramians of stable and anti-stable systems, was proposed in [13]. The important problem of
optimal placement of sensors and actuators based on various energy functionals, including invariant
ellipsoids, and estimation of the degree of controllability was studied in [14–18]. It is important to
note that all these works used the spectrum of the system dynamics matrix.

B.N. Petrov and his students developed methods, based on Lyapunov direct method, for synthe-
sizing adaptation algorithms that guarantee the stability of the movement of a self-adjusting system
relative to the movement of its reference model [19, 20]. He developed the principle of coordinate-
parametric control, which implements double invariance in non-search self-tuning systems (NSTS).
In the theory of NSTS, the concept of a generalized customizable object was used, which was
based on identifying the structures of a specially formed main circuit and a circuit of a customiz-
able controller. Linearized mathematical models of circuits included coordinate, parametric and
coordinate-parametric models, including parametric feedbacks in controller tuning circuits. These
models are called bilinear dynamic models and are used in optimization, identification theory, and
adaptive control. To calculate the gramians of these systems, generalized Lyapunov equations were
developed and spectral methods for solving them were proposed [2, 10, 11]. A significant contribu-
tion was made by the school of B.N. Petrov in the formation of control theory, based on the use of
the structural properties of the reference model, and in other areas of control theory, in particular
in the theory of invariant systems.

2. FORMULATION OF THE PROBLEM

Consider a continuous time-invariant linear dynamic MIMO LTI system with a simple spectrum
with many inputs and many outputs

Σ1:

{
ẋ = Ax (t) +Bu (t) , x(0) = 0,

y (t) = Cx (t) ,
(2.1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rm.

If all eigenvalues sr of matrix A are different, then the linear system can be reduced to diagonal
form using a non-degenerate coordinate transformation

xd = Tx, ẋd = Adxd +Bdu, yd = Cdxd,

Ad = T−1AT, Bd = T−1B, Cd = CT, Qd = T−1BBT(T−1)T,

or

A =
[
u1 u2 . . . un

] ⎡⎢⎢⎢⎣
s1 0 0 0
0 s2 0 0
. . . . . . . . . . . .
0 0 . . . sn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ν∗1
ν∗2
...
ν∗n

⎤⎥⎥⎥⎥⎦ = TΛT−1,

where the matrix T−1 is composed of right eigenvectors ui, and the matrix T is composed of left
eigenvectors ν∗i corresponding to the eigenvalue si.
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Definition [21]. The square matrix Y = [yjη] is called the Xiao matrix (Zero plaid structure)
and has the form:

Y =

⎡⎢⎢⎢⎢⎢⎢⎣

y1 0 −y2 0 y3

0 y2 0 −y3 0

−y2 0 y3 0 . . .

0 −y3 0 . . . 0

y3 0 . . . 0 yn

⎤⎥⎥⎥⎥⎥⎥⎦ ,

its elements are specified using the elements of the Routh table [21]:

yjη =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if j + η = 2k + 1, k=1, . . . , n;

yn =
1

2Rn,1
,

yn−l =
−∑m−1

i=1 (−1)iRn−l,i+1yn−l+i

Rn−l,1
,

if j + η= 2k, k = 1, . . . , n, l = 1, n − 1,

where Ri,j is the Routh table element for the system, located at the intersection of row i and
column j. In [11], a spectral decomposition of the controllability gramian of a continuous linear
system with many inputs and many outputs was obtained based on the method for calculating the
gramian proposed in [21, 22].

Theorem 1 [11, 21]. We consider a continuous linear MIMO LTI system of the form (2.1). Let
us assume that the system is stable and all the roots of its characteristic equation are different.
Then the matrices of its controllability gramian are Xiao matrices, the diagonal elements of which
are defined as

p11 =
n∑

k=1

1

2sk
∏n

ρ=1,ρ�=k

(
s2k − s2ρ

) ,
p22 =

n∑
k=1

(−1)1(sk)
2

2sk
∏n

ρ=1,ρ�=k

(
s2k − s2ρ

) ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

pnn =
n∑

k=1

(−1)n−1 (sk)
2(n−1)

2sk
∏n

ρ=1,ρ�=k

(
s2k − s2ρ

) .
The elements of the side diagonals of the gramian matrices are defined as:

pjη = (−1)
j−η
2 pll, j + η = 2l, l = 1, n.

The remaining elements of the gramian matrix are equal to zero.

Corollary 1. Consider a stable continuous stationary linear dynamic MIMO LTI system with a
simple spectrum with many inputs and many outputs of the form (2.1). Then its controllability
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gramian is a matrix of the form [11]

Pc =
n−1∑
j=0

n−1∑
η=0

Pcj,η, Pcj,η = ω(n, sk, j, η)AjBB
TAT

η , (2.2)

ω (n, sk, j, η ) =

⎧⎪⎪⎨⎪⎪⎩
0, if j + η = 2k + 1, k = 1, . . . , n,

n∑
k=1

sjk(−sk)η
2sk

∏n
ρ=1,ρ�=k

(
s2k − s2ρ

) , if j + η = 2k, k = 1, . . . , n.

We will call spectral decompositions (2.2) the gramian decompositions in the form of Xiao matrices.
In the expansion (2.2) a scalar multiplier function ω (n, sk, j, η) appears, which determines the
structure of the Hadamard matrices [21].

Let us transform the system (2.1) into the upper block-diagonal Schur form with a unitary
transformation matrix U [23,24].

x = UxSch, ẋSch = ASchxSch +BSchu, ySch = CSchxSch,

ASch = UTAU, BSch = UTB, CSch = CU,
(2.3)

ASch =

[
ASch11 ASch12

0 ASch22

]
, BSch =

[
BSch1

BSch2

]
, CSch =

[
CSch1 CSch2

]
.

In order to obtain a block-diagonal representation, it is necessary to transform the equations
(2.3) so that the place of the ASch12 block is replaced by a zero matrix. To do this, we perform a
second transformation

xSch =Wblxbl, ẋbl = Ablxbl +Bblu, ybl = Cblxbl,

Abl =W−1
bl ASchWbl, Bbl =W−1

bl BSch, Cbl = CSchWbl,
(2.4)

Abl =

[
ASch11 0

0 ASch22

]
, Bbl =

[
Bbl1

Bbl2

]
, Cbl =

[
Cbl1 Cbl2

]
,

Wbl =

[
Ir S
0 In−r

]
,W−1

bl =

[
Ir −S
0 In−r

]
.

In order for the block ASch12 to be replaced by a zero matrix, the matrix S must satisfy the Sylvester
equation

−ASch11S + SASch22 +ASch12 = 0. (2.5)

A necessary condition for the existence of a solution to this equation is the following spectral
condition:

λs + λu �= 0, ∀s : s = 1, r,∀u : u = r + 1, n.

In order to transform a system (2.4) with a block diagonal matrix into a system with a diagonal
matrix, it is necessary to perform a third transformation

xbl =Wdxd,

where Wd is the transformation matrix of a system in block-diagonal form, which diagonal blocks
have an upper-triangular shape

ẋd = Adxd +Bdu, yd = Cdxd,

Ad =W−1
d AblWd, Bd =W−1

d Bbl, Cd = CblWd,

Ad =

[
Λ− 0
0 Λ+

]
, Bd =

[
Bd1

Bd2

]
, Cd =

[
Cd1 Cd2

]
, (2.6)
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where Λ− and Λ+ are diagonal matrices consisting of negative and positive eigenvalues, respectively.

After the first transformation we have the relation

P = UPSchU
T. (2.7)

After the second transformation we get

PSch = TPblT
T,

or

P = T2PblT
T
2 , T2 = UT. (2.8)

After the third transformation using (2.7),(2.8) we get

P = UT3PdT
T
3 , T3 = UTWd.

The structured Lyapunov equation after the second transformation has the form

ASch11P1 + P1A
T
Sch11 = −B1B

T
1 , (2.9)

ASch22P2 + P2A
T
Sch22 = B2B

T
2 , (2.10)

Pcm = T−1
2

[
P1 0
0 P2

]
T2. (2.11)

The matrix Pcm is called the mixed controllability gramian [13–17, 25]. The purpose of the article
is to develop a method and algorithm for calculating spectral decompositions of the controllability
gramians of unstable linear systems, based on the method described above, for calculating the
specified gramians using the transformation of the original system into a block-diagonal form [13].

Many applications of spectral decompositions of gramians are associated with energy indicators
of the structural properties of controllability, observability and stability. We consider the problem
of selecting and optimizing the placement of sensors and actuators in complex automatic systems
and complex networks [18, 26–28]. To solve this problem one could use the input and output
energy of the system, traces of the controllability and observability gramian matrices and traces of
their inverse matrices, minimum and maximum eigenvalues of the gramian. Another problem is to
estimate the controllability measure of a dynamic system using controllability gramians [25]. This
measure is defined as the minimum input energy required to move the system from an arbitrary
initial state to an arbitrary final state.

Another goal of the article is to develop a method and algorithms for calculating spectral de-
compositions of energy metrics related to the above problems. It is required to find spectral
decompositions of the following energy metrics from the simple (or paired) spectrum of the system
dynamics matrix and the controllability and observability gramian matrices:

• metric of the input minimum energy of the system [2, 18]

J1 = Emin (Pc) ,

• output energy metric of the system [2, 3]

J2 = Eout,

• trace metric of the gramian matrix [26, 27]

J3 = tr (Pc),
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• trace metric of inverse matrices of controllability gramians [2, 12, 18]

J4 = tr (Pc)
−1,

• reachability metric
J5 = tr (Pcm),

where Pcm is the mixed controllability gramian [18, 25].

2.1. Main Results

Let us consider a finite-dimensional linear stationary continuous system with many inputs and
many outputs of the form (2.1). We suppose that the spectrum of the dynamics matrix contains
r stable eigenvalues λi− ∈ C

− and n− r unstable eigenvalues λi+ ∈ C
+. We will assume that the

spectrum does not contain eigenvalues belonging to the imaginary axis, and the general condition
is satisfied

λi− + λj+ �= 0,∀i : i = 1, r,∀j : j = r + 1, n.

The last condition means that the spectrum does not contain eigenvalues that are mirror images
of each other relative to zero. The simplest way to calculate the spectral decompositions of gramians
in the case of a simple spectrum of the dynamics matrix is to reduce it to diagonal form [1, 11].
If unstable eigenvalues appear in the spectrum, this requires several structural transformations of
the (2.1) equations. Let us introduce the notation

Bd11B
T
d11 = [βd−νη ][r×r],

Bd22B
T
d22 = [βd+νη ][(n−r)×(n−r)].

Theorem 2 [8]. Let us consider a finite-dimensional linear stationary continuous system with
many inputs and many outputs of the form (2.1), reduced to the diagonal form (2.6). Let us
assume that the system has a simple spectrum, the system is unstable, and the eigenvalues of its
dynamics matrix A are not on the imaginary axis, but can be in the left and/or right half-planes
λi− ∈ C

−, i = r; λi+ ∈ C
+, i = n− r.

In addition, assume that the condition is satisfied

λi �= −λj, ∀i, j : i = 1, n, j = 1, n.

Let us define the mixed controllability gramian in the form

Pcm =
1

2π

+∞∫
−∞

(Ijω −A)−1BBT(−Ijω −AT)−1dω. (2.12)

The following statements are valid and equivalent.

• The following separable spectral decompositions of the matrices of solutions to the equation
(2.9), (2.10), corresponding to the stable and anti-stable subsystems, are valid.

p
(μν)
c− = eTμPc−eν, ∀μ, ν = 1, r,

p
(μν)
c− =

−βμν−
λμ− + λν−

,

p
(μν)
c+ = eTμPc+eν, ∀μ, ν = r + 1, n,

p
(μν)
c+ =

βμν+
λμ+ + λν+

;
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• The following separable spectral expansions of the mixed gramian of controllability in the pair
and simple spectra of the matrix A are valid:

Pcm = T−1
3 [P− ⊕ P+]T3. (2.13)

According to the pair spectrum:

P− =
r∑

ν=1

r∑
μ=1

p
(νμ)
c− 1νμ, (2.14)

P+ =
n∑

ν=r+1

n∑
μ=r+1

p
(νμ)
c+ 1νμ.

According to a simple spectrum:

P− =
r∑

ν=1

p
(ν)
c− , p

(ν)
c− =

r∑
μ=1

p
(νμ)
c− 1νμ, (2.15)

P+ =
n∑

ν=r+1

p
(ν)
c+ , p

(ν)
c+ =

n∑
μ=r+1

p
(νμ)
c+ 1νμ.

Proof of Theorem. The Lyapunov equations for the diagonalized system in this case have the form

ΛPcm + PcmΛ∗ = −Qd =
[
−B−BT

− ⊕B+B
T
+

]
.

For a diagonalized system, this equation splits into two equations for stable and antistable subsys-
tems

Λ−Pc− + Pc−Λ∗
− = Qd− = −B−BT

−,

Λ+P c+ + Pc+Λ
∗
+ = Qd+ = B+B

T
+.

Integral formulas for solutions of Lyapunov equations [8]:

Pcm = [P c− ⊕ Pc+],

Pc− =

∞∫
0

eΛ−τ B−BT
−e

Λ∗
−τdτ, Pc+ =

0∫
−∞

eΛ+τ B+B
T
+e

Λ∗
+τdτ. (2.16)

Let’s transform the second integral in the formula (2.16) using the replacing of variables τ = −t :
0∫

−∞
eΛ+τ Qd+e

Λ+τdτ = −
∞∫
0

e−Λ+t Qd+e
−Λ∗

+tdt.

With such a change of variables, the unstable eigenvalues of the antistable subsystem become stable
eigenvalues of the stable subsystem and the calculation of the second integrals is reduced to the
scheme for calculating the first integrals (2.16). This implies

(−Λ+)P c+ + Pc+(−Λ∗
+) = −B+B

T
+.

The matrix [Λ− ⊕ (−Λ+)] is Hurwitz. Spectral expansions of the gramians of a stable subsystem
were previously obtained in [9]. First, we obtain spectral decompositions of the gramians in (2.16),
and then we obtain the spectral decomposition of the gramians of the original system according to

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023



1250 YADYKIN, GALYAEV

the formula for transforming the gramians of controllability for a nondegenerate transformation of
states with matrix T

Pcm = T [P− ⊕ P+]T
T. (2.17)

The first step of spectral decompositions is based on transforming the equations of state of a stable
subsystem into a diagonal canonical form. In this case, the Lyapunov equations take on a simple

form and the elements p
(μν)
c− of the solution matrix Pc− can be calculated using the formulas [9]

p
(μν)
c− = eTμPc−eν , ∀μ, ν = 1, r, (2.18)

where eTμ , eν are unit vectors,

eTμQd−eν = βμν−, ∀μ, ν = 1, r,

p
(μν)
c− =

−βμν−
λμ− + λν−

. (2.19)

Since, taking into account the change of variables, the calculation of spectral decompositions of the
solution matrix Pc+ is reduced to considering the approach proposed for calculating the solution
matrix Pc−, we present the final formulas for calculating the spectral decompositions for this case.

This approach is based on transforming the equations of state of an antistable subsystem into a

diagonal canonical form. In this case, the elements p
(μν)
c+ of the solution matrix Pc+ are calculated

using the formulas

p
(μν)
c+ = eTμPc+eν, ∀μ, ν = r + 1, n,

where eTμ , eν are unit vectors,

eTμQd+eν = βμν+,

p
(μν)
c+ =

βμν+
λμ+ + λν+

, ∀μ, ν = r + 1, n. (2.20)

The proof of the validity of spectral expansions for the antistable subsystem completely repeats
the proof for the stable subsystem. The proof of the validity of the spectral decompositions (2.13)–
(2.15) follows from the validity of the formula (2.19) and the transformation of the antistable
subsystem to the form of a stable subsystem, the eigenvalues of which are a mirror image of the
eigenvalues of the first subsystem with respect to the imaginary axis. Theorem 2 is proven.

Corollary 2. If the conditions of the theorem are satisfied, the mixed gramian is positive definite,
since the matrix [Λ− ⊕ (−Λ+)] is Hurwitz. In this case, the trace of the mixed controllability
gramian is equal to

J =
r∑

i=1

βd−ii

−2Re λi
+

n∑
i=r+1

βd+ii

2Re λi
. (2.21)

The coefficients βd−ii, βd+ii are always positive due to the formation of the matrices of the right
sides of the Lyapunov equations. It follows that the diagonal terms of the mixed gramian matrix
are positive. Then the estimates are valid

max
i
βd−ii, βd+ii = βiimax,

J � βiimax

2min
i

|Re λi|n =
βiimax(

2min
i

|Re λi|
n

) .
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Thus, the trace of a mixed gramian is directly proportional to the maximum value of the diagonal

element of the matrix
[
B−BT− ⊕B+B

T
+

]
and is inversely proportional to the doubled average value

of the modulus of the eigenvalue of the spectrum of the matrix [Λ− ⊕ (−Λ+)], which confirms the
research results of [28].

Illustrative example. Consider the problem of controlling a dynamic object with four inputs and
four outputs. The model of the control object can be described by equations of state of the form

Σ1:

⎧⎨⎩
dx

dt
= Ax (t) +Bu (t) , x (0) = 0,

y (t) = Cx (t) .

A =

⎡⎢⎢⎢⎣
−0,33 −2,67 −4 1,33
21,17 −23,33 −30,2 1,5
−14,67 14 17,83 −1,17

2 −1,33 −1,83 −2,17

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
1
2
5
−3

⎤⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ .

Let us transform the system into the upper block-diagonal Schur form. In this case, the unitary
transformation matrix will be expressed as follows:

U =

⎡⎢⎢⎢⎣
0,125 0,943 −0,169 −0,258
0,814 −0,26 −0,056 −0,516
−0,564 −0,178 −0,225 −0,775
0,063 −0,109 −0,958 0,258

⎤⎥⎥⎥⎦ .

The system will take the form

ASch =

⎡⎢⎢⎢⎣
1 37,64 3,255 35,17
0 −4 −0,97 −0,212
0 0 −2 0,436
0 0 0 −3

⎤⎥⎥⎥⎦ , BSch =

⎡⎢⎢⎢⎣
−1,25
−0,137
1,465
−5,939

⎤⎥⎥⎥⎦ .

The next transformation occurs in such a way that the matrix ASch12 becomes zero. We select the
transformation matrix Wbl so that the matrix Abl is divided into two blocks, stable and antistable
subsystems.

Wbl =

⎡⎢⎢⎢⎣
1 −7,53 1,35 −8,25
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ , Abl =

⎡⎢⎢⎢⎣
1 0 0 0
0 −4 −0,97 −0,21
0 0 −2 0,436
0 0 0 −3

⎤⎥⎥⎥⎦ ,

Bbl =

⎡⎢⎢⎢⎣
−53,2
−0,14
1,47
−5,94

⎤⎥⎥⎥⎦ .

Let’s check the execution of Sylvester’s equation (2.5). We transpose all components of the equation

⎡⎢⎣ −7,529
1,35
−8,25

⎤⎥⎦+

⎡⎢⎣ −4 0 0
−0,97 −2 0
−0,212 0,436 −3

⎤⎥⎦×
⎡⎢⎣ 7,529
−1,35
8,25

⎤⎥⎦+

⎡⎢⎣ 37,64
3,255
35,167

⎤⎥⎦ =

⎡⎢⎣ 0
0
0

⎤⎥⎦ .
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For the system in this case, the mixed gramian is given by the equation (2.11)

Pcm = T−1
2

[
P1 0
0 P2

]
T2.

Pcm =

⎡⎢⎢⎢⎣
5,32 −5,32 −7,98 2,66
0,94 −0,26 −0,18 −0,11
−0,17 −0,056 −0,23 −0,96
−0,26 −0,52 −0,78 0,26

⎤⎥⎥⎥⎦×

⎡⎢⎢⎢⎣
1417 0 0 0
0 0,0067 −0,057 0,18
0 −0,057 0,52 −1,72
0 0,18 −1,72 5,88

⎤⎥⎥⎥⎦×

×

⎡⎢⎢⎢⎣
0,13 0 0 −1,29
0,81 −6,39 1,04 −7,23
−0,56 4,07 −0,99 3,87
0,063 −0,58 −0,87 −0,26

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
32 −203 −132,5 11,3

−203 1290 −844 73
−132,5 −844 −349 −50,5
11,3 73 −50,5 5,57

⎤⎥⎥⎥⎦ .
Let’s check the correctness of the gramian calculation. The matrix of the third transformation and
the system itself will take the form

Wd =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 −0,44 0,19
0 0 0,9 −0,39
0 0 0 0,9

⎤⎥⎥⎥⎦ , Ad =

⎡⎢⎢⎢⎣
1 0 0 0
0 −4 0 0
0 0 −2 0
0 0 0 −3

⎤⎥⎥⎥⎦ , Bd =

⎡⎢⎢⎢⎣
−53,2
0,57
−1,25
−6,6

⎤⎥⎥⎥⎦ .
Then the gramian for the diagonalized system becomes equal to

[P− ⊕ P+] =

⎡⎢⎢⎢⎣
1417 0 0 0
0 0,04 −0,12 −0,54
0 −0,12 0,39 1,65
0 −0,54 1,65 7,26

⎤⎥⎥⎥⎦ .
The general expression of the mixed gramian after the third transformation will be written as
follows:

Pcm =

⎡⎢⎢⎢⎣
5,32 −5,32 −7,98 2,66
0,86 −0,29 −0,29 −0,57
−0,31 −0,31 −0,63 −0,94
−0,29 −0,57 −0,86 0,29

⎤⎥⎥⎥⎦×

⎡⎢⎢⎢⎣
1417 0 0 0
0 0,041 −0,12 −0,54
0 −0,12 0,39 1,65
0 −0,54 1,65 7,26

⎤⎥⎥⎥⎦×

×

⎡⎢⎢⎢⎣
0,125 0 0 −1,16
0,81 −6,39 3,73 −8,13
−0,56 4,07 −2,66 4,65
0,063 −0,58 −0,53 0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
32 −203 −132,5 11,3

−203 1290 −844 73
−132,5 −844 −349 −50,5
11,3 73 −50,5 5,57

⎤⎥⎥⎥⎦ .
The mixed gramians coincided. Let us check whether the Sylvester criterion is satisfied for the
gramian of stable and antistable systems. To do this, the matrices P1 and P2 must be positive
definite. For compactness, we write them into one matrix.

[P1 ⊕ P2] =

⎡⎢⎢⎢⎣
1417 0 0 0
0 0,0067 −0,057 0,18
0 −0,057 0,52 −1,72
0 0,18 −1,72 5,88

⎤⎥⎥⎥⎦, λP1 = 1417, λP2 =

⎡⎢⎣ 0,0001
0,018
6,39

⎤⎥⎦.
All eigenvalues are greater than zero. The criterion is met. Let’s calculate the trace using the
formula (2.21)

J =
r∑

i=1

βd−ii

−2Re λi
+

n∑
i=r+1

βd+ii

2Re λi
= 0,0067 + 0,52 + 5,88 + 1417 ≈ 1423.
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Let us compare the value of the spectrum trace with the estimate

J = 1423 � 2834
2∗1
4

= 5668.

The reciprocal of the average value of the modules of the eigenvalues of the dynamics matrix
estimates the degree of dispersion of the real parts of the eigenvalues relative to the imaginary axis.
The smaller this value is, the higher its influence on the trace of the mixed controllability gramian.
The formula for the spectral decomposition of the trace allows us to perform a more refined analysis
of the influence of the distribution of eigenvalues on the energy metric of the degree of reachability
[25, 27].

3. SPECTRAL EXPANSIONS OF ENERGY METRICS OF CONTROLLABILITY AND
OBSERVABILITY GRAMIANS

We consider the application of the obtained results to solve some problems of state estimation
and control. We obtain spectral decompositions of energy metrics.

Theorem 3 [8]. Let us consider a finite-dimensional linear stationary continuous system with
many inputs and many outputs of the form (2.1), reduced to the diagonal form (2.6). Let us
assume that the system has a simple spectrum, the system is completely controllable and unstable,
and the eigenvalues of its dynamics matrix A are not on the imaginary axis, but can be in the left
and/or right half-planes

λi− ∈ C
−, i = r; λi+ ∈ C

+, i = n− r.

In addition, we assume that the condition is satisfied

λi �= −λj, ∀i, j : i = 1, n, j = 1, n.

The following spectral expansions of energy functionals are valid and equivalent [18]:

J1 = Emin (∞) =
[
xf− xf+

]T
(Pcm)−1

[
xf− xf+

]
=

=
[
xf− xf+

]T [ n∑
i=1

V ∗
c |σi|−1

1iiUc

] [
xf− xf+

]
.

J3 (for SISO LTI stable systems) = tr
n∑

k=1

Pc,k =
n∑

k=1

trP c,k =(
1∑n

k=1 Ṅ (sk)N (−sk)
−

∑n
k=1 s

2
k∑n

k=1 Ṅ (sk)N (−sk)
+ . . .

· · ·+ (−1)n−1∑n
k=1 s

2n
k∑n

k=1 Ṅ (sk)N (−sk)

)
,

J4 = tr
n∑

i=1

(Pc)
−1
i =

n∑
i=1

tr (Pc)
−1
i =

[
n∑

i=1

tr
[
V ∗
c |σi|−1

1iiUc

]]
,

where N(s) is characteristic polynomial of the system(2.1).

Proof of Theorem. Let us return to stable continuous MIMO LTI systems with a simple spec-
trum and note that the controllability and observability gramians are symmetric complex-valued
matrices. In this case, there are their singular decompositions of the form [1]

Pc = VcΛV
∗
c ,
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where the matrix Vc is formed by the right singular vectors of the matrix Pc, and the matrix Λ is
a diagonal matrix of the form

Λ = diag {|σ1| |σ2| . . . |σn|} .

We define matrices S and U in the form

S = diag {sgnσ1 sgnσ2 . . . sgnσn } , Uc = VcS,

sgnσ =

{
+1, if σ � 0
−1, if σ < 0.

Then

Pc = UcΛV
∗
c , (3.1)

where the matrix Uc is formed by the left singular vectors of the matrix Pc. Since Λ, Uc, Vc are
nonsingular matrices, then

(Pc)
−1= (Uc)

−1Λ−1(V ∗
c )

−1 = V ∗
c Λ

−1Uc. (3.2)

Since the matrix Λ is diagonal, its inverse matrix can be represented as

Λ−1 =
[
|σ1|−1111 + |σ2|−1122 + · · ·+ |σn|−11nn

]
. (3.3)

Substituting (3.3) into (3.1), (3.2), we obtain the following spectral expansions of the inverse
controllability gramians in a simple spectrum:

(Pc)
−1 = (Pc)

−1
1 + (Pc)

−1
2 + · · ·+ (Pc)

−1
n ,

(Pc)
−1
1 = V ∗

c |σ1|−1
111Uc, (Pc)

−1
2 = V ∗

c |σ2|−1
122Uc, . . . , (Pc)

−1
n = V ∗

c |σn|−1
1nnUc.

This implies the following spectral expansions of energy functionals [11]:

J1 = Emin (∞) =
[
xf− xf+

]T
(Pc)

−1
[
xf− xf+

]
=

=
[
xf− xf+

]T [ n∑
i=1

V ∗
c |σi|−11iiUc

] [
xf− xf+

]
,

J2 = tr
n∑

i=1

(Pc)
−1
i =

n∑
i=1

tr (Pc)
−1
i =

[
n∑

i=1

tr [V ∗
c |σi|−11iiUc]

]
,

J3 (for SISO LTI systems) = tr
n∑

k=1

Pc,k =
n∑

k=1

trPc,k =(
1∑n

k=1 Ṅ (sk)N (−sk)
−

∑n
k=1 s

2
k∑n

k=1 Ṅ (sk)N (−sk)
+ . . .

. . . + (− 1)n−1

∑n
k=1 s

2n
k∑n

k=1 Ṅ (sk)N (−sk)

)
,

J5 = tr (Pcm) .

Theorem 3 is proven.
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Theorem 4 [2]. Let us consider a finite-dimensional linear stationary continuous system with
many inputs and many outputs of the general form (2.1). Let us assume that the system has a
simple spectrum, is completely controllable and stable. Then the following spectral expansions of
the energy functionals of the input and output energies Ĵ1 and Ĵ2 are valid and equivalent over the
simple spectrum of the controllability gramian:

Ĵ1 =
n∑

i=1

xT0

[
V ∗
c |σi|−11iiUc

]
x0, (3.4)

or a simple spectrum of the dynamics matrix A:

Ĵ2 =
n∑

i=1

xT0

⎡⎣n−1∑
j=0

n−1∑
η=0

λji (−λi)η
Ṅ (λi)N(−λi)

AT
j C

TCAη

⎤⎦x0. (3.5)

Proof of Theorem. It was proven in [2] that the energy functionals of the input and output energies
Ĵ1 and Ĵ2 are equal

Ĵ1 = inf
u,x

0∫
−∞

‖u (t)‖2dt, Ĵ2 =

∞∫
0

‖y (t) , 0, x0‖2dt.

Under the conditions of the theorem, they can be represented in the form of quadratic forms

Ĵ1 = Ec (x0) = xT0 P
#
c x0, (3.6)

Ĵ2 = Eo (x0) = xT0 Pox0, (3.7)

where P#
c is the Moore-Penrose pseudo-inversion of the gramian controllability matrix, and Po is

the gramian observability matrix. Under the conditions of the theorem, the gramian controllability
matrix is a non-singular matrix, therefore the equality

P#
c = P−1

c .

Substituting the spectral decomposition of the inverse gramian matrix into the formula (3.6),
we obtain the desired spectral decomposition of the input energy functional. In [11], a spectral
decomposition of the observability gramian of system was obtained in the form of Xiao Hankel
matrices [11, 22, 23]

Po =
n∑

i=1

n−1∑
j=0

n−1∑
η=0

λji (−λi)η
Ṅ (λi)N(−λi)

AT
j C

TCAη.

Substituting the spectral decomposition of the gramian matrix Po (3.7), we obtain the desired
spectral decomposition of the output energy functional. Theorem 4 is proven.

The functionals Ĵ1 and Ĵ2 were used in [10] to analyze the degree of stability of a linear system
based on the analysis of anomalies of the square H2 is the norm of the transfer function of the
system, caused by the influence of the following weakly stable modes:

• modes close to the origin of coordinates,

• modes close to the imaginary axis,

• several aperiodic and oscillatory modes close to each other.

As the main tool for anomaly analysis, it was proposed to use asymptotic models of spectral ex-
pansions of the functionals J1 and J2 over the simple and/or pair spectrum of the system dynamics
matrix. A similar approach can be extended to the analysis of anomalies in the spectral decom-
positions of the metrics of the traces of the gramians J3 and J4, as well as to the analysis of the
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degree of reachability of a linear system based on the anomalies of the spectral decompositions of
the metrics of the mixed gramians J5. Note that the spectral decompositions of the metrics depend
on the eigenvalues of the dynamics matrix, which are tied to a specific node in the system graph,
which makes it possible to associate the problem of optimal placement of sensors and actuators
with certain nodes in the system graph.

4. CONCLUSION

The article generalizes the known results of gramian decomposition for unstable continuous linear
systems to calculate their spectral decompositions of the simplest case of decompositions over the
pair spectrum of the dynamics matrix. Most energy metrics associated with the use of gramians
are based on calculating the spectrum of dynamics matrices and measures of the minimum energy
required for the system to transition from the initial to the final point. The paper shows that
spectral decompositions of controllability gramians and their inverse gramians make it possible to
calculate the energy components corresponding to the characteristic eigenvalues of the gramian
matrices, which determine the main contribution to the value of the reachability metric and the
energy metric of stability. These spectral decompositions are presented in the form of formulas
that allow one to analyze the influence of various nodes of the system graph on the formation of
energy metrics of reachability and stability. The results obtained can find application in problems
of localization and optimal placement of sensors and actuators on the graph of a complex multi-
connected control system or in problems of placement of control nodes in the graph of a complex
social, transport, energy or biological network [25].
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1. INTRODUCTION

Mathematical models of control systems are designed on the basis of known physical laws, as
well as measurable parameters of the plant. Technological tolerances and measurement errors in
the control system may lead to a mismatch between the mathematical model and the real plant.
In some cases, this mismatch is significant and may lead to loss of system performance, and to
the loss of stability of the closed-loop system. Thus, analysis and control problems subject to
inexact knowledge about the parameters of mathematical models, called robust analysis and control
problems, arise.

Depending on the initial assumptions regarding the type of uncertainties of the control system,
there are various approaches to the analysis of its robust properties. One of the popular means of
describing uncertainties in linear systems is polytopic uncertainty. This uncertainty is characterized
by the fact that the unknown parameters of the system lie on the given simplex. If a system with
polytopic uncertainty is lienar time invariant one, then in the literature it is called a polytopic
system. For discrete-time linear systems, there are many methods for checking robust stability [1–4].
Papers [1–3] are devoted to the study of the stability of systems with polytopic time-invariant and
time varying uncertainties using parametric Lyapunov functions. In [4] the results of robust analysis
of polytopic systems using of linear matrix inequalities are presented. The results are given in terms
of nonparametric matrix inequalities.

Along with the problems of studying robust stability of uncertain systems, one of the important
aspects analysis of control systems is the ability to suppress external disturbances. Thus, in the
literature it is known methods for analyzing the quality of suppression of external disturbances in
terms of H2- and H∞-norms [5]. Assuming that correlated random disturbances act at the input
of the system, an anisotropy-based approach can be used to analyze the quality of its suppression
by the system [6–8]. Feature of anisotropy-based approach is to study the quality of system perfor-
mance under impact of correlated stationary random disturbances with a known mean anisotropy
level. Methods of anisotropy-based analysis and control of polytopic systems were studied in [9–11].
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In [9] parametric version of the anisotropy-based bounded real lemma, one of the results of non-
parametric numerical analysis anisotropy-based performance analysis was obtained in [10], [11] is
devoted to solving problem of anisotropy-based state-feedback control design with closed-loop pole
placement.

This paper proposes numerical methods for solving the problem of anisotropy-based analysis for
polytopic systems using linear matrix inequalities. All these methods are derived from parametric
anisotropy-based bounded real lemma. The degree of conservatism of the obtained conditions is
analyzed, and also estimates of their computational complexity are given.

2. PROBLEM STATEMENT

Consider linear system with state space representation as

x(k + 1) = A(Θ)x(k) +Bw(Θ)w(k), (1)

y(k) = C(Θ)x(k) +Dw(Θ)w(k), (2)

where x(k) ∈ R
n is a state, w(k) ∈ R

m is external random disturbance with zero mean and bounded
mean anisotropy level A(W ) � a (a � 0), y(k) ∈ R

p is output.

Matrices A(Θ), Bw(Θ), C(Θ), Dw(Θ) are defined from the expressions

A(Θ) =
r∑

i=1

θiAi, Bw(Θ) =
r∑

i=1

θiBwi,

C(Θ) =
r∑

i=1

θiCi, Dw(Θ) =
r∑

i=1

θiDwi,

(3)

with known constant matrices Ai, Bwi, Ci, Dwi of appropriate dimensions and vector Θ of unknown
parameters which satisfies relations

r∑
i=1

θi = 1, θi � 0, θi ∈ R, ∀i = 1, r. (4)

Mean anisotropy characterizes a measure of difference between Gaussian random sequence and
white Gaussian noise with zero mean and identity covariance (we call it standard) in terms of
relative entropy and is calculated using the formula

A(W ) = − 1

4π

π∫
−π

ln det
mSw(ω)

1
2π

∫ π
−π TraceSw(λ)dλ

dω, (5)

where Sw(ω) is a spectral density of sequence W = {w(k)}k∈Z.
Thus, parameter a � 0 defines the set of all Gaussian signals whose measure of difference from

standard Gaussian noise defined by expression (5), does no exceed value of a. It should be noted
that mean anisotropy functional is nonnegative and goes to zero ifW is standard Gaussian noise [8].

Denote the set of all parameters Θ, satisfying (3) and (4), by Q and consider the mapping
Y = FΘW , defined by expressions (1)–(2).

Definition 1. Anisotropic norm of polytopic system (1)–(4) is norm of operator FΘ, defined by
expression

|||FΘ|||a = sup
Θ∈Q

sup
W : A(W )�a

‖Y ‖P
‖W‖P , (6)
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where

‖W‖P =

√√√√ lim
N→∞

1

2N + 1

N∑
k=−N

E|w(k)|2

is power norm of signal W .

One of the most important features of anisotropic norm is that it lies between scaled H2-norm
and H∞-norm, i.e. [8]

‖FΘ‖22
m

� |||FΘ|||2a � ‖FΘ‖2∞.

It mean that by varying value of mean anisotropy a from 0 to ∞, one can reduce or expand the
set of random signals, selecting the most favorable bandwidth and stability margins of the system
in the range between H2- and H∞-norms.

In problem of robust anisotropy-based analysis of polytopic systems it’s necessary to obtain
conditions for checking robust stability and anisotropic norm bounds of open-loop system (1)–(2)
for known mean anisotropy level a � 0 and given scalar γ > 0. Thus, the problem is formulated as
follows.

Problem 1. For known mean anisotropy level a � 0 of random external disturbance w(k) and
given scalar γ > 0 the problem is to check:

1) if the system robustly stable;

2) if the condition holds

|||FΘ|||a < γ.

Known results which are necessary for the further exposition are listed below. Let us consider
the system with known parameters, for which all of the vectors and matrices dimensions coincide
with ones in system (1)–(2):

x(k + 1) = Ax(k) +Bww(k), (7)

y(k) = Cx(k) +Dww(k). (8)

Now provide formulation of anisotropy-based bounded real lemma in terms of LMI [13].

Lemma 1. System (7)–(8) is stable and its anisotropic norm for given mean anisotropy level of
external disturbance a � 0 is bounded by scalar γ > 0, if there exist such matrices X > 0, Y > 0,
Φ > 0, and scalar μ > γ2, for which the following relations hold true:

μ−
(
e−2a detΦ

)1/q
< γ2, (9)⎡⎢⎢⎣

Φ− μIm � �

Bw −Y �

Dw 0 −Ip

⎤⎥⎥⎦ < 0, (10)

⎡⎢⎢⎢⎢⎢⎣
−X � � �

0 −μIm � �

A Bw −Y �

C Dw 0 −Ip

⎤⎥⎥⎥⎥⎥⎦ < 0, (11)

XY = In. (12)
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3. PROBLEM SOLUTION

3.1. Parametric Anisotropy-Based Bounded Real Lemma

Let us formulate parametric conditions for anisotropy-based analysis of a polytopic system (1)–(2),
on the basis of which the main results of this paper will be obtained.

Theorem 1. System (1)–(2) is robustly stable and its anisotropic norm does not exceed given
scalar value γ > 0 for known mean anisotropy level a � 0 if there exist such matrices P (Θ) > 0,
Ψ(Θ) > 0, nonsingular matrices G1(Θ), G2(Θ) and scalar η > γ2, such that the following inequal-
ities hold true

η −
(
e−2a detΨ(Θ)

)1/m
< γ2, (13)

⎡⎢⎢⎢⎣
Ψ(Θ)− ηIm � �

G1(Θ)Bw(Θ) L1(Θ) �

Dw(Θ) 0 −Ip

⎤⎥⎥⎥⎦ < 0, (14)

⎡⎢⎢⎢⎢⎢⎢⎣
−P (Θ) � � �

0 −ηIm � �

G2(Θ)A(Θ) G2(Θ)Bw(Θ) L2(Θ) �

C(Θ) Dw(Θ) 0 −Ip

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (15)

where L1(Θ) = −G1(Θ)−GT
1 (Θ)+P (Θ) and L2(Θ) = −G2(Θ)−GT

2 (Θ)+P (Θ), for each Θ ∈ Q.

The proof of the theorem is listed in Appendix.

Conditions of Theorem 1 depend on parameters Θ explicitly. Existence of any parametric
matrices Ψ(Θ), P (Θ), G1(Θ), and G2(Θ), which satisfy all the conditions of the Theorem 1, would
allow to check robust stability of the system and establish the fact that its anisotropic norm is
bounded by γ for known mean anisotropy level a � 0 of input disturbanceW . There is currently no
formal method for determining the exact type matrices P (Θ) as a function of the parameter vector
Θ. In scientific literature such function P (Θ) is called parametric Lyapunov matrix [1, 2, 4]. Similar
statement holds for the rest parametric matrices. Unfortunately, such parametric dependence may
substantially complicate analysis of initial plant. It is possible to reduce numerical complexity of the
algorithm by introducing supplementary restrictions, for example, by using different approximations
of matrices Ψ(Θ), P (Θ), G1(Θ) and G2(Θ). On the one hand, this approach allows to get rid of
explicit appearance of parameter vector Θ, on the other hand, it bring some conservatism. Below
we present several methods of nonparametric anisotropy-based analysis of the polytopic system
(1)–(2) depending on various approximations.

3.2. Nonparametric Variations of Anisotropy-Based
Bounded Real Lemma

Let Ψ(Θ) = Ψ, G1(Θ) = G1, G2(Θ) = G2, P (Θ) = P. Then parameters θi can be factorized in
expressions (14)–(15). The following result is obtained directly.

Theorem 2. System (1)–(2) is robustly stable and its anisotropic norm does not exceed given
scalar value γ > 0 for known mean anisotropy level a � 0 if there exist such matrices P > 0, Ψ > 0,
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nonsingular matrices G1, G2, and scalar η > γ2, for which the following inequalities hold true:

η −
(
e−2a detΨ

)1/m
< γ2, (16)⎡⎢⎢⎣

Ψ− ηIm � �

G1Bwi L1 �

Dwi 0 −Ip

⎤⎥⎥⎦ < 0, (17)

⎡⎢⎢⎢⎢⎢⎣
−P � � �

0 −ηIm � �

G2Ai G2Bwi L2 �

Ci Dwi 0 −Ip

⎤⎥⎥⎥⎥⎥⎦ < 0, (18)

where L1 = −G1 −GT
1 + P, L2 = −G2 −GT

2 + P and i = 1, r.

The proof is trivial and is not given in the paper. Theorem 2 represents the simplest and most
conservative solution to the Problem 1.

Now we will use linear approximation for parametric Lyapunov matrix and some auxiliary
variables.

Theorem 3. System (1)–(2) is robustly stable and its anisotropic norm does not exceed given
scalar value γ > 0 for known mean anisotropy level a � 0 and all possible uncertainties which sat-
isfy (3)–(4), if there exist matrices Pi > 0, Ψ > 0, nonsingular matrices G1i, G2i, and scalar value
η > γ2, for which the following inequalities hold true:

η −
(
e−2a detΨ

)1/m
< γ2, (19)⎡⎢⎣ Ψ− ηIm � �

G1iBwi −G1i −GT
1i + Pi �

Dwi 0 −Ip

⎤⎥⎦ < 0, (20)

⎡⎢⎢⎢⎣
−Pi � � �

0 −ηIm � �

G2iAi G2iBwi −G2i −GT
2i + Pi �

Ci Dwi 0 −Ip

⎤⎥⎥⎥⎦ < 0, (21)

⎡⎢⎣ Ψ− ηIm � �

G1iBwj −G1i −GT
1i + Pi �

Dwj 0 −Ip

⎤⎥⎦+

⎡⎢⎣ Ψ− ηIm � �

G1jBwi −G1j −GT
1j + Pj �

Dwi 0 −Ip

⎤⎥⎦ < 0, (22)

⎡⎢⎢⎢⎣
−Pi � � �

0 −ηIm � �

G2iAj G2iBwj −G2i −GT
2i + Pi �

Cj Dwj 0 −Ip

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
−Pj � � �

0 −ηIm � �

G2jAi G2jBwi −G2j −GT
2j + Pj �

Ci Dwi 0 −Ip

⎤⎥⎥⎥⎦ < 0, (23)

where i, j = 1, r, i < j.

The proof of the theorem is listed in Appendix.

Conditions derived in Theorem 3 do not depend on the parameter vector Θ and allow us to
estimate anisotropic norm of the polytopic system by checking fulfilment of 2r + r(r − 1) + 1 in-
equalities. The number of inequalities as well as decision variables can be reduced by increasing the
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Table 1. Estimation of numerical complexity of analysis methods

Method Number of inequalities Number of decision variables Number of unknown parameters

Theorem 2 2r + 2 6 1 +
m2 +m

2
+

5n2 + n

2

Theorem 3 2r + r(r − 1) + 2 2 + 3r 1 +
m2 +m

2
+ r

5n2 + n

2

Theorem 4 2r +
r(r − 1)

2
+ 2 2 + 2r 1 +

m2 +m

2
+ r

3n2 + n

2

conservatism of the estimation, taking into account the fact that Φ(Θ) = P−1(Θ). Let us formulate
a theorem.

Theorem 4. System (1)–(2) is robustly stable and its anisotropic norm is strictly less than scalar
γ > 0 for known mean anisotropy level a � 0 and all possible inequalities, satisfying (3)–(4), if
there exist such matrices Φi > 0, Ψ > 0, nonsingular matrices Gi, and scalar η > γ2, for which the
following inequalities hold true:

η −
(
e−2a detΨ

)1/m
< γ2, (24)⎡⎢⎣ Ψ− ηIm � �

Bwi −Φi �

Dwi 0 −Ip

⎤⎥⎦ < 0, (25)

⎡⎢⎢⎢⎣
−Gi −GT

i +Φi � � �

0 −ηIm � �

AiGi Bwi −Φi �

CiGi Dwi 0 −Ip

⎤⎥⎥⎥⎦ < 0, (26)

⎡⎢⎢⎢⎣
−Gi −GT

i +Φi � � �

0 −ηIm � �

AjGi Bwj −Φi �

CjGi Dwj 0 −Ip

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
−Gj −GT

j +Φj � � �

0 −ηIm � �

AiGj Bwi −Φj �

CiGj Dwi 0 −Ip

⎤⎥⎥⎥⎦ < 0, (27)

where i, j = 1, r, i < j.

The proof of the theorem is listed in Appendix.

Conditions derived in Theorem 4 allow to estimate anisotropic norm of polytopic system by
checking of fulfilment of 2r + r(r−1)

2 + 2 inequalities. Data on the computational complexity of
using each of the theorems formulated above are given in Table 1.

To estimate the anisotropic norm of the system (1)–(2) one can solve the problem of minimizing
the variable γ on the set of convex constraints specified by the theorems derived above.

Unfortunately, analytical methods do not allow to evaluate the degree of conservatism of con-
ditions obtained in Theorems 3 and 4. The degree of conservatism of the conditions can only be
assessed for specific examples using numerical tools. These tools can be developed based on the
Theorem 1. Consider the grid method analysis of polytopic systems based on Theorem 1. The
algorithm can be presented as follows.

Algorythm 1 (grid method)

Step 1. Set mean anisotropy level a � 0 and step of grid h. Define set Ω, lying inside unit cube
of dimensions R

r−1 and consisting of mesh points. Fix parameter Θ, by setting first (r − 1)
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components coordinates of a point from the set Ω, the last component is calculated by formula

θr = 1−
r−1∑
i=1

θi = 1.

Step 2. Set k = 1.
Step 3. While k � N, choose element from the set Ωk, fix system matrices Ak =

∑r
i=1 θiAi, Bk =∑r

i=1 θiBwi, Ck =
∑r

i=1 θiCzi, Dk =
∑r

i=1 θiDzwi.
Step 4. For fixed values Ak, Bk, Ck, Dk solve optimization problem:

γ2k = min γ2

on the set of variables {η, γ2, P, Ψ, G1, G2}, satisfying (9)–(11).
Step 5. If system of matrix inequalities is not feasible at the Step 4, then initial plant is not

stable for given parameter values, algorithm stops. If the solution is found, then value
γ∗ = max{γk, γk−1} is calculated. If k < N , then k = k + 1, and go to Step 4. If k = N ,
then go to Step 6.

Step 6. Upper bound of anisotropic norm is defined as γ∗.
One of the disadvantages of this method is that a sufficiently large grid step will not allow one

to estimate the anisotropic norm with satisfactory accuracy and give an answer about the stability
of the system. Therefore, it is recommended to first check the system for robust stability using one
of the existing methods.

4. NUMERICAL EXAMPLE

In the following example, we will investigate the degree of conservatism of the methods for
estimating the anisotropic norm of a polytopic system, formulated in the Theorems 2–4.

Example 1. Let the system be given by the following matrices:

A1 =

[
0.9 −0.7
0.5 −0.3

]
, A2 =

[
1 1

−0.5 −0.7

]
, A3 =

[
0.7 0.4
−0.5 −0.5

]
,

Bw1 =

[
0.5
−0.5

]
, Bw2 =

[
−0.5
2

]
, Bw3 =

[
0
−2

]
,

C1 = C2 =
[
1 0

]
, C3 =

[
1 0.3

]
, Dw1 = 0, Dw2 = 0.1, Dw3 = −0.1.

Note that this system is stable for all possible values of the parameters Θ. To assess the degree
of conservatism of methods, proposed in Theorems 2–4, we will use the grid method for analyzing
the system with grid step h = 0.01. Figures 1–3 illustrate the results of minimizing the value of γ
at various grid nodes. When calculating the norm, Theorem 1 was used for selected numerical
values of the parameter vector Θ at various grid nodes.

As can be seen in figures, the double supremum (6) for different values of mean anisotropy a
is reached at points Θ which do not coincide with each other. The variation of the norm oc-
curs smoothly and without jumps. Checking stability conditions and an attempt to estimate the
anisotropic norm using the Theorem 2 leads to an infeasible problem, therefore, numerical results
are given only for Theorems 3 and 4. Results of numerical experiments for calculating anisotropic
norm of the system are given in Table. 2.

The conditions of the Theorem 2 are the most conservative, which led to an infeasible problem.
Theorems 3 and 4 allow us to numerically estimate the anisotropic norm of a given system using
linear matrix inequalities. It can be seen from Table 2, the conditions of the Theorem 4 provide
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Fig. 1. Dependence of the minimum value γ on the parameters Θ at a = 0.
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Fig. 2. Dependence of the minimum value γ on the parameters Θ at a = 0.5.
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Fig. 3. Dependence of the minimum value γ on the parameters Θ at a = 1.5.
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Table 2. Results of calculating the anisotropic norm in Example 1

Mean anisotropy a 0 0.1 0.5 1 1.5 100

|||FΘ|||a based on Theorem 1 1.6921 1.9258 2.3825 2.6616 2.7564 2.8100

|||FΘ|||a based on Theorem 3 4.6495 6.2913 7.9585 8.6163 8.8423 8.9707

|||FΘ|||a based on Theorem 4 6.7304 8.1552 9.0582 9.3701 9.4742 9.5327

Table 3. Results of calculating the anisotropic norm in Example 2

Mean anisotropy a 0 0.1 0.3 0.7 1.5 10

|||FΘ|||a based on Theorem 2 0.0771 1.1699 1.9277 2.6854 3.3354 3.7838

|||FΘ|||a based on Theorem 3 0.0728 0.3581 0.5827 0.8088 1.0032 1.1375

|||FΘ|||a based on Theorem 4 0.0727 0.3579 0.5820 0.8083 1.0028 1.1366

more conservative results. Despite this, the asymptotic behavior of the anisotropic norm for the
given numerically implementable methods is preserved with a significantly lower computational
complexity. Thus, these methods can be used to estimate the anisotropy-based performance of
polytopic systems.

Example 2. Consider now mathematical model of damped oscillations of a spring pendulum:

ẋ(t) = Ax(t) +Bww(t),

y(t) = x1(t) +Dww(t).

Here

A =

[
0 1

−ω2 −2ξω

]
,

where ω is natural frequency of the system, ξ is attenuation coefficient, x1(t) is pendulum’s center
of mass position, and x2(t) is pendulum’s center of mass speed.

Disturbance w(t) ∈ R
2 consists of external disturbance, acting on position x1(t), and measure-

ment noise. Then

Bw =

[
1 0
0 0

]
, Dw =

[
0 0, 1

]
.

Let the system parameters are ξ = 0.1, ω ∈ [4.5; 5.2].

Initial plant given continuous time is discretized using zero order hold as

Ad = eA
fh, Bd

w =

h∫
0

eA
f (h−τ)Bwdτ, (28)

where h is discretization step.

Initial continuous plant was discretized with discretization step h = 10−3 sec. The following
parameters were obtained:

Ad
1 =

[
1 0.0010

−0.0202 0.9991

]
, Ad

2 =

[
1 0.0010

−0.0270 0.9989

]
,

Bd
w1 = 10−3 ×

[
1 0

−0.0101 0

]
, Bd

w2 = 10−3 ×
[

1 0
−0.0135 0

]
,

C1 = C2 =
[
1 0

]
, Dw1 = Dw2 =

[
0 0.1

]
.

Note that initial system is stable. The results of calculating of the anisotropic norm for a spring
pendulum are summarized in Table 3.
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5. CONCLUSIONS

In this paper, conditions for the boundedness of the anisotropic norm of a linear polytopic system
are obtained in terms of linear matrix inequalities. Various options for nonparametric estimation
were considered anisotropic norm, and also analyzed the estimation accuracy and computational
complexity of these methods. The conditions are convex and formulated in terms of matrix in-
equalities, the number of which depends on the number of vertices of the polytope.
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APPENDIX

Proof of Theorem 1. The proof of the theorem consists of two parts. In the first one we will
obtain conditions under which the polytopic the system (1)–(2) is robustly stable, and its H∞-
norm is bounded some number

√
η, i.e. FΘ ∈ H∞p×m. In the second part of the proof we obtain

conditions for the boundedness of the anisotropic norm for the robustly stable system FΘ ∈ H∞p×m.

Consider the following parametric function as Lyapunov function candidate

V (k) = xT(k)P (Θ)x(k), P (Θ) > 0. (A.1)

Since we first require to prove the stability of the system and the boundedness of its H∞-norm,
then, to simplify calculations and without loss of generality, we assume thatW = {w(k)}k ∈ Z ∈ L2.
The difference between V (k + 1) and V (k) is determined by the formula

V (k + 1)− V (k) = xT(k + 1)P (Θ)x(k + 1)− xT(k)P (Θ)x(k). (A.2)

Now we consider the expression:

V (k + 1)− V (k) + zT(k)z(k) − ηwT(k)w(k)

= {substitute x(k + 1) = A(Θ)x(k) +Bw(Θ)w(k) and z(k) = C(Θ)x(k) +Dw(Θ)w(k)}

=
[
xT(k) wT(k)

] ([
A(Θ) Bw(Θ)

]T
P (Θ)

[
A(Θ) Bw(Θ)

]
+
[
C(Θ) Dw(Θ)

]T [
C(Θ) Dw(Θ)

]
−
[
P (Θ) 0
0 ηIm

])[
x(k)
w(k)

]
. (A.3)

Thus, inequality

V (k + 1)− V (k) + zT(k)z(k) − ηwT(k)w(k) < 0 (A.4)

holds for all x(k) and w(k) if[
A(Θ) Bw(Θ)

]T
P (Θ)

[
A(Θ) Bw(Θ)

]
(A.5)

+
[
C(Θ) Dw(Θ)

]T [
C(Θ) Dw(Θ)

]
−
[
P (Θ) 0
0 ηIm

]
< 0.

Let us transform the inequality (A.5) to the form[ −P (Θ) 0

0 −ηIm

]
−
[
A(Θ) Bw(Θ)

C(Θ) Dw(Θ)

]T [ −P (Θ) 0

0 −Ip

] [
A(Θ) Bw(Θ)

C(Θ) Dw(Θ)

]
< 0, (A.6)
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where matrix

[
−P−1(Θ) 0

0 −Ip

]
is negative definite. Applying to the inequality (A.6) Schur

complement, we have ⎡⎢⎢⎢⎢⎣
−P (Θ) � � �

0 −ηIm � �

A(Θ) Bw(Θ) −P−1(Θ) �

C(Θ) Dw(Θ) 0 −Ip

⎤⎥⎥⎥⎥⎦ < 0. (A.7)

Fulfilling of the inequality (A.6) for zero input makes true inequalities of the form (A.4) for any
k ∈ Z+

⋃{0} and allows to sum up them from k = 0 to k = ∞. This implies the inequality

V (∞)− V (0) +
∞∑
k=0

zT(k)z(k) − η
∞∑
k=0

wT(k)w(k) < 0. (A.8)

For zero initial condition (x(0) = 0) V (0) = 0, assuming that V (∞) = 0, inequality (A.8) transforms
to the form ∞∑

k=0

zT(k)z(k) < η
∞∑
k=0

wT(k)w(k).

Therefore,

sup
Θ∈Q

sup
W∈L2

∑∞
k=0 z

T(k)z(k)∑∞
k=0w

T(k)w(k)
< η. (A.9)

Fulfilment of inequality (A.7) guarantees stability of the open loop system (1)–(2) and bound-
edness its H∞-norm by scalar

√
η.

At the second step, it is necessary to find out conditions that guarantee the boundedness of the
anisotropic norm for the mean anisotropy level A(W ) � a of input disturbances. Then conditions
of anisotropic norm boundedness can be defined by anisotropy-based bounded real lemma [12] as
follows:

−(det(Σ(Θ)))1/m < −(1− qγ2)e2a/m, (A.10)[
A(Θ)R(Θ)A(Θ) −R(Θ) AT(Θ)R(Θ)Bw(Θ)

BT
w(Θ)R(Θ)A(Θ) BT

w(Θ)R(Θ)Bw(Θ)− Im

]

+ q

[
CT(Θ)

DT
w(Θ)

] [
C(Θ) Dw(Θ)

]
< 0,

(A.11)

where q ∈ (0,min(γ−2, ‖FΘ‖−2∞ )), and Σ(Θ) defined by

Σ(Θ) = (Im −BT
w(Θ)R(Θ)Bw(Θ)− qDT

w(Θ)Dw(Θ)). (A.12)

Inequality (A.11) coincides with inequality (A.5) taking into account the change of variables
P (Θ) = ηR(Θ) and η = q−1. Thus, anisotropic norm of the system is bounded if inequalities (A.7)
and (A.11) hold true.

Consider inequality (A.10) in detail. Taking into account introduced notations, it can be rewrit-
ten as

η − (e−2a det(ηIm −BT
w(Θ)P (Θ)Bw(Θ)−DT

w(Θ)Dw(Θ)))1/m < γ2. (A.13)
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Introducing new variable

Ψ(Θ) < ηIm −BT
w(Θ)P (Θ)Bw(Θ)−DT

w(Θ)Dw(Θ),

where Ψ(Θ) = Ψ(Θ)T > 0 [13], we ascertain inequality (A.13) fulfilled, if two following inequalities
hold:

η − (e−2a det(Ψ(Θ)))1/m < γ2, (A.14)

Ψ(Θ) < ηIm −BT
w(Θ)P (Θ)Bw(Θ)−DT

w(Θ)Dw(Θ). (A.15)

Rewrite (A.15) as

Ψ(Θ)− ηIm −
[
BT

w(Θ) DT
w(Θ)

] [ −P (Θ) 0

0 −Ip

] [
Bw(Θ)

Dw(Θ)

]
< 0. (A.16)

Applying Schur complement to the expression (A.16), we obtain⎡⎢⎣ Ψ(Θ)− ηIm BT
w(Θ) DT

w(Θ)

Bw(Θ) −P−1(Θ) 0

Dw(Θ) 0 −Ip

⎤⎥⎦ < 0. (A.17)

By right and left multiplying inequality (A.17) by matrix

⎡⎢⎣ I 0 0

0 G1(Θ) 0

0 0 I

⎤⎥⎦ and its transposed, we

get ⎡⎢⎣ Ψ(Θ)− ηIm � �

G1(Θ)Bw(Θ) Λ1(Θ) �

Dw(Θ) 0 −Ip

⎤⎥⎦ < 0, (A.18)

where Λ1(Θ) = −G1(Θ)P−1(Θ)GT
1 (Θ).

Note that for P (Θ) > 0 it follows from inequality

−(G1(Θ)− P (Θ))TP−1(Θ)(G1(Θ)− P (Θ)) � 0

that

−G1(Θ)P−1(Θ)GT
1 (Θ) � −G1(Θ)−GT

1 (Θ) + P (Θ).

Introducing notation L1(Θ) = −G1(Θ)−GT
1 (Θ) + P (Θ) and replacing Λ1(Θ) by L1(Θ) at the in-

equality (A.18), we get inequality (14).

Let’s get rid of the inversion of the matrix P (Θ) in the inequality (A.7).To do this, we introduce
a new nonsingular matrix G2(Θ). By right and left multiplying inequality (A.7) by nonsingular
matrix ⎡⎢⎢⎢⎢⎣

I 0 0 0

0 I 0 0

0 0 G2(Θ) 0

0 0 0 I

⎤⎥⎥⎥⎥⎦ (A.19)
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and its transposed respectively, we get:⎡⎢⎢⎢⎢⎣
−P (Θ) � � �

0 −ηIm � �

G2(Θ)A(Θ) G2(Θ)Bw(Θ) Λ2(Θ) �

C(Θ) Dw(Θ) 0 −Ip

⎤⎥⎥⎥⎥⎦ < 0, (A.20)

where

Λ2(Θ) = −G2(Θ)P−1(Θ)GT
2 (Θ). (A.21)

Similar to previous case, we replace Λ2(Θ) by expression L2(Θ) = −G2(Θ) − GT
2 (Θ) + P (Θ).

As a result, we have expression (15).

Theorem 1 is proved.

Proof of Theorem 3. Define matrices Ψ(Θ), G1(Θ), G2(Θ), and P (Θ) in the form Ψ(Θ) = Ψ,
G1(Θ) =

∑r
i=1 θiG1i, G2(Θ) =

∑r
i=1 θiG2i, P (Θ) =

∑r
i=1 θiPi. Rewrite inequalities (14) and (15)

taking into account introduced assumptions.

It should be noted that the inequalities (14) and (15) contain blocks of constant matrices,
parametric matrices and products of two parametric matrices. Taking into account the introduced
appearance of parametric variables, and also taking into account the fact that (

∑s
i=1 θi)

2 = 1,
constant matrices can be written in the form

Ip =

(
s∑

i=1

θi

)2

Ip.

Because of identity
∑r

j=1 θj = 1, parametric matrices can be rewritten as

r∑
i=1

θiAi =
r∑

i=1

θi

⎛⎝ r∑
j=1

θj

⎞⎠Ai.

Expressions of the form G1(Θ)Bw(Θ) are written as follows:

G1(Θ)Bw(Θ) =
r∑

i=1

θ2i (G1iBi) +
r∑

i=1

r∑
i<j

θiθj(G1iBwj +G1jBwi).

Applying all above mentioned transformation to each element of inequalities (14) and (15), we
get:

r∑
i=1

θ2i

⎡⎢⎣ Ψ− ηIm � �

Bwi −G1i −GT
1i + Pi �

Dwi 0 −Ip

⎤⎥⎦

+
r∑

i=1

r∑
i<j

θiθj

⎛⎜⎝
⎡⎢⎣ Ψ− ηIm � �

G1iBwj −G1i −GT
1i + Pi �

Dwj 0 −Ip

⎤⎥⎦

+

⎡⎢⎣ Ψ− ηIm � �

G1jBwi −G1j −GT
1j + Pj �

Dwi 0 −Ip

⎤⎥⎦
⎞⎟⎠ < 0,
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r∑
i=1

θ2i

⎡⎢⎢⎢⎢⎣
−Pi � � �

0 −ηIm � �

G2iAi G2iBwi −G2i −GT
2i + Pi �

Ci Dwi 0 −Ip

⎤⎥⎥⎥⎥⎦

+
r∑

i=1

r∑
i<j

θiθj

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

−Pi � � �

0 −ηIm � �

G2iAj G2iBwj −G2i −GT
2i + Pi �

Cj Dwj 0 −Ip

⎤⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
−Pj � � �

0 −ηIm � �

G2jAi G2jBwi −G2j −GT
2j + Pj �

Ci Dwi 0 −Ip

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ < 0.

Since θi � 0, i = 1, r, it obvious that inequalities (13)–(15) hold, when inequalities (19)–(23)
hold.

Proof of Theorem 4. Let us consider inequalities (A.7) and (A.17), obtained in the proof of
Theorem 1. Introduce new variable Φ(Θ) = P−1(Θ), and fix parameter η and matrix Ψ. Then
inequalities (A.7) and (A.17) will be rewritten as follows:

⎡⎢⎣ Ψ− ηIm BT
w(Θ) DT

w(Θ)

Bw(Θ) −Φ(Θ) 0

Dw(Θ) 0 −Ip

⎤⎥⎦ < 0 (A.22)

and ⎡⎢⎢⎢⎢⎣
−Φ−1(Θ) � � �

0 −γ2Im � �

A(Θ) Bw(Θ) −Φ(Θ) �

C(Θ) Dw(Θ) 0 −Ip

⎤⎥⎥⎥⎥⎦ < 0. (A.23)

The latest inequality contains matrix Φ−1(Θ). To get rid of it, we will left and right multiply
inequality (A.23) by matrix ⎡⎢⎢⎢⎢⎣

GT(Θ) 0 0 0

0 Im 0 0

0 0 In 0

0 0 0 Ip

⎤⎥⎥⎥⎥⎦
and its transposed respectively. It results to:⎡⎢⎢⎢⎢⎣

Λ(Θ) � � �

0 −ηIm � �

A(Θ)G(Θ) Bw(Θ) −Φ(Θ) �

C(Θ)G(Θ) Dw(Θ) 0 −Ip

⎤⎥⎥⎥⎥⎦ < 0, (A.24)

where Λ(Θ) = −GT(Θ)Φ−1(Θ)G(Θ).
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Note that Φ(Θ) > 0, therefore fulfilment of inequality

−(G(Θ)− Φ(Θ))TΦ−1(Θ)(G(Θ) − Φ(Θ)) � 0

results to −GT(Θ)Φ−1(Θ)G(Θ) � −G(Θ)−GT(Θ) + Φ(Θ). From the latter it follows that inequal-
ity (A.24) holds, if inequality (A.23) holds.

Consider matrix Φ(Θ) be appeared in the form Φ(Θ) =
∑r

i=1 θiΦi taking into account expressions
for parametric uncertainties (3)–(4). Then inequalities (A.22) and (A.24) take form:

r∑
i=1

θi

⎡⎢⎣ Ψ− ηIm � �

Bwi −Φi �

Dwi 0 −Ip

⎤⎥⎦ < 0, (A.25)

r∑
i=1

θ2i

⎡⎢⎢⎢⎢⎣
−Gi −GT

i +Φi � � �

0 −ηIm � �

AiGi Bwi −Φi �

CiGi Dwi 0 −Ip

⎤⎥⎥⎥⎥⎦

+
r∑

i=1

r∑
i<j

θiθj

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
−Gi −GT

i +Φi � � �

0 −ηIm � �

AjGi Bwj −Φi �

CjGi Dwj 0 −Ip

⎤⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
−Gj −GT

j +Φj � � �

0 −ηIm � �

AiGj Bwi −Φj �

CiGj Dwi 0 −Ip

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ < 0.

(A.26)

Note that inequality (A.26) can be obtained using property (4) and considering that
(
∑r

i=1 θi)
2 = 1. Obviously, fulfilment inequalities (25)–(27) automatically leads to fulfilment in-

equalities (A.25) and (A.26), that completes the proof.
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