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1. INTRODUCTION

Iterative learning control (ILC) is an effective tool to improve accuracy in systems operating in a
repetitive mode [1]. A simple typical example of such systems is a gantry robot placing components
in desired positions on a conveyor. Currently, iterative learning control algorithms find application
in robotic-assisted upper-limb stroke rehabilitation [2, 3], in ventricular assist devices [4], laser
metal deposition [5, 6], and other repetitive processes [6–8].

Most ILC design works involve linear models [9, 10]. At the same time, actuators of robotic
systems are often electromechanical devices with characteristic nonlinearities (saturation, dead
zone, backlash, and hysteresis). These nonlinearities can make the required accuracy unachievable
and therefore need a detailed study. Delays, particularly those arising under remote control, are
another factor neglected within linear models.

These factors in ILC problems were analyzed by several researchers. Nevertheless, no exhaustive
solution has been provided so far. In this paper, we consider input saturation as a widespread
nonlinearity. Different ILC algorithms for systems with saturation constraints were proposed
in [11–17]. However, none of the authors cited above discussed the effect of saturation level on
accuracy. As demonstrated therein, the algorithms reduce the learning error, but its steady-state
value (as the number of passes increases) was not investigated depending on the saturation level.

ILC reflects an important feature of repetitive processes: the learning error signals from previous
passes contain essential information, and all ILC algorithms efficiently use this information on the
current pass. ILC differs from other control strategies with learning, such as adaptive control and
neural network control. Adaptive control changes controller parameters, whereas ILC changes only
the input signal. In addition, adaptive controllers typically do not use the information contained
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in repetitive command signals. Similarly, training a neural network involves changing controller
parameters by modifying this network. Neural networks often need large amounts of training data,
and it may be difficult to ensure fast convergence. In contrast, ILC algorithms usually converge
adequately in only a few iterations; see [9] and references in [9].

Due to the described feature of ILC laws, different cases are possible: delays in the state and
control vectors on each pass or delays along the passes. (In the latter case, the information available
on the current pass corresponds not to the previous pass but to an earlier one.) Different ILC
algorithms for systems with state delays were proposed in [18–23]. As far as we know, other types
of delays have not been considered in the literature.

This paper develops the results of [24] for systems with input saturation and delay along the
sample trajectory. Both factors have not been simultaneously analyzed in the literature. (Although,
their combination is quite natural in engineering; see an illustrative example below.) As in [24],
we construct a 2D model in the repetitive process form [25] and employ the divergent method
of vector Lyapunov functions [26]. Due to this approach, the final results are obtained using an
efficient technique of linear matrix inequalities (LMIs). Note that the proposed ILC algorithm
depends on the delay. An illustrative example is given, and some lines of further research are
indicated.

2. PROBLEM STATEMENT

Consider a linear discrete-time system operating in a repetitive mode. On pass (iteration or
trial) k, the system dynamics are described by the state-space model

xk(p + 1) = Axk(p) +Bψk(p − d),

ψk(p) = sat(uk(p)), (2.1)

yk(p) = Cxk(p), p ∈ [0, N − 1], k = 0, 1, . . . ,

where: xk(p) ∈ R
nx, uk(p) ∈ R

nu , and yk(p) ∈ R
ny denote the state vector, control vector, and pass

profile, respectively; N is the pass duration; d is the number of delay steps; ψk(p) ∈ R
nu is the

saturation function given by

ψk(p)j = sat(uk(p))j =







Uj if uk,j(p) > Uj ,

uk,j(p) if − Uj 6 uk,j(p) 6 Uj,

−Uj if uk,j(p) < −Uj,

(2.2)

for 1 6 j 6 nu and k > 0, where uk,j(p) denotes the jth component of uk(p) and Uj is a positive
constant.

Let yref (p), 0 6 p 6 N, be a given reference trajectory (desired pass profile). Then

ek(p) = yref(p) − yk(p) (2.3)

is the learning error on pass k.

The ILC design problem is to construct a sequence of control inputs uk(p), bounded for all
k = 0, 1, . . . , to track the reference trajectory in a finite number k∗ of passes with a given accuracy:

||ek(p)|| 6 e∗, k > k∗, 0 6 p 6 N. (2.4)
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3. TRANSITION TO AN EQUIVALENT 2D MODEL
IN THE REPETITIVE PROCESS FORM

This problem will be solved if the sequence uk(p) satisfies the following convergence conditions:

lim
k→∞

||ek(p)|| = ||e∞(p)||,

||ek(p)|| 6 κ̺k + µ, κ > 0, µ > 0, 0 < ̺ < 1, (3.1)

lim
k→∞

||uk(p)|| = ||u∞(p)||,

where u∞(p) is a bounded variable usually called the learned control.

We design the ILC law on the current pass in the form

ψk+1(p) = sat(uk+1(p)), uk+1(p) = sat(ψk(p) + δuk+1(p)), (3.2)

where δuk+1(p) is the control update for ensuring the convergence conditions (3.1).

Following the standard procedure, let us pass from (2.1) to an equivalent extended model.
For this purpose, we introduce an auxiliary vector x̂k of dimension dnu with the components
x̂ki(p) = ψk(p− i), i = 1, . . . , d. Obviously, this vector satisfies the equation

x̂k(p+ 1) = Adx̂k(p) +Bdψk(p), (3.3)

where

Ad =











0 0 . . . 0 0
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0











, Bd = [I 0 0 . . . 0]T .

Therefore, the first equation in (2.1) can be written as

xk(p+ 1) = Axk(p) +BCdx̂k(p), (3.4)

where Cd = [0 . . . 0
︸ ︷︷ ︸

d−1

I].

Denoting x̄k+1(p) = [xTk+1(p) x̂
T
k+1(p)]

T , we represent (3.3), (3.4) as the single equation

x̄k(p+ 1) = Âx̄k(p) + B̂ψk(p),

yk(p) = Ĉx̄k(p), (3.5)

where

Â =

[

A BCd

0 Ad

]

, B̂ =

[

0

Bd

]

, Ĉ = [C 0].

Assume that the state vector is available for control design and the matrix CB is nonsingular. In
the case of no delay, the nonsingularity condition allows deriving a simple equation for the learning
error as a function of the number of passes. For the extended model, ĈB̂ = 0, and additional
transformations are needed. First, we obtain equations for the increments of the extended state
vector. Let us introduce the auxiliary variable

ηk+1(p+ 1) = x̄k+1(p) − x̄k(p). (3.6)
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According to (3.5), this variable satisfies the equation

ηk+1(p+ 1) = Âηk+1(p) + B̂∆ψk+1(p− 1), (3.7)

where ∆ψk+1(p− 1) = ψk+1(p − 1) − ψk(p − 1). Due to the structure of the matrices Â and B̂,

ĈÂdB̂ = CB. (3.8)

Consider the biased learning error ēk(p) = ek(p+ d). In view of (2.3), (3.5)–(3.7), it is described
by the equation

ēk+1(p) = −ĈÂd+1ηk+1(p) + ēk(p) − CB∆ψk+1(p− 1). (3.9)

Note that, like the state variables, the variable x̂kd is also available for ILC design in (3.2). There-
fore, we have additional information for ILC design and determine the control update as

δuk+1(p) = K1ηk+1(p+ 1) +K2ēk(p+ 1), (3.10)

where the matrix K1 is given by

K1 = [K11
︸︷︷︸

nx

0 . . . 0
︸ ︷︷ ︸

(d−1)nu

K12
︸︷︷︸

nu

].

Substituting (3.10) into (3.7) and (3.9) yields

ηk+1(p + 1) = (Â+ B̂K1)ηk+1(p) + B̂K2ēk(p) + B̂ϕk(p), (3.11)

ēk+1(p) = − (ĈÂd+1 + CBK1)ηk+1(p)

+ (I − CBK2)ēk(p) − CBϕk(p),

where ϕk(p) = ∆ψk+1(p− 1) − δuk+1(p− 1). Let us denote

K =
[

K1 K2

]

, ζk(p) =
[

ηTk+1(p) ēTk (p)
]T
.

Due to (2.2),

−2Uj 6 sat(uk+1(p))j − sat(uk(p))j 6 2Uj , j = 1, . . . , nu. (3.12)

According to (2.2) and (3.10), the components of the function ϕk(p) obviously satisfy the constraints

Fj[(ϕk(p))j , (ζk(p))j ] =

[

1 +
1

2Uj
((ϕk(p))j + (Kζk(p))j)

]

×
[

1 − 1

2Uj

((ϕk(p))j + (Kζk(p))j)

]

> 0, j = 1, 2, . . . , nu. (3.13)

System (3.11) belongs to the class of nonlinear repetitive processes representing the most widespread
particular case of 2D systems [25].
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4. ILC DESIGN BASED ON THE DIVERGENT METHOD
OF VECTOR LYAPUNOV FUNCTIONS

Consider the following vector Lyapunov function on the trajectories of system (3.11):

V (ηk+1(p), ēk(p)) =

[

V1(ηk+1(p))

V2(ēk(p))

]

, (4.1)

where V1(ηk+1(p)) > 0, η 6= 0, V2(ēk(p)) > 0, ēk(p) 6= 0, V1(0) = 0, and V2(0) = 0. We define the
discrete analog of the divergence operator along the trajectories of this system as

DdV (ηk+1(p), ēk(p)) = V1(ηk+1(p+ 1)) − V1(ηk+1(p)) + V2(ēk+1(p)) − V2(ēk(p)). (4.2)

Theorem 1. If there exist a vector Lyapunov function (4.1), positive numbers c1, c2, and c3, and
a nonnegative number γ such that

c1||ηk(p)||2 6 V1(ηk(p)) 6 c2||ηk(p)||2, (4.3)

c1||ēk(p)||2 6 V2(ēk(p)) 6 c2||ēk(p)||2, (4.4)

DdV (ηk+1(p), ēk(p)) 6 γ − c3(||ηk+1(p)||2 + ||ēk(p)||2), (4.5)

then the convergence conditions (3.1) hold for system (3.11).

Proof. In the case γ = 0, the proof coincides with that of Theorem 1 in [26]. If γ 6= 0, following
the same line of reasoning, we obtain

||ēk(p− 1)||2 6
1

c1



λk
p−1
∑

q=0

λp−1−qV2(ē0(q)) + γ
k−1∑

n=0





p−1
∑

q=0

λp−1−q



λk−1−n



 , (4.6)

where 0 < λ < 1. Since the value ||ē0(q)||2 is bounded for all 0 6 q 6 N − 1, there exists µ̄ > 0 such
that ||ē0(q)||2 6 µ̄. According to (4.4), we have

p−1
∑

q=0

λp−1−qV2(ē0(q)) 6 c2µ̄
∞∑

q=0

λp−1−q =
c2µ̄

1 − λ
. (4.7)

Considering (4.7), inequality (4.6) implies

||ēk(p− 1)||2 6 αλk + β,

α =
c2µ̄

c1(1 − λ)
, β =

γ

c1(1 − λ)2
, 1 6 p 6 N.

(4.8)

By definition, ēk(p− 1) is the biased learning error. Hence, condition (4.8) leads to the second
inequality of (3.1) with the parameters κ =

√
α, ̺ =

√
λ, and µ =

√
β. Moreover, by analogy with

the derivation of (4.8), we arrive at the upper bound

||ηk(p)|| 6 κ̺k + µ, 0 6 p 6 N − 1. (4.9)

Since δuk+1(p) is given by (3.10), the upper bounds (4.8) and (4.9) guarantee the existence of κ̃
and µ̃ such that

||δuk+1(p)|| 6 κ̺̃k + µ̃
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for all k and 0 6 p 6 N − 1. The second equality of (3.2) yields

||uk+1(p)|| 6 ||ψk(p)|| + ||δuk+1(p)||.

Due to the boundedness of ψk(p) and the latter inequality, the value ||uk(p)|| is bounded for all k
and 0 6 p 6 N − 1, and ||u∞(p)|| = lim

k→∞
||uk(p)|| is bounded as well. Thus, all conditions of (3.1)

hold. The proof of Theorem 1 is complete.

Denote

Ā =

[

Â 0

−ĈÂd+1 I

]

, B̄ =

[

B̂

−CB

]

,

DU = diag[1/4U2
j ], TU = D−1

U , j = 1, 2 . . . , nu, (4.10)

and define a matrix P = diag[P1 P2] ≻ 0 as the solution of the discrete algebraic Riccati inequality

ĀTPĀ− (1 − σ)P − ĀTPB̄[B̄TPB̄ +R]−1B̄TPĀ+Q � 0, (4.11)

where 0 < σ < 1, Q ≻ 0, and R ≻ 0. On the right-hand side of the divergence formula, this inequal-
ity will serve for separating the relations close to those used in the classical theory of linear-quadratic
controller design. In particular, the matrices Q and R are similar in sense to the weight matrices
of the classical theory, whereas the parameter σ allows affecting the stability margin. After such
transformations, described in detail in the paper [27], it becomes possible to apply the technique
of linear matrix inequalities (LMIs). Using the Schur complement lemma, we easily reduce (4.11)
to the following LMI in the variable X = diag[X1 X2] with X1 = P−1

1 and X2 = P−1
2 :







(1 − σ)X XĀT X

ĀX X + B̄R−1B̄T 0

X 0 Q−1






� 0, X ≻ 0. (4.12)

If this LMI is solvable, then P = X−1 and we establish the following result according to the
paper [27]: the linear control law without constraints and with the control update (3.10), compactly
written as δuk+1(p) = Kζk(p), ensures the convergence of the learning error to zero as k → ∞, where

K = [K1 K2] = −[B̄TPB̄ +R]−1B̄TPĀΘ, (4.13)

Θ is the block diagonal matrix

Θ =

[

Θ1 0

0 Θ2

]

, Θ1 = diag[Θ11
︸︷︷︸

nx

0 . . . 0
︸ ︷︷ ︸

(d−1)nu

Θ12
︸︷︷︸

nu

],

satisfying the LMI

[

M −MΘ − ΘM −Q Θ
√
M

√
MΘ −I

]

� 0 (4.14)

with M = ĀTPB̄[B̄TPB̄ +R]−1B̄TPĀ. The relation (4.14) reflects structural constraints on the
matrix K1 in (3.10). It naturally holds in the absence of such constraints. In the case of no
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constraints, the control update matrix can be calculated in an alternative way. Let the variables
X, Y , and Z be the solution of the system of matrix inequalities and equations









X (ĀX + B̄Y H)T X (Y H)T

ĀX + B̄Y H X 0 0

X 0 Q−1 0

Y H 0 0 R−1









� 0,

HX = ZH, X = diag[X1 X2] ≻ 0, (4.15)

where

H =







Inx
0 . . . 0 0 0

0 0 . . . 0 Inu
0

0 0 . . . 0 0 Iny






.

In this case, by the Schur complement lemma, we have the inequality

(Ā+ B̄K̄H)TP (Ā+ B̄K̄H) − P +Q+ (K̄H)TRK̄H � 0, (4.16)

where P = diag[P1 P2] = X−1 ≻ 0 and

K̄ = Y Z−1. (4.17)

Hence, the conditions of Theorem 1 from the paper [26] hold with the quadratic forms

V1(ηk+1(p)) = ηTk+1(p)P1ηk+1(p),

V2(ēk(p)) = ēTk (p)P2ēk(p) (4.18)

as the components of the corresponding vector Lyapunov function; moreover, in the system without
constraints, the control update δuk+1(p) = K̄Hζk(p) ensures the convergence of the learning error
to zero as k → ∞.

Theorem 2. Given the constraints (3.13) and some matrices Q ≻ 0, R ≻ 0, and Θ, let there exist
a solution X = diag[X1 X2] ≻ 0 of the combined LMIs (4.12) and (4.14) such that the LMI







−W −(KW )T (ĀW + B̄KW )T

−KW −TTU TTUB̄
T

(ĀW + B̄KW ) B̄TTU −W






≺ 0 (4.19)

is solvable in the variables W = diag[W1 W2] ≻ 0 and T = diag[Tj ] ≻ 0, j = 1, . . . , nu, for the ma-
trix K given by (4.13). Then the ILC law (3.2), (3.10) ensures the convergence conditions (3.1).

Proof. As the components of the vector function (4.1) we choose the quadratic forms (4.18), where
P1 ≻ 0 and P2 ≻ 0, and form the block matrix P = diag[P1 P2]. Since the combined LMIs (4.12)
and (4.14) are solvable, let K be given by (4.13). Calculating the divergence (4.2) along the
trajectories of (3.11) yields

DdV (η, ē) = [(Ā+ B̄KH)ζ + B̄ϕ]TP [(Ā+ B̄KH)ζ + B̄ϕ] − ζTPζ. (4.20)

Due to V1(ηk+1(p)) ≻ 0 and V2(ēk(p)) ≻ 0, conditions (4.3) and (4.4) of Theorem 1 are valid.
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Conditions (4.5) of Theorem 1 will hold under the constraints (3.13) if, for all ϕ and ζ,

DdV (η, ē) +
nu∑

j=1

djFj [(ϕk)j , (ζk)j ] 6 γ − ǫ||ζ||2, (4.21)

where dj , j = 1, . . . , nu, are positive constants and ǫ is a sufficiently small positive number [28].
With (4.21) being satisfied for all ϕ and ζ, we have

DdV (η, ē) 6 γ − ǫ||ζ||2

for all ϕ and ζ and, consequently, under the constraints (3.13). Thus, all conditions of Theorem 1
hold, and inequality (4.21) can be written as

DdV (η, e) − ζT (KH)TDDUKHζ − 2ζT (KH)TDDUϕ

− ϕTDDUϕ+ tr(D) 6 γ − ǫ||ζ||2, (4.22)

where D = diag[dj ], j = 1, 2 . . . , nu, and ǫ is a sufficiently small positive number.

In the case nu = 1, this approach (the so-called S procedure) ensures that (4.21) is a sufficient
and necessary condition for (4.5) under the constraints (3.13); for details, see [29].

For γ = tr(D), condition (4.5) of Theorem 1 holds if

[(Ā+ B̄KH)ζ + B̄ϕ]TP [(Ā+ B̄KH)ζ + B̄ϕ] − ζTPζ

− 2ζT (KH)TDDUϕ− ϕT (t)DDUϕ < 0, (4.23)

or equivalently,

[ζT ϕT ]M̄i[ζ
T ϕT ]T ≺ 0,

where

M̄ =

[

(Ā+ B̄KH)TP (Ā+ B̄KH) − P (B̄TP (Ā+ B̄KH) −DDUKH)T

B̄TP (Ā+ B̄KH) −DDUKH B̄TPB̄ −DDU

]

.

The matrix M̄ can be written as

M̄ =

[

−P −(KH)TDDU

−DDUKH −DDU

]

+

[

(Ā+ B̄KH)T

B̄T

]

P [(Ā+ B̄KH) B̄].

By the Schur complement lemma, M̄i ≺ 0 if and only if






−P −(KH)TDDU (Āi + B̄KH)T

−DDU(KH) −DDU B̄T

(Āi + B̄KH) B̄ −P−1






≺ 0. (4.24)

Denoting W = P−1 and T = D−1 and multiplying (4.24) by diag[P−1 [DDU ]−1 I] on the left and
right, we finally arrive at (4.19). The proof of Theorem 2 is complete.

Using the other method for calculating the matrix K, we give an alternative version of this
theorem.

Theorem 3. Given the constraints (3.13) and some matrices Q ≻ 0 and R ≻ 0, let there exist a
solution X = diag[X1 X2] ≻ 0, Y, and Z of the combined LMIs (4.15) such that the LMI (4.19) is
solvable in the variables W = diag[W1 W2] ≻ 0 and T = diag[Tj ] ≻ 0, j = 1, . . . , nu, for K = K̄H
with K̄ given by (4.17). Then the ILC law (3.2), (3.10) ensures the convergence conditions (3.1).
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5. AN EXAMPLE

Consider the experimental plant model from [30]. It consists of two permanent magnet syn-
chronous motors (PMSMs) with coupled shafts. The first motor (A) is the drive, whereas the
second motor (B) generates the load torque. The goal of control is to track a reference trajectory
of the drive shaft angle θ(t). The continuous plant dynamics model has the form

Te(t) = iA(t)ktA = J
d2θ(t)

dt2
+ b

dθ(t)

dt
+ Tl(t) (5.1)

with the following notations: Te(t) is the electromagnetic torque generated by motor A; ktA is
the torque constant of motor A; J is the total mass moment of inertia; b is the resulting fric-
tion coefficient; finally, Tl(t) is the load torque generated by motor B. We selected the follow-
ing values of the parameters: TcA = 0.8 · 10−3 s, ktA = 0.93 N·m/A, J = 9.3 · 10−4 kg·m2, and
b = 2.4 · 10−3 kg·m2/s.

The discrete control signal was computed with the sampling time Ts = 2 ms and a delay of
1 step. This signal was converted into a control current through zero-order extrapolation and
amplification. The resulting discrete-time state-space model has the form

xk(p+ 1) = Axk(p) +Buk(p) + Edk(p)

yk(p) = Cxk(p),
(5.2)

where:

A =







1 0.0020 0.0020

0 0.9949 1.9948

0 0 0






, B =







0

0

1






, E =







−0.0021

−2.1450

0






, C =

[

1 0 0
]

,

xk(p) =







θk(p)

ωk(p)

iAk(p)






, uk(p) = irefAk(p), dk(p) = Tlk(p);

on pass k, θk(p) is the drive shaft angle, ωk(p) is the angular velocity of the drive shaft, iAk(p) is
the current on motor A, irefAk(p) is the control current, and Tlk(p) is the load torque.

According to the previous section, the ILC law has the form

uk(p) = sat
(
uk−1(p) +K1(xk(p) − xk−1(p)) +K2ek−1(p+ 2)

)
. (5.3)

where K1 and K2 are calculated using Theorem 2. When solving the LMIs (4.12), (4.14), we
selected the parameters

Q = diag[0.2 · 106 104 104 1010], R = 1.5, σ = 0.9,

Θ = diag[1 1 1 1.2].

With these parameters, inequality (4.19) holds for all saturation levels considered below. As a
result, we obtained

K1 = [−30.1869 − 0.5717 − 1.0856], K2 = 14.3028.

In the case of no control constraints, the maximum value of the control signal was 4.7 A. We
assessed the effect of the constraint level on the tracking accuracy by the root-mean-square (RMS)
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Fig. 1. RMS values of the learning error under different saturation levels.
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Fig. 2. The reference trajectory of the drive shaft angle.

learning error:

RMS(ek) =

√
√
√
√

1

N

N−1∑

p=0

||ek(p)||2. (5.4)

Figure 1 shows the pass-to-pass progression of this error under different saturation levels.

To indicate the values close to the steady-state ones, the number of passes was taken sufficiently
large (k = 600). According to the simulation results, the steady-state error increases by approx-
imately 100 times when changing the saturation level from 4.3 A to 4.0 A. Figure 2 presents the
reference trajectory of the shaft angle. Next, Figs. 3 and 4 show the pass-to-pass progressions of
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Fig. 3. The drive shaft angle progression under the saturation level U = 4.3.
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Fig. 4. The angular velocity progression under the saturation level U = 4.3.

the drive shaft angle and angular velocity, respectively. Finally, Figs. 5 and 6 demonstrate the
pass-to-pass progressions of the control signal and learning error, respectively.

6. CONCLUSIONS

The ILC law designed in this paper corresponds to a definite delay and does not ensure conver-
gence of the learning error under another delay. At the same time, it seems interesting to establish
a similar result for a variable delay from a given range. As noted in the Introduction, ILC cor-

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 1 2023



ITERATIVE LEARNING CONTROL OF A DISCRETE-TIME SYSTEM 93

600

400

200

200 300 400 500

1000 p

k

5

-5

0
u

k
(p

)

Fig. 5. The control signal progression under the saturation level U = 4.3.
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Fig. 6. The learning error progression under the saturation level U = 4.3.

rects the input signal without changing the system structure, and achieving the required accuracy
depends on both the information structure and power of the input signal. In the case of input sat-
uration, the signal power is limited, and the marginal error as k → ∞ stabilizes near some nonzero
value; hence, the required accuracy may not be achieved. On the other hand, without saturation,
the trained control has a natural bound, and the best result will be achieved when this bound
lies inside the saturation domain. Otherwise, it is necessary to carefully examine the saturation
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effect on accuracy degradation. As shown by the example above, this effect can be significant. In
practice, such analysis will guide to selecting a drive of the right power.

The proposed approach has a definite drawback: there is no explicit dependence of the conver-
gence rate of the learning error and achievable accuracy on the delay and saturation level.

Future research may aim at developing ILC algorithms under delay along the passes (remote
control) and mixed delay (along the passes and with respect to the passes simultaneously).
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