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Abstract—Randomized machine learning focuses on problems with considerable uncertainty in
data and models. Machine learning algorithms are formulated in terms of a functional entropy-
linear programming problem. We adapt these algorithms to forecasting problems on an exam-
ple of the evolution of thermokarst lakes area in permafrost zones. Thermokarst lakes generate
methane, a greenhouse gas affecting climate change. We propose randomized machine learn-
ing procedures using dynamic regression models with random parameters and retrospective
data (climatic parameters and remote sensing of the Earth’s surface). The randomized ma-
chine learning algorithm developed below estimates the probability density functions of model
parameters and measurement noises. Randomized forecasting is implemented as algorithms
transforming the optimal distributions into the corresponding random sequences (sampling al-
gorithms). The randomized forecasting procedures and technologies are trained, tested, and
then applied to forecast the evolution of thermokarst lakes area in Western Siberia.

Keywords : thermokarst lakes, remote sensing, information entropy, balance equations, dynamic
regression, optimization, Lyapunov-type problem, sampling, randomized forecasting, random-
ized machine learning
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1. INTRODUCTION

The problems, technologies, and algorithms of machine learning were considered in numerous
publications. For general ideas, see the monographs [1–3]. Randomized machine learning (RML)
focuses on reconstructing the parameters of dependencies under uncertainty in initial data (incom-
plete data, errors with unknown characteristics, different timescales, etc.) and models (insufficient
knowledge of the processes, structural ambiguity, uncertain key parameters, etc.) [4]. In contrast
to machine learning, the randomized version is based on estimating the probability density func-
tions (PDFs) of the model parameters and measurement noises corresponding to the maximum
uncertainty in terms of information entropy.

64



RANDOMIZED MACHINE LEARNING ALGORITHMS 65

Thermokarst lakes are an object with high-level uncertainty. Note that the formation and
evolution processes of thermokarst lakes have been insufficiently studied [5, 6] and historical data
about them, especially satellite-derived ones, are accompanied by considerable errors [7–9].

This paper proposes a randomized technology to forecast the evolution of thermokarst lakes area.
Its essence consists in generating optimized ensembles of forecast trajectories by the sampling of
the entropy-optimal PDFs of the parameters of randomized dynamic models. The optimal char-
acteristics of the models are determined using real historical data based on conditionally maximal
information entropy estimates.

2. THE GENERAL STRUCTURE OF THE ENTROPY-RANDOMIZED MODELING
AND FORECASTING PROCEDURE

Randomization as a means of imparting artificial, rationally organized random properties to
inherently non-random events, indicators, and methods is a fairly common and effective technique.
There are many examples in various fields of science, management, and economics: randomized
numerical optimization methods [10, 11], mixed (random) strategies in stock trading [12], the ran-
domized prediction of population dynamics [13], and vibrational control of industrial processes [14].
Randomization implies giving non-random objects artificial stochastic properties with optimal prob-
abilistic characteristics in a definite sense. Choosing quantitative characteristics of optimality al-
ways turns out to be debatable and ambiguous. It requires arguments that somehow reflect the
important peculiarities of the randomized object. In particular, a fundamental feature of model-
ing and forecasting procedures is the uncertainty in the data used, predictive models, forecasting
methods, etc.

In this paper, we adopt information entropy [15] as a characteristic of uncertainty. According
to the first law of thermodynamics, entropy is a natural function describing universal evolutionary
processes; for example, see [16–18]. By the second law of thermodynamics, entropy maximiza-
tion determines the best state of an evolutionary process under the worst-case impact on it (the
maximum uncertainty). Also, we mention another quality of information entropy, related to mea-
surement and other errors, which are important characteristics of data. With information entropy
used to consider the effect of such errors, it is possible to estimate the probabilistic characteristics
of noises with the worst-case impact on forecasting procedures [19].

2.1. Randomized Modeling

Randomized modeling rests on mathematical input-output models with random parameters.
This stage of the technology yields a basic randomized parametric model (RPM-B), associated
with the available historical input-output data, and an auxiliary model of the same class (RPM-A),
intended to reproduce the input of the basic model via a “suitable” input process for RPM-A. As
such, a random sequence with optimized properties is often used.

Consider a basic randomized parametric model (RPM-B) and historical data arrays compatible

with it. RPM-B transforms a historical input data array X = [x(1), . . . , x(s)], where x(j) ∈ Rn, into
a model output with a matrix Ẑ = [ẑ(1), . . . , ẑ(s)], where z(j) ∈ Rm.

Generally, this transformation is assumed dynamic: the model output observed at a time in-
stant j depends on the input observed on some historical time interval j − ̺, . . . , j, i.e., on the

matrix X
(j)
̺ = [x(j−̺), . . . , x(j)]. This relationship is mathematically expressed through a vector

functional Ω̂(X
(j)
̺ , a |P (a)) with random parameters a ∈ Rd of the interval type:

a ∈ A = [a−, a+]. (2.1)

The probabilistic properties of the parameters are characterized by a continuously differentiable
PDF P (a).
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The RPM-B output at a time instant j (measurements) is an ensemble Ẑ
(j)(P (a)) of random

vectors

ẑ(j)(a) = Ω̂(X̺(j), a |P (a)), j = 1, s. (2.2)

The observed RPM-B output can be represented as

v(j)(a, ξ(j)) = ẑ(j)(a) + ξ(j), j = 1, s, (2.3)

where measurement noises ξ(j) ∈ Rm of the interval type,

ξ(j) ∈ Ξj = [ξ
(j)
− , ξ

(j)
+ ], j = 1, s, (2.4)

have continuously differentiable PDFs Qj(ξ
j), j = 1, s. In accordance with these functions, the

model generates an ensemble K
(j)(Qj(ξ

j)) for each measurement instant of the object’s output.

The random vectors (2.3) form an ensemble V
(j)(P (a), Qj(ξ

(j))) with the mathematical expec-
tation

M
{

v(j)(a, ξ(j))
}

=

∫

A

ẑ(j)(a, P (a))da+

∫

Ξj

Qj(ξ
(j))ξ(j)dξ(j)

= ϕ(j)
[

P (a), Qj(ξ
(j))
]

, j = 1, s. (2.5)

2.2. Training of RPMs

An RPM is trained by estimating the PDFs of its parameters and measurement noises based on
available data. This stage is implemented using randomized machine learning algorithms (RML-A);
for details, see [19, 20].

For RPM-B, the algorithm has the form

[P ∗(a), Q∗(ξ)] = arg max
P (a),Q(ξ)

H[P (a), Q(ξ)] (2.6)

on the set of all normalized functions P ∗(a) and Q(ξ) satisfying the empirical balance conditions

ϕj

[

P (a), Qj(ξ
(j))
]

= y(j), j = 1, s, (2.7)

for the expectations (2.5), where y(j) ∈ Rm is the real measurement vector of the object’s output
and ξ = {ξ(1), . . . , ξ(s)}.

The estimation quality of these PDFs is characterized by an entropy functional of the form

H[P (a), Q(ξ̄)] = −
∫

A

P (a) lnP (a) da −
s
∑

j=1

∫

Ξj

Qj(ξ
(j)) ln Qj(ξ

(j)) dξ(j). (2.8)

Problem (2.6), (2.7) belongs to the class of functional entropy-linear problems of the Lyapunov
type [21]. It therefore has an analytical solution obtained using the Lagrange multipliers Θ =
[θj, j = 1, s] (vectors θj ∈ Rm):

P ∗(a) =

exp

(

−
s
∑

j=1
〈θ(j), ẑ(j)(a)〉

)

P(Θ)
,

Q∗
j (ξ

(j)) =
exp

(

−〈θ(j), ξ(j)〉
)

Qj(θ(j))
, j = 1, s; Q(ξ) =

s
∏

j=1

Q∗
j(ξ

(j)). (2.9)
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The denominators of these expressions contain the normalizing constants

P(Θ) =

∫

A

exp



−
s
∑

j=1

〈θ(j), ẑ(j)(a)〉



 da,

Qj(θ
(j)) =

∫

Ξj

exp
(

−〈θ(j), ξ(j)〉
)

dξ(j), j = 1, s. (2.10)

The optimal PDFs and the normalizing constants are parametrized by the Lagrange multipliers
satisfying the balance equations

Uj(Θ)

P(Θ)
+

Tj(θ
(j))

Qj(θ(j))
= y(j), j = 1, s, (2.11)

where

Uj(Θ) =

∫

A

ẑ(j)(a) exp



−
s
∑

j=1

〈θ(j), ẑ(j)(a)〉



 da,

Tj(θ
(j)) =

∫

Ξj

ξ(j) exp
(

−〈θ(j), ξ(j)〉
)

dξ(j), j = 1, s. (2.12)

2.3. Testing of the Trained RPMs

The optimized RPMs are tested using historical data sequences by the sampling of the entropy-
optimized PDFs of the model parameters and measurement noises. Sampling involves transforming
the PDFs into suitable sequences of random vectors.

The general method for generating sequences of random vectors with a given PDF was described
in [22]. As a result, Monte Carlo simulations yield an ensemble of random trajectories of the
observed RPM output under the worst-case measurement noises (in entropy terms).

The empirical trajectories in the testing procedures are averaged over the ensemble (the mean
trajectories):

v̄[k] =
1

M

M
∑

i=1

v̂(i)[k], k = 0, N, (2.13)

where M denotes the number of trajectories in the ensemble.

The training quality of these RPMs is characterized by the absolute error

∆ =

√

√

√

√

M
∑

k=1

(v̄[k]− vr[k])2 (2.14)

and (or) the relative error

δ =

M
∑

k=1
(v̄[k]− vr[k])2

√

M
∑

k=1
v̄2[k] +

√

M
∑

k=1
(vr[k])2

, (2.15)

where vr[k] are historical test data.
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2.4. Randomized Forecasting

The application of dynamic input-output models to forecasting requires some modification: in
this case, we need a forecast of the input process. It can be obtained using the concept of entropy-
randomized machine learning.

Consider an auxiliary randomized parametric model (RPM-A). In contrast to RPM-B , its input

is a random matrix Γ =
[

γ(1), . . . , γ(s)
]

composed of random vectors γ(j) ∈ Rn of the interval type:

γ(j) ∈ Gj = [γ
(j)
− , γ

(j)
+ ], Γ ∈ G =

s
⋃

j=1

Gj. (2.16)

RPM-A transforms a random matrix Γ into another random matrix X =
[

x(1), . . . , x(s)
]

. By

analogy with RPM-B , this relationship is mathematically expressed through a vector functional

Ψ̂
(

Γ
(j)
̺ ,b |W (Γ

(j)
̺ ,b)

)

with a matrix Γ̺(j) =
[

γ(j−̺), . . . , γ(j)
]

and parameters b ∈ Rp of the inter-

val type:

b ∈ B = [b−,b+]. (2.17)

We characterize the probabilistic properties of the functional Ψ̂ by a joint PDF of the parameters b

and matrix Γ
(j)
̺ , denoted by W (Γ

(j)
̺ ,b). Assume that this PDF is continuously differentiable as

well.

The RPM-A output at a time instant j (measurements) is an ensemble X̂
(j)(W (Γ̺(j),b) of

random vectors

x̂(j)
(

Γ(j)
̺ ,b

)

= Ψ̂
(

Γ(j)
̺ ,b |W (Γ(j)

̺ ,b)
)

, j = 1, s. (2.18)

The observed RPM-A output can be represented as

f(j)
(

Γ(j)
̺ ,b, η(j)

)

= x̂(j)
(

Γ(j)
̺ ,b

)

+ η(j), j = 1, s, (2.19)

where measurement noises η(j) ∈ Rm of the interval type,

η(j) ∈ Ej =
[

η
(j)
− , η

(j)
+

]

, j = 1, s, (2.20)

have continuously differentiable PDFs Ej(η
(j)), j = 1, s. In accordance with these functions, the

model generates an ensemble E
(j)(Ej(η

(j))) for each measurement instant of the object’s output.

The random vectors (2.19) form an ensemble F
(j)(W (Γ

(j)
̺ ,b), Ej(η

(j))) with the mathematical
expectation

M
{

f(j)(Γ(j)
̺ ,b, η(j))

}

=

∫

B
⋂

G

W
(

Γ(j)
̺ ,b

)

x̂(j)
(

Γ(j)
̺ ,b,

)

dΓ(j)
̺ db

+

∫

Ej

Ej(η
(j))η(j)dη(j) = ψ(j)

[

W (Γ(j)
̺ ,b), Ej(η

(j))
]

, j = 1, s. (2.21)

For RPM-A, the randomized machine learning algorithm has the form

[

W ∗(Γ(j)
̺ ,b), E∗(η)

]

= arg max
W (Γ

(j)
̺ ,b),E(η)

H [W (Γ̺,b), E(η)] (2.22)
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on the set of all normalized functionsW (Γ
(j)
̺ ,b) and E(η) satisfying the empirical balance conditions

ψj

[

W (Γ(j)
̺ ,b), Ej(η

(j))
]

= y(j), j = 1, s. (2.23)

The entropy functional in (2.22) has the form

H[W (Γ̺,b), E(η)] =−
s
∑

j=1

∫

B
⋂

Gj

W (Γ(j)
̺ ,b) lnW (Γ(j)

̺ ,b) dΓ(j)
̺ db

−
s
∑

j=1

∫

Ej

Ej(η
(j)) lnEj(η

(j)) dη(j). (2.24)

We denote by Λ
{

λ(1), . . . , λ(s)
}

, λ(j) ∈ Rm, the Lagrange multipliers for problem (2.22, 2.23). Then

its solution can be written as

W ∗(Γ(j)
̺ ,b) =

exp
(

−〈λ(j), x̂(j)(Γ
(j)
̺ ,b)〉

)

Wj(λ(j))
, W ∗(Γ̺,b) =

s
∏

j=1

W ∗(Γ(j)
̺ ,b),

E∗
j (η

(j)) =
exp

(

−〈λ(j), η(j)〉
)

Ej(λ(j))
, j = 1, s; E(η) =

s
∏

j=1

E∗
j (η

(j)). (2.25)

The denominators of these expressions contain the normalizing constants

Wj(λ
(j)) =

∫

B
⋂

G

exp
(

−〈λ(j), x̂(j)(Γ(j)
̺ ,b)〉

)

dΓ(j)
̺ db,

Ej(λ
(j)) =

∫

Ej

exp
(

−〈λ(j), η(j)〉
)

dη(j), j = 1, s. (2.26)

Hence, the input auxiliary noises and the model parameters have interconnected probabilistic prop-
erties for some nonlinear functional Ψ̂.

Due to (2.7), the optimal PDFs are parametrized by the Lagrange multipliers Λ satisfying the
balance equations

Nj(λ
(j))

Wj(λ(j))
+

Sj(λ
(j))

Ej(λ(j))
= y(j), j = 1, s, (2.27)

where

Nj(λ
(j)) =

∫

B
⋂

Gj

ẑ(Γ(j)
̺ ,b) exp

(

−〈θ(j), ẑ(Γ(j)
̺ ,b)〉

)

dΓ(j)
̺ , db,

Sj(λ
(j)) =

∫

Ej

η(j) exp
(

−〈λ(j), η(j)〉
)

dη(j), j = 1, s. (2.28)

Let the PDF of the model parameters and the input sequence be determined. Then the ensembles
of forecast trajectories are generated by their sampling; for details, see [22].

Sampling implies transforming the PDF into a suitable sequence of random vectors. The fol-
lowing empirical probabilistic and numerical characteristics of ensembles are used in randomized
forecasting procedures:

• the empirical probability density functions (ePDFs) Pk(v̂[k]);
• the empirical probability distributions (ePDs) Pk(v̂[k]);
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• the maxima trajectories of the ePDFs of the model parameters and measurement noises
(max-pn), given by

ŷ[k] = B(a∗,X(k−ρ)), a∗ = argmaxP ∗(a),

ξ[k] = argmaxQ∗
k(ξ[k]),

v̂[k] = ŷ[k] + ξ[k], k = 0, N ;

(2.29)

• the maxima trajectories of the ePDFs of the observed RPM outputs for k = 0, N (max-
ePDF ), given by

v̌[k] = argmaxPk(v̂[k]), k = 0, N ; (2.30)

• the mean trajectories (mean), given by

v̄[k] =
1

M

M
∑

i=1

v̂(i)[k], k = 0, N, (2.31)

where M denotes the number of trajectories in the ensemble;
• the median trajectories (med), given by

v̂(i
∗)[k] ⇒

i∗
∑

i=1

Pk(v̂
(i)[k]) =

M
∑

i=i∗+1

Pk(v̂
(i)[k]), (2.32)

where M denotes the number of trajectories in the ensemble.
Other important characteristics of ensembles are the so-called confidence sets, which cover all

ensemble trajectories with a given deviation or a given probability. Among them, the most infor-
mative ones are as follows:

• the variance pipe D(v̄[k]), k = 0, N, given by

d(v̄j [k]) =

√

√

√

√

1

M − 1

M
∑

i=1

(

v̂
(i)
j [k]− v̄j [k]

)2
, j = 1,m,

D(v̄[k]) =
{

v̂[k] : v̄j[k]− d(v̂j [k]) 6 v̂j[k] 6 v̄j [k] + d(v̂j [k]), j = 1,m; k = 0, N
}

; (2.33)

• the interquartile set I(κ1,κ2)(v̂[k]), k = 0, N, given by

I(κ1,κ2)(v̂[k]) = Iκ2(v̂[k]) \ Iκ1(v̂[k]), κ1 < κ2 < 1, (2.34)

Iκ2(v̂[k]) =
{

v̂[k] : v̂j [k] < v̂κ2
j [k]

}

, v̂κ2
j [k] ⇒ Pk(v̂j [k]) = κ2,

Iκ1(v̂[k]) =
{

v̂[k] : v̂j [k] < v̂κ1
j [k]

}

, v̂κ1
j [k] ⇒ Pk(v̂j [k]) = κ1,

k = 0, N, j = 1,m. (2.35)

We adopt these probabilistic and numerical characteristics of the entropy-optimal ensembles to
describe the randomized modeling and forecasting procedures for the evolution of thermokarst
lakes area.

3. STRUCTURES OF RANDOMIZED MODELS OF THERMOKARST LAKES STATE

An important stage in the randomized forecasting technology is to construct randomized models
of the thermokarst lakes area S[n] and randomized models of the average annual temperature T [n]
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Fig. 1. The structural diagram of LDRR.

and the annual precipitation R[n] (climatic parameters affecting the evolution of such lakes). These
variables will be modeled using linear dynamic regressions [23] with random parameters (LDRR).

The models below are phenomenologically based on the studies described in the paper [8]. As
shown therein, the lakes area depends on two climatic factors (the average annual temperature and
average annual precipitation), and the past states of the object have “memory.”

Figure 1 demonstrates the structural diagram of LDRR in accordance with the object’s phe-
nomenology. It consists of the randomized models of the lakes area (LDRR-A), the temperature
(LDRR-T ), and the precipitation (LDRR-P). Measurement errors in the data are simulated by the
noises ξ, η, and ζ, respectively.

The evolution of the thermokarst lakes area S[n] (LDRR-A) is described by the following dy-
namic randomized regression equation with two influencing factors, the average annual temperature
T [n] and the annual precipitation R[n] :

S[n] = a0 +
p
∑

k=1

akS[n− k] + a(p+1)T [n] + a(p+2)R[n]. (3.1)

Here, p is the memory depth of the model. The parameters

ak ∈ Ak = [a−k , a
+
k ], k = 0, (p + 2), a = {a0, . . . , ap+2} ∈ A =

p+2
⋃

k=0

Ak (3.2)

are random with a PDF P (a).

The variable

v[n] = S[n] + ξ[n] (3.3)

is the observed output of the model, and the values of the random measurement noise ξ[n] at
different time instants n may belong to different ranges:

ξ[n] ∈ Ξn = [ξ−[n], ξ+[n]], (3.4)

with a PDF Qn(ξ[n]), n = 0, N.

The randomized model LDRR-T of the temperature T [n] with the observed output t[n] has the
form

T [n] = b0 +
p
∑

k=1

bkT [n− k] + µ[n], t[n] = T [n] + η[n]. (3.5)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 1 2023
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The random parameters of this model are of the interval type:

bk ∈ Bk = [b−k , b
+
k ], k = 0, p, b = {b0, . . . , bp}, b ∈ B =

p
⋃

k=0

Bk. (3.6)

The random input sequence is

µ[n] ∈ Mn = [µ−[n], µ+[n]], n = 0, N ;

µ = {µ[0], . . . , µ[N ]}, µ ∈ M =
N
⋃

n=0

Mn.
(3.7)

The random parameters of this model and the random input sequence are characterized by a joint
PDF W (b, µ).

The measurement noise η[n] ∈ En = [η−[n], η+[n]] in (3.5) is of the interval type with PDFs
En(η[n]).

The precipitation model (LDRR-P) R[n] with the observed output r[n] has the form

R[n] = c0 +
p
∑

k=1

ckR[n− k] + ζ[n], r[n] = R[n] + χ[n]. (3.8)

The random parameters of this model are independent and of the interval type:

ck ∈ Ck = [c−k , c
+
k ], k = 0, p; c = {c0, . . . , cp}, c ∈ C =

p
⋃

k=0

Ck. (3.9)

The random input sequence is

ζ[n] ∈ Zn = [ζ−[n], ζ+[n]], ζ = {ζ[0], . . . , ζ[N ]}, ζ ∈ Z =
N
⋃

n=0

Zn. (3.10)

The random parameters and the input sequence are characterized by a joint PDF F (c, ζ). The
measurement noise χ[n] ∈ Gn = [χ−[n], χ+[n]] is of the interval type with PDFs Gn(χ[n]).

Note that data on the lakes area, temperature, and precipitation are available at the training
stage of the model LDRR-A. But there are no data on the temperature and precipitation at the
forecasting stage. LDRR-T and LDRR-P are intended to forecast the average annual tempera-
ture and average annual precipitation using auxiliary random sequences µ[n] and ζ[n]. Their joint
probability characteristics are determined by training LDRR-T and LDRR-P.

4. RML ALGORITHMS FOR ESTIMATING PDFS

The model was trained using data from the array [24], structured by three geographic zones (the
superscript r) and the time intervals 1973–2007. The memory parameters p of the corresponding
models were determined from the historical data by correlation analysis. As a result, the following
data arrays (matrices) were formed:

S(r)
p =









S
(r)
(0)

· · ·

S
(r)
(24−p)









, T (r)
p =









T
(r)
(0)

· · ·

T
(r)
(24−p)









, R(r)
p =









R
(r)
(0)

· · ·

R
(r)
(24−p)









, (4.1)
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where

S
(r)
(n−p) = {1, Sr[n− 1], . . . , S(r)[n− p]}, S

(r)
(p) = {S(r)[p], . . . , S(r)[24]},

T
(r)
(n−p) = {1, T (r)[n− 1], . . . , T (r)[n− p]}, T

(r)
(p) = {T (r)[p], . . . , T (r)[24]}, (4.2)

R
(r)
(n−p) = {1, R(r)[n− 1], . . . , R(r)[n− p]}, R

(r)
(p) = {R(r)[p], . . . , R(r)[24]},

n = p, 24.

These arrays were used in RML algorithms to estimate the PDFs of the corresponding models.

1. For LDRR-A, the RML algorithm has the form

H[P (a, Q(ξ)] = −
∫

A

P (a) lnP (a) da

−
24
∑

n=p

∫

Ξn

Qn(ξ[n]) lnQn(ξ[n]) dξ[n] ⇒ max

(4.3)

subject to the constraints
∫

A

P (a) da = 1,

∫

Ξn

Qn(ξ[n]) dξ[n] = 1, (4.4)

∫

A

P (a)D
(r)
(n−p) a da+

∫

Ξn

Q(ξ[n])ξ[n] dξ[n] = S(r)[n], n = p, 24,

with the block row vector

D
(r)
(n−p) =

[

S
(r)
(n−p), T

(r)[n], R(r)[n]
]

. (4.5)

The solution of this problem, parametrized by the Lagrange multipliers θ = {θp, . . . , θ24}, is
given by

P ∗(a, θ) =
exp

(

−〈θ,D
(r)
p a〉

)

P(θ)
, P(θ) =

∫

A

exp
(

−〈θ,D(r)
p a〉

)

da, (4.6)

with the block matrix

D(r)
p =

(

S
(r)
p T

(r)
(p) R

(r)
(p)

)

. (4.7)

For LDRR-A, the measurement noise has the entropy-optimal PDFs

Q∗
n(ξ[n], θn) =

exp(−ξ[n]θn)

Qn(θn)
, Qn(θn) =

∫

Ξn

exp(−ξ[n] θn)d ξ[n]. (4.8)

The Lagrange multipliers θ are obtained from the system of equations

P−1(θ)

∫

A

exp
(

−〈θ,D(r)
p a〉

)

D
(r)
(n−p)a d a

+Q−1
n (θ)

∫

Ξ

exp(−ξ[n] θn) d ξ[n] = S(r)[n],

n = p, 24. (4.9)
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For LDRR-T and LDRR-P, the RML algorithm differs from (4.3)–(4.4) by the need to estimate
the joint PDFs W (b, µ) and F (c, ζ) of the model parameters and input random sequences and the
PDFs of the measurement noises E(η) and G(χ).

2. Adapting the RML algorithm to LDRR-T, we obtain

H[W (b, µ), E(η)] =−
∫

B
⋂

M

W (b, µ) lnW (b, µ) db dµ

−
24
∑

n=p

∫

En

En(η[n]) lnEn(η[n]) dη[n] ⇒ max (4.10)

subject to the constraints

∫

B
⋂

M

W (b, µ) dbdµ = 1,

∫

En

En(η[n]) d η[n] = 1, (4.11)

∫

B
⋂

M

W (b, µ)
[

T
(r)
(n−p)b+ µ[n]

]

db dµ[n] +

∫

En

En(η[n])η[n] d η[n] = T (r)[n],

n = p, 24.

In the expressions (4.10)–(4.11), µ = {µ[p], . . . , µ[24]}.

Let ϑ = {ϑp, . . . , ϑ24} denote the Lagrange multipliers for this problem. Recall that the model
is linear, and its random parameters are independent of the auxiliary random sequence elements.
Therefore, the solution of this problem—the optimal PDFs—can be written as

W ∗(b, µ, ϑ) = L∗(b, ϑ)M∗(µ, ϑ), M∗(µ, ϑ) =
24
∏

n=p

M∗
n(µ[n], ϑn),

L∗(b, ϑ) =
exp

(

−〈ϑ, T
(r)
p b〉

)

L(ϑ)
, L(ϑ) =

∫

B

exp
(

−〈ϑ, T (r)
p b〉

)

db, (4.12)

M∗
n(µ[n], ϑn) = M

−1
n (ϑn) exp (−ϑnµ[n]) , Mn(ϑn) =

∫

Mn

exp (−ϑnµ[n]) dµ[n],

E∗
n(η[n], ϑn) = E

−1
n (ϑn) exp (−η[n]ϑn) , En(ϑn) =

∫

En

exp (−η[n]ϑn) d η[n].

The Lagrange multipliers ϑ are obtained from the system of equations

L−1(ϑ)

∫

B

exp
(

−〈ϑ, T (r)
p b〉

)

T
(r)
(n−p) b db

+M
−1
n (ϑn)

∫

Mn

M∗
n(µ[n], ϑn)µ[n]dµ[n]

+ E
−1
n (ϑn)

∫

En

E∗
n(η[n], ϑn) η[n]dη[n] = T (r)[n], n = p, 24. (4.13)
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3. For LDRR-P, similar to (4.12)–(4.13), the RML algorithm has the form

F ∗(c, ζ, λ) = V ∗(c, λ)Z∗(ζ, λ), Z∗(ζ, λ) =
24
∏

n=p

Z∗
n(ζ[n], λn),

V ∗(c, λ) =
exp

(

−〈λ,R
(r)
p c〉

)

V(λ)
, V(λ) =

∫

C

exp
(

−〈λ,R(r)
p c〉

)

d c, (4.14)

Z∗
n(ζ[n], λn) = Z

−1
n (λn) exp (−λn ζ[n]) , Zn(λn) =

∫

Zn

exp (−λn ζ[n]) d ζ[n],

G∗
n(χ[n], λn) = G

−1
n (λ) exp (−χ[n]λn) , Gn(λn) =

∫

Gn

exp (−χ[n]λn) dχ[n].

The Lagrange multipliers λ = {λp, . . . , λ24} are obtained from the system of equations

V−1(λ)

∫

C

exp
(

−〈λ,R(r)
p c〉

)

R
(r)
(n−p) c dc (4.15)

+ Z
−1
n (λn)

∫

Zn

Z∗
n(ζ[n], λn) ζ[n]dζ[n]

+G
−1
n (λn)

∫

Gn

G∗
n(χ[n], λn)χ[n] dχ[n] = R(r)[n], n = p, 24.

According to (4.6), (4.8), (4.12), and (4.14), the entropy-optimal PDFs belong to the exponential
class. They are parametrized by the corresponding Lagrange multipliers, which satisfy the balance
equations (4.9), (4.13), and (4.15).

5. THE EVOLUTION OF THERMOKARST LAKES AREA IN WESTERN SIBERIA: THE
RESULTS OF TRAINING, TESTING, AND FORECASTING

1. Randomized training (1973–1997). At the preliminary training stage, we determined the
orders p of the corresponding models using historical data from a training collection. For this
purpose, the autocorrelation functions r[k] were calculated; p = kmax for which r[kmax] 6 δ, where
δ = 0.1.

As a result, the entropy-optimal PDFs of the model parameters, auxiliary random sequences,
and measurement noises were found.

LDRR-A (p = 4). The analytical expressions for the corresponding parametrized PDFs are given
by (4.6), (4.8). Since LDRR-A is linear, these PDFs belong to the exponential class:

P ∗(a, θ) =

(p+2)
∏

k=0

P ∗
k (ak) , P ∗

k (ak) =
exp(−qk ak)

Pk
, Pk =

∫

Ak

exp(−qk ak) dak,

q0 =
24
∑

n=p

θn, qk =
24
∑

n=p

θn S
(r)[n− k], k = 1, p,

qp+1 =
24
∑

n=p

θn T
(r)[n], qp+2 =

24
∑

n=p

θnR
(r)[n],

Q∗(ξ, θ̄) =
exp(−θ̄ ξ)

Q
, Q =

∫

Ξ

exp(−θ̄ ξ) d ξ, θ̄ =
q0

24− p
.

(5.1)
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Fig. 2. Examples of reconstructed PDFs.

Figure 2 shows examples of the entropy-optimal PDFs: (a) P ∗(a2, a4) (model parameters) and
(b) Q∗(ξ) (noise); they were reconstructed by training based on the historical data for the northern
zone of thermokarst lakes. Table 1 presents the average values of the parameter estimates of
LDRR-A obtained by the RML procedure and the ordinary least squares (OLS) method. Obviously,
the OLS estimates almost coincide with the average RML ones, which is due to the linear RPMs
used. However, even in this case, the RML procedure allows generating an ensemble of model
output trajectories and determining its numerical characteristics.

Table 1. LDRR-A: estimated parameters

The northern zone of thermokarst lakes

Model Order Parameters OLS estimates RML estimates

S 4 a0 −0.2888 −0.2750
a1 0.1069 0.1126
a2 −0.2224 −0.2212
a3 −0.1289 −0.1333
a4 0.0535 0.0533
a5 0.8330 0.8322
a6 0.6245 0.6080

LDRR-T. The analytical expressions for the corresponding PDFs are given by

W ∗(b, µ, ϑ) = L∗(b, ϑ)M∗(µ, ϑ), M∗(µ, ϑ) =

(24)
∏

n=p

M∗
n(µ[n], ϑn),

L∗(b, ϑ) =
p
∏

k=0

L∗
k (bk) , L∗

k(bk) =
exp(−wk bk)

Lk

, Lk =

∫

Bk

exp(−wk bk) dbk,

w0 =
24
∑

n=p

ϑn, wk =
24
∑

n=p

ϑn T
(r)[n− k], k = 1, p,

M∗
n(µ[n], ϑn) =

exp(−ϑn µ[n])

Mn
, Mn =

∫

Mn

exp(−ϑn µ[n]) dµ[n],

E∗(η, ϑ̄) =
exp(−ϑ̄ η)

E
, E =

∫

E

exp(−ϑ̄ η) d η, ϑ̄ =
w0

24− p
.

(5.2)
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Table 2. Relative testing errors

Estimate LDRR-A LDRR-T LDRR-P
RelErr 0.0089 0.0801 0.1675

LDRR-P. The analytical expressions for the corresponding PDFs are given by

F ∗(c, ζ, χ) = V ∗(c, λ)Z∗(ζ, λ), Z∗(ζ, λ) =

(24)
∏

n=p

Z∗
n(ζ[n], λn),

V ∗(c, λ) =
p
∏

k=0

V ∗
k (ck), V ∗

k (bk) =
exp(−sk ck)

Vk

,

Vk =

∫

Ck

exp(−sk ck) dck,

s0 =
24
∑

n=p

λn, sk =
24
∑

n=p

λnR
(r)[n− k], k = 1, p,

Z∗
n(ζ[n], λn) =

exp(−λn ζ[n])

Zn
, Zn =

∫

Zn

exp(−λn ζ[n]) dζ[n],

G∗(χ, λ̄) =
exp(−λ̄ χ)

G
, G =

∫

G

exp(−λ̄ χ) dχ, λ̄ =
w0

24− p
.

(5.3)

2. Testing (1998–2007). The testing procedure was applied to the combination of the trained
models (Section 7) with the test data collections. This procedure is based on the sampling of the
optimal PDFs [22] and the further generation of the ensembles of random trajectories on the testing
interval. The quality of the models was assessed by the closeness of the mean model trajectories

Fig. 3. Dynamics of the thermokarst lakes area.
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Fig. 4. Dynamics of the average annual temperature.

Fig. 5. Dynamics of the annual precipitation.

to the real data on the observation interval in terms of the relative error (2.15). Table 2 shows the
relative testing errors for the northern zone. In addition, Figs. 3–5 demonstrate examples of the
tested trajectories, including the corresponding errors.

3. Randomized forecasting (2008–2023). All forecasts were constructed using the composite
model (Fig. 1) consisting of LDRR-A, LDRR-T, and LDRR-P. The entropy-optimal PDFs gen-
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Fig. 6. Forecast trajectories of the thermokarst lakes area: ensemble, variance pipes, and mean trajectories.

erate the ensembles of trajectories describing the evolution of the thermokarst lakes area on the
forecasting interval. The difference between the forecasting and testing intervals is that in the
former case, all data points are used to train the models.

For each point, the mean value (mean) and the standard deviation (std) were calculated over the
entire ensemble. The resulting forecasts for the northern zone are shown in Fig. 6. They include
the ensemble of forecast trajectories for the thermokarst lakes area, the mean trajectory (the dark
curve), and the variance pipe (the grey zone).

6. DISCUSSION OF THE RESULTS

The formation and evolution processes of thermokarst lakes in permafrost zones have been
insufficiently studied so far, both in terms of their internal geological dynamics and external climatic
factors affecting them. Procedures for transforming satellite images into the number and area of
thermokarst lakes are accompanied by very significant errors. Therefore, the model information
and data on the object’s state are uncertain.

RML algorithms serve for estimating the characteristics of such models based on data with
unknown-nature errors. These algorithms reconstruct the PDFs of the model parameters and
measurement noises corresponding to the maximum uncertainty.

The sampling of the optimal PDFs and Monte Carlo simulations allow generating ensembles of
trajectories that describe thermokarst lakes area evolution. Statistical processing of these ensembles
yields various numerical characteristics, first of all, the mean trajectories and the set of trajectories
bounded by the root-mean-square trajectories (variance pipes). According to the results of this
paper, the mean trajectories differ from the real permafrost zone data by 8–17% in terms of the
relative root-mean-square (integral) errors.

The conducted study of the object with the application, adaptation, and testing of randomized
machine learning algorithms has demonstrated a sufficiently high accuracy in reconstructing the
mean trajectories (8–17%). The maximum dimensions of the variance pipes calculated by the
generated ensembles were ±9%.
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All studies have involved linear dynamic randomized regression models with the memory p=3–5.
For the thermokarst lakes area, they have provided quite acceptable simulation results. For the
climatic parameters, however, the testing errors have turned out to be significantly higher. Appar-
ently, the transition to nonlinear models will increase the accuracy of reproducing real data.

The balance equations with the so-called integral components still remain a general difficulty
in the RML procedure. These components are multidimensional definite integrals with parameters
calculated on simple sets (parallelepipeds). In this study (linear models), they have been calculated
analytically with the software integration of the corresponding analytical expressions. However,
such an approach will be eliminated when passing to nonlinear models.

7. CONCLUSIONS

This paper is one of those devoted to the effectiveness and performance of randomized machine
learning. It has considered the problems of applying optimal randomized models to forecasting. For
such models, the forecasted input sequence is often unknown. It has been proposed to generate this
sequence using an auxiliary random sequence with entropy-optimal characteristics reconstructed
by the machine learning of the corresponding model.
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